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Abstract

Modeling of active anisotropic strips with small pretwist,
based on the dimensional reduction of laminate shell theory
to a non-linear one dimensional theory using variational
asymptotic method is presented. The present paper treats the
problem of designing an anisotropic beam actuator assuming
all effective piezoelectric coefficients to be non-zero. Hence,
direction of application of actuation electric field in the fiber
can be optimized for higher actuation authority. This type of
non-classical analysis is needed, for example, in problems,
where trapeze effect is important, such as in active rotor
blades. In order to demonstrate the usage of the results
in the analysis of structures made of arbitrary geometrical
combination of active pretwisted anisotropic strips, closed
form expressions are derived for the performance of actuator
corresponding to all directions of application of actuation
electric fields. A numerical study is also conducted to
investigate the effect of geometrical parameters on the
performance of a twist actuator.

Symbols used

x1 Cartesian coordinate along the axis of a strip
xi Cartesian coordinate for a cross section,i = 2, 3
bi Unit vectors for undeformed geometry,i = 1, 2, 3
Bi Unit vectors for deformed geometry,i = 1, 2, 3
Γij 3-D Jaumann-Biot-Cauchy strains,i, j = 1, 2, 3
E 3-D strains (linear part ofΓij )
σij 3-D stresses,i, j = 1, 2, 3
εαβ 2-D membrane strains,α, β = 1, 2
ραβ 2-D elastic curvatures,α, β = 1, 2
Aij 2-D membrane stiffness constants,i, j = 1, 2, 6
Bij 2-D coupling stiffness constants,i, j = 1, 2, 6
Dij 2-D bending stiffness constants,i, j = 1, 2, 6
Nij Laminate normal forces,i, j = 1, 2
Mij Laminate moments,i, j = 1, 2
a Superscript for active properties
γ11 1-D axial strain
κ1 1-D elastic twist per unit length (twist rate)
κi 1-D elastic bending curvatures,i = 2, 3
S 1-D stiffness matrix
w̄i 3-D warping fields of cross section,i = 1, 2, 3
wi Warping averaged over strip/wall thickness,i = 1, 2, 3
l Characteristic length of a beam
b Characteristic dimension of a cross section
h Thickness of a thin wall/strip
k1 Initial twist per unit length
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ε Small parameter, magnitude of largest strain
δh Small parameter,hb
δb Small parameter,bl
δt Small parameter,bk1

δR Small parameter,Rl
∆ Small parameter, ε

δh
2

Ca
i Actuation coefficients,i = 1, 2, 3

Cij 3-D Stiffness coeffientsi, j = 1, 2,.., 6
ci Coefficients for trapeze effect in the strip,i = 1, 3
θo Initial twist in the strip
Ea

i Actuation electric fields,i = 1, 2, 3

Introduction

In recent decades, researchers have been investigating the
application of new material system developments to existing
engineering systems in an effort to improve these systems.
There is a drive towards systems with improved performance,
less parts, lower maintenance cost and higher reliability.This
paper focuses applications of new material technology to con-
trol mechanisms. In this view, there has been an increasing
interest in the study of smart or intelligent structures. Actua-
tors and sensors are two key components in these structures
and Piezoelectric Fiber Reinforced Composite (PFRC) is one
of the active materials which shows a lot of promise as
an actuator. Modeling PFRC, also known as Active Fiber
Composite (AFC), structures is the main focus of this paper.
The actuator can be an AFC with Inter Digitated Electrodes
(IDE) Ref [1]. This actuator concept provides a feasible way
to integrally actuate the structure, as opposed to the use of
the piezoceramic crystal pathces, providing higher level of
actuation authority.

Due to their geometry, high aspect ratio wings and heli-
copter rotors can often be treated as beams, that is, one
dimensional bodies. This idealization of the structure leads
to a much simpler mathematical formulation than would be
obtained if complete three dimensional elastic formulation
were used to model it. There is a significant amount of
work in the literature dealing with capturing passive two
dimensional (cross sectional) effects in beams. The concept
of Variational Asymptotic Method (VAM) was introduced by
V.L.Bedichevskii in 1978 Ref [20] for construction of theory
of shells. VABS was developed by Cesnik and Hodges Ref
[17] for modeling of composite beams. A non-linear closed-
form analysis of anisotropic pretwisted strips including non-
classical effects was presented in Ref [15].

Finite element based modeling of initially twisted and curved
active composite beams was implemented through Active
Variational Asymptotic Beam Section (VABS-A) analysis
code by Cesnik and Morales Ref [2]. Also in Ref [2], the



beam theory is formulated from geometrically non-linear 3
D elasticity. Cesnik and Shin have presented modeling of
integrally actuated helicopter blades Ref [3] and asymptotic
formulation for preliminary design of multiple-cell composite
helicopter rotor blades with integral anisotropic active ply
Ref [4]. A lot of experiments, design, manufacturing and
testing of integrally twist actuated rotor blades have been
accomplished Ref ([6] - [11]).

While good advances have been made in the field of passive
cross-sectional modeling.

In general, piezoelectric composite materials are assumed
to be homogeneous with effective electroelasitc properties
dependent upon the properties of its constituents, namely
fiber and matrix materials and their concentrations in the
composite. In order to tailor an AFC to the specific re-
quirements of its role in a smart structure, it is essential to
develop an efficient analytical model to predict its effective
electroelasitc properties and thus to investigate the effect
of the composite constituents’ properties and their micro-
structural geometry on the overall composite properties.

Various micro-electromechanical models have been proposed
for the effective properties of the AFC’s Ref ([14] - [20]).
If use of IDE Ref [1] and Circular Linked Interdigitated
Electrodes (CLIDE) Ref [20] increase the cost and weight
of the structure (a limitation in aerospace structures), then
the most practical option is to apply the electric field across
the thickness of the composite that is in a direction transverse
to the fiber direction. Moreover, since the thickness of a layer
of the composite is usually very small, it may not be difficult
to maintain a constant electric field across the thickness of
the composite. Piezoelectric constants of piezoelectric fibers
depend upon their crystal structure and poling directions.
Some constants are zero while some constants are equal to
others. Effective piezoelectric coefficients of an AFC depend
upon the piezoelectric constants of the constituent piezoelec-
tric fiber. For an AFC to be used as an actuator or as a
sensor, it is important to know which direction of application
or measurement of the electric field in the fiber would be
most effective for a particular composite and particular strain.
Also, inspite of the flexibility for electrode configuration
selection, all types of electrodes cannot be suitable for a
particular AFC. Hence, in modeling of an arbitrary AFC, we
need to generalize all piezoelectric coefficients to be non-
zero, so that all components of the electric field can be
accounted for in the model. For this general problem, no
method has been proposed so far.

The work on AFC available in the literature is unable to
predict specific properties required for design of AFC in
applications for twist actuators using existing methods. Op-
timization of the design of an AFC actuator is expensive and
lengthy. Hence, closed form expressions relating twist andall
three components of the actuation electric field are required.
Thus the objective of this analysis is to model a generally
active pretwisted anisotropic strip for twist actuation with
closed form derivations.

Present Work

First, we reduce the 3D thin beam problem into a 2D shell
problem by considering plane stress assumption and then
reduce this further into 1D problem by taking the advantage
of the presence of small parameters in the geometry of the
strip. Resulting 1D strain energy density is a function onlyof
x1 (coordinate along the length). This dimensional reduction
is done with the aid of variational asymptotic formulation
(Berdichveskii [20]; Hodges [15]). After reducing it to a
1D problem, we effect the separation of material variables
from the external actuation electric fields. In this way we
can easily find the parameters affecting the actuation forces
due to electric field components in any direction.

Analytical Development

The 3-D constitutive relations for a unidirectional AFC in its
material coordinate system (1∗ − 2∗ − 3∗) is given by Eq.(1)
as follows
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Hereσ∗, Γ∗, C∗ ande∗ are stress, strain, effective stiffness
constants and effective piezoelectric stress constants inma-
terial coordinate system (1∗-2∗-3∗), respectively.Ea

1 is the
electric field component along the fiber length direction while
Ea

2 and Ea
3 are the electric field components in mutually

perpendicular directions, both of which are transverse to the
fiber.

Plane stress assumption

The non-zero stresses for thin strip composite beams are the
in plane normal stresses and shear stress in the laminate wall.
The stresses in through thickness direction do exist but are
relatively small. Therefore the problem can be treated as a
plane stress problem with

σ∗

33 = 0, σ∗

23 = 0 and σ∗

31 = 0. (4)

A static condensation process can be used in Eq.(1) to remove
the effect of the stresses which are zero. The resulting ply
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elastic constants̄Q∗

ij ’s and induced stress constantsē∗ij ’s are
specifically for the plane stress problem and differ from the
constants used for a complete 3-D analysis. Plane stress
coefficients (stiffness and piezoelectric stress constants) are
denoted with over bar. Note these equations are for the
material coordinate system (1∗-2∗-3∗) and still need to be
related to the local beam wall coordinate system (1-2-3).
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Elements ofQ̄∗ and ē∗ are given as follows
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, ē∗22 = e∗22−
C23e

∗

23

C∗

33
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Property rotation

The plane stress constitutive Eq.(5) are for the coordinate
system which is aligned along with the principal material
property axis system (1∗-2∗-3∗). To obtain the correct mate-
rial properties in the structural coordinate system (1-2-3), the
material properties must be rotated according to the tensor
transformation laws. The relative location of the structural
axis and the material axis system is shown in Fig. 1.

1* 

3* 

2* 

1 
2 

3 

θ 
θ 

Fig 1. Material coordinate system (1∗-2∗-3∗) and structural coordinate
system (1-2-3)

The stress and strain transformation matrix from (1∗-2∗-3∗)
material system to the (1-2-3) local coordinate system is
given by

T =





cos2 θ sin2 θ −2 sin θ cos θ
sin2 θ cos2 θ 2 sin θ cos θ

sin θ cos θ − sin θ cos θ cos2 θ − sin2 θ



 , (8)

whereθ is the angle between axes1∗ and 1 in right handed
system to be positive (see Fig. 1). So stresses in the structural
coordinate system (1-2-3) are given by
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Because induced stress constantsē∗ij ’s are just the plane
stresses when multiplied with the actuation electric field com-
ponents, induced stress constantsēij ’s in structural coordinate
system (1-2-3) are given by
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
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Let Q̄ represents the stiffness matrix in the (1-2-3) structural
coordinate system, expanded as
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
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It should be noted here that stiffness matrixQ̄ is symmetric
but stress constant matrix̄e is not symmetric. By using tensor
transformation rules and constant energy density function, we
find

Q̄ = TQ̄∗HT−1H−1, (12)

where

H =
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1 0 0
0 1 0
0 0 2



 . (13)

Here H is the Reuter matrix that transforms tensor strains
into engineering strains. Expressions forQ̄ij ’s and ēij ’s are
given in the appendix. Hence, constitutive relations for an
AFC lamina reduce from 3-D to 2-D and take the following
form
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It should be noted here that electrical fieldsEa
i in Eq.(14) are

in the material coordinate system. Hence,Ea
1 denotes electric

field along the length of the fibers,Ea
2 andEa

3 are electrical
field components transverse to the fiber length direction.

Active Laminated Plate Theory

In the Classical Laminated Plate Theory (CLPT), it is as-
sumed that the strains vary linearly with the thickness of the
laminate for the proper bonding between laminates. Hence,
we have the following expression for strains
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where ε11, ε22 and ε12 are mid plane tensor strains,x3

is the distance of a generic material point from the mid
plane (positive in direction-3) andρ11, ρ22 and2ρ12 are the
midplane elastic curvatures.
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Expressions forΓ11, Γ22 and Γ12 from Eq.(15) are substi-
tuted in Eq.(14) to findσ11, σ22 andσ12. CLPT forces and
moments are related to the plane stresses as follows
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Here Aij , Bij and Dij are laminate stiffness coefficients
defined as

{Aij , Bij ,Dij} =
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Na
ij andMa

ij are the actuation forces and actuation moments
(similar to Nij andMij ) given by
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Aa
ij and Ba

ij in Eq.(20) are the active laminate stress con-
stants, defined as

{
Aa

ij , B
a
ij

}
=

∫ h

2

−h

2

ēij {dx3, x3dx3} . (21)

For symmetric laminates:For symmetric laminates, we have

Bij = 0, Ba
ij = 0 (22)

resulting in neither bending-extension coupling nor twist
extension coupling as well as the inability to actuate bending
or torsion in the shells. For antisymmetric laminates, we have

A16 = A26 = B11 = B12 = B22 = B66 = D16 = D26 = 0.
(23)

along with

Ba
i1 = Ba

i2 = 0 (i = 1, 2, 3) (24)

indicating the inability to actuate shell bending.

Kinematics

Asymptotic method requires small parameters. Here the
wavelength of the deformation along the strip is denoted by
l. The width and thickness of the strip are denoted byb and
h respectively. From the geometry of the strip, the natural
and small parameters are the thickness-to-width ratioδh =
h/b; the width-to-length ratioδb = b/l; and the width times
pretwist per unit lengthδt = bk1, wherek1 is the derivative of
the pretwist angle with respect to the length along the strip.
The geometry of the strip is shown in the Fig. 2.

b
1
 

b
2
 

b
3
 

x
1
,  

x
3
, 

x
2
, 

l 

b

Fig 2. Active pretwisted strip configuration and coordinatesystem

The Cartesian coordinate measuresxi are directed along the
length, width and thickness of the strip fori = 1, 2 and 3
respectively, parallel to corresponding unit vectorsbi. Here
the strip has the pretwist ratek1(x1), so that the unit vectors
associated with the cross-sectional planeb2 and b3, are
functions of x1. The position vector from a point fixed in
an inertial reference frame to a generic point on the middle
surface of the strip isr = x1b1 + x2b2(x1). The position
vector of an arbitrary material point in the strip is then

ř = r + x3b3(x1) = xibi. (25)

The covariant base vectorsgi are tangent to the coordinate
curves [18]:

gi(x1, x2, x3) =
∂ř

∂xi
. (26)

Contravariant base vectors can be obtained by standard means
as

gi(x1, x2, x3) =
eijkgj × gk

2
√

g
. (27)

Hereg is given by

g = det(gi · gj). (28)

and eijk are the components of the permutation tensor in
Cartesian coordinate system. (Repeated indices are always
summed up over their ranges.)

Before applying VAM, we will formulate the kinematics of
the problem using the procedure outlined by Danielson and
Hodges [18]. The position vector of an arbitrary material
point in the deformed configuration [15] is given by

Ř = x1b1 + ui(x1)bi + x2B2(x1) + x3B3(x1)
+w̄i(x1, x2, x3)Bi(xi),

(29)

where ui are rigid body displacements;Bi are orthogonal
unit vectors introduced by rigid body rotation; and̄wi are
warping displacements of the beam cross-section.

Based on the main exchange rules in [19] and recovery
relations in [20],w̄3 the warping displacement component
that is normal to the local shell can be split into two
parts: an average across the thicknessw3(x1, x2) and an
unknown variation due to Poisson like effects. The shell
inplane warping components (w̄1, w̄2) are split into three
parts each, the additional part being due to local rotations.
The warping displacements are governed by the constraints
[15]

< wi >= 0, < w3,2 >= 0, (30)
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with the notation

< • >=

∫ b/2

−b/2

• dx2 (31)

being used.

The covariant base vectorsGi are tangent to the coordinate
curves of the deformed strip [18] and are given by

Gi(x1, x2, x3) =
∂Ř

∂xi
. (32)

We can now evaluate the Deformation Gradient Tensor
(DGT) A = Gig

i. The VAM can be applied in an iterative
manner, where a preliminary order of magnitude analysis is
used to develop a somewhat arbitrary estimation scheme. At
the end of the first step of applying the method, the results
are checked to see if they are actually of the assumed order. If
not, an additional step must be taken to obtain asymptotically
correct results, as suggested in [20]. Here, for preliminary
step, we note that all the 3-D strainsEij are O(ε). At
this step, for a strip of our problem, the orders of different
variables are estimated by using the expressions forEij [15]
as follows

wα = O(εb), α = 1, 2, w3 = O(
εb

δh
),

γ11 = O(ε), κα = O(
ε

δhb
), κ3 = O(

ε

b
).

Here γ11, κi are 1-D strain measures. By using kinematic
formulation with continuum mechanics, for a pretwisted strip,
it has been shown that the 3-D strainΓ (using the moderate
local rotation approximation [18]) are given by

Γ = E − Ã2

2
+

EÃ − ÃE

2
, (33)

whereÃ is anti symmetric component of deformation gradi-
ent tensorA given by

Ã =
A − AT

2
, (34)

and E is the linear part of Jaumann-Biot-Cauchy strain (to
be used if small local rotations were assumed, butnot the
assumption made at here) given by

E =
A + AT

2
− I3. (35)

The 3-D strain components that are of further interest to us
are
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,
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2
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w1,2 − 2x3κ1
︸ ︷︷ ︸

O(ε)

+ k1(x2w3,2 − w3)
︸ ︷︷ ︸

O(εδt/δh)

+κ1(x2w3,2 − w3)
︸ ︷︷ ︸

O( ε2

δh
2
)

+O
(

εδb, εδh, εδt,
ε2

δh

)

.

(38)

Sinceδ’s are small parameters, we ought to retain the terms
of O(εδt/δh) in comparison to the terms of O(ε). Further-
more, the terms of O(ε2/δh

2) assume significance. Denoting
the ratioε/δh

2 by the small parameters∆, we note that the
zeroth order approximation should contain all the terms up
to O(Eε2∆2), where a typical stiffness coefficient is O(E).
This in turn means that the zeroth order approximation to the
strains should contain all the relevant terms up to O(ε∆2).
On the other hand, terms of O(εδb), O(εδh), O(εδt) and
O(ε2/δh

2) can be included in the higher order approximation,
if necessary.

3-D strain measures are related to 2-D strain measures by
Eq.(15). Hence, by inspection of the Eqs. (36-38), we obtain
the relation between 2-D (shell) measures and 1-D (beam)
measures. The membrane strains are

ε11 ≈ γ11 − x2κ3 + k1x2
2κ1 +

x2κ1
2

2
+ w3κ2, (39)

ε22 ≈ w2,2 +
1

2
w2

3,2, (40)

2ε12 ≈ w1,2 + k1(x2w3,2 − w3) + κ1(x2w3,2 − w3), (41)

while the midplane elastic curvatures are

ρ11 ≈ κ2, (42)

ρ22 ≈ −w3,22, (43)

2ρ12 ≈ −2κ1. (44)

In the above equations, the underlined terms (of the order
of ε2/δh

2) are non-linear and arise due to moderate local
rotations. The non-underlined terms (of the order ofε or
εδt/δh) in these equations are the dominant ones, the only
ones needed for the zeroth order approximation. The first-
order approximation should include all the above terms. Here
as a preliminary step,Aa

ijE
a
i andBa

ijE
a
i are assumed to be

of the order higher than O(Eεh) and O(Eεh2) respectively
which can be considered as putting an upper limit on the
applied electric field magnitude.

Strain Energy of the Active strip

Now we consider the strip to be a 2-D elastic body. Its strain
energy density (i.e. energy per unit middle surface area) is
given by

U2D =
1

2

{
ε
ρ

}T {[
A B

B D

] {
ε
ρ

}

−
[

Aa

Ba

]

Ea

}

,

(45)
where

{
ε
ρ

}

=







ε11

ε22

2ε12

ρ11

ρ22

2ρ12







, Ea =







Ea
1

Ea
2

Ea
3






. (46)
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Zeroth-order approximation

The zeroth order approximation to the 2-D strain energy
density consists of all the terms of O(Eε2) thus leading
to the asymptotic classical linear theory for general active
anisotropic pretwisted rectangular strips. Hence the zeroth
order approximations to the 2-D membrane and bending
strains are all of the non-underlined terms in the Eqs. (39-44).
All the zeroth order variables will be denoted by a superscript
0. Minimization ofU2D with respected toε0

12 (the only strain
measure which has aw0

1-dependent term) andε0
22 (the only

strain measure which has aw0
2-dependent term) in turn means

that N12 and N22 are zero. We reduce the active lamiante
plate theory (Eq.(18)) matrix by employing a process similar
to the one applied for the condensation of the 3-D problem
into a plane stress problem and get condensed equations in a
more convenient form that separates material properties from
external variables as follows






N11

M11

M22

M12







=

[
Ā B̄

B̄ D̄

]







ε11

ρ11

ρ22

2ρ12







−
[

Āa

B̄a

]

Ea. (47)

where

[
Ā B̄

B̄ D̄

]

=







Ā11 B̄11 B̄12 B̄16

B̄11 D̄11 D̄12 D̄16

B̄12 D̄12 D̄22 D̄26

B̄16 D̄16 D̄26 D̄66







, (48)

[
Āa

B̄a

]

=







Āa
11 Āa

21 Āa
31

B̄a
11 B̄a

21 B̄a
31

B̄a
12 B̄a

22 B̄a
32

B̄a
16 B̄a

26 B̄a
36







. (49)

New stiffness and stress coefficients, with over bar, used in
above relations are defined in the appendix.U2D is mini-
mized with respect toρ22, and it is solved forρ22, thenw0

3 is
calculated by using the constraint Eq.(30). Similarly,w0

α are
also calculated. Thus, minimization of the zeroth order strain
energy leads toε0

12, ε0
22 andρ0

22 being expressed in terms of
the other known 2-D strain measures. Closed form solutions
are thus obtained for the zeroth-order warping displacements
w0

i and it is verified that their orders of magnitude agree with
our estimations. For example, the shell out-of-plane warping
is given by

w0
3 = (12x2

2 − b2) B̄12γ11+D̄12κ2−2D̄26κ1

24D̄22

+x2(b
2 − 4x2

2) B̄12κ3

24D̄22

+ (80x2
4 − b4) B̄12k1κ1

960D̄22

.
(50)

First-order approximation

The first-order approximation to the 2-D strain energy con-
sists of all terms of O(Eε2), O(Eε2∆), O(Eε2∆2). Hence
the first-order approximations to the 2-D strains should
contain all the terms up to O(ε∆2). This consists of both
the underlined and non-underlined terms in the Eqs. (39-
44). First-order variables will be denoted by superscript
I. The warping displacements are given bywI

i = w0
i +

w̃i, where the perturbation quantities̃wi are assumed to
be of an order higher than the corresponding zeroth order
quantitiesw0

i . Thus w̃α = O(ε∆b) and w̃3 = O(ε∆b/δh).

Terms of order higher than O(Eε2∆2) are excluded from
the energy expression. With the help of lagrange multipliers,
minimization of first-order strain energy is conducted. Closed
form solutions are then obtained for perturbations to the
zeroth-order warping displacements and it is verified that
their orders of magnitude agree with our estimations. The
1-D strain energy density (energy per unit length) is given
by

U1D =

∫ b/2

−b/2

U2Ddx2. (51)

In order to carry out integration of Eq.(51) we need only
shell out of plane warping fieldw3 that has been determined
through zeroth and first order approximations. Substitution of
wI

3 for w3 in the expression forU2D with reduced stiffness
matrix, we obtain the 1-D strain energy density from Eq.(51)
as

U1D =
1

2
εT
ln

[
S

]

9×9
εln −







γ11

κ1

κ2

κ1
2

κ1κ2







T

Sa







Ea
1

Ea
2

Ea
3






,

(52)
where

Sa =









Sa
11 Sa

21 Sa
31

Sa
12 Sa

22 Sa
32

Sa
13 Sa

23 Sa
33

Sa
14 Sa

24 Sa
34

Sa
15 Sa

25 Sa
35









and

εln = { γ11 κ1 κ2 κ3 κ2
1 κ2

2 κ2γ11 κ2κ3 κ2κ1 }T .

Expression forSij and Sa
ij are given in the appendix. It

should be noted here thatεln contains linear and non-linear
terms of strains and also the strains in the actuation terms
contain non-linear terms. Here the stiffness matrixS is
symmetric.

Application

In order to evaluate the developed analytical model, we
study the special case of cantilevered laminated strip with
antisymmetric layup loaded only by an axial force at the
tip. The reason for the selection of this specialized case
was two-fold. Antisymmetric layups produce laminates with
extension-twist coupling; the non-linear coupling between
extension and twist is one of the predominant non-linear
effects. Secondly antisymmetric layups have been used in
twist actuation recently (Ref [2]-Ref [3]). For antisymmetric
laminates, the definitions for the stiffness coefficients with a
bar are greatly simplified because Eq.(23) results in

B̄11 = B̄12 = D̄16 = D̄26 = 0, (53)

and decoupling of bending in both directions from extension
and twist. The equilibrium equations are derived via the
principle of virtual work. First, the strain energy is given
as

U =

∫ l

0

U1D(γ11, κ1, κ2, κ3, E
a
1 , Ea

2 , Ea
3 )dx1. (54)

The principle of virtual work for an axially loaded strip can
be written as

δU = F1δu1(l), (55)
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where F1 is the axial load applied at the tipx1 = l. For
the case of an antisymmetric layup under an axial force,
both κ2 and κ3 are zero. The geometrically exact strain-
displacement relations reduce toγ11 = u′

1 andκ1 = θ′1, where
θ1 is the elastic angle of twist. The two governing equilibrium
equations thus reduce to algebraic equations for the coupled
extension-twist problem:

∂U1D

∂γ11
= F1,

∂U1D

∂κ1
= 0. (56)

These equations are solved by using the first equation to
eliminateγ11 in favour of F1 and then using the second to
expressF1 in terms ofκ1 . For constantk1 , the tip pretwist
angleθ0 = lk1 and κ1 is also a constant so that the elastic
tip twist angleθt = lκ1 . The result is

F1 =

[
c1 + c2

(
θt

2 + 3θtθ0 + 2θ0
2
)]

θt − Ca
i Ea

i

c3 − (θt + θ0)
, (57)

where

c1 =
48

b

(

D̄66 −
B̄2

16

Ā11

)

, c2 =
b3Ā11

30l2
, c3 =

24lB̄16

b2Ā11
, (58)

Ca
i =

bĀa
i1c3

2
− 12lB̄a

i6

b
, (i = 1, 2, 3) (59)

It is observed that the contribution from thec2 term is
negligible in comparison to that of thec1 term. As a result the
extension-twist relation developed above takes the following
simple form:

F1 =
c1θt − Ca

1 Ea
1 − Ca

2 Ea
2 − Ca

3 Ea
3

c3 − (θt + θ0)
. (60)

Eq.(60) represents the relation between the twist induced,
axial force and actuation electric fields in all three directions.
Coefficientsc1 and c3 represent the coupling between axial
force and twist responsible for the trapeze effect. One can
observe that constantsCa

1 , Ca
2 andCa

3 are material dependent
properties and represent the performance of the twist actuator.
From Eq.(60), expression for twist generated due to axial
force F1 and actuation electric field componentsEa

i can be
written as

θt =
(c3 − θ0) F1 + Ca

1 Ea
1 + Ca

2 Ea
2 + Ca

3 Ea
3

(c1 + F1)
. (61)

Pretwist θ0 in the strip affects twist actuation authority,
because

∂θt

∂θ0
=

−F1

(c1 + F1)
. (62)

From Eq.(62), it is clear that in the absence of axial force
F1, pretwist in the strip does not have any effect on the twist
actuation.

Numerical Study

To investigate the effects of the orientation of the piezo-
electric fiber in the antisymmetric laminates, we consider a
laminate with layup [AFC(PZT-5H/Epoxy)+αo/AFC (PZT-
5H/Epoxy) −αo], where α is fiber orientation angle and
thickness of each lamina is 0.127mm. Material properties
are (L and T denote lateral and transverse properties re-
spectively):EL = 42.2 GPa, ET = 17.5 GPa, GLT = 5.5
GPa, νLT = 0.354,d11 = 381 pm/V , d12 = -160 pm/V ,
distance between electrodes in IDE = 1.143mm as given
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Fig 3. Variation ofCa

1
with fiber orientation angleα
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Fig 4. Variation of
C
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1
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with fiber orientation angleα

in [2]. Piezoelectric stress constant matrixe is calculated
by relation e = Q.d. Material properties in terms of plane
stress stiffness coefficients̄Q∗

ij and piezoelectric constants
ē∗ij areQ̄∗

11 = 44.513GPa, Q̄∗

12 = 6.535GPa, Q̄∗

22 = 18.459
GPa, Q̄∗

66 = 5.50GPa, ē∗11 = 15.914N/V m, ē∗12 = -0.4638
N/V m. laminate active length isl = 0.374m and width is
b = 0.025m. Same electrical fields are applied in both the
active layers. From Eq.(60), it is found that in designing a
twist actuator,Ca

i are most important parameters. There is no
coupling between the transverse components of the electrical
field (i.e. Ea

2 , Ea
3 ) and the twist actuated for the chosen

configuration. Hence, for the laminate under numerical study,
one can interpret that only an electric field along the fiber
length can produce twist actuation. This has been proved by
the present analysis because actuation coefficientsCa

2 and
Ca

3 are zero for the material and layup considered. Only non-
zero actuation coefficient isCa

1 which is dependent upon the
fiber orientation angleα. Fig. 3 shows that|Ca

1 | is maximum
whenα ± 45o and zero forα = 0o and90o. This proves that
symmetric laminates cannot produce twist actuation. For the
AFC materials withe31 and e32 non-zero, it can be shown
thatCa

3 is maximum whenα = 45o and zero forα = 0o, 90o

and180o. In the absence of axial force, the twist actuated
per unit length will be given by

θt =
Ca

1 Ea
1 + Ca

2 Ea
2 + Ca

3 Ea
3

c1
. (63)

For the material considered, onlyEa
1 is effective for twist

actuation. For the optimum design of twist actuator, it be-
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comes important to maximize the quantityCa

1

c1

. Fig. 4 shows

variation of Ca

1

c1

with fiber orientation angleα. It is clear

that Ca

1

c1

is zero for α = 0o and 90o, showing that twist
actuation is not possible in cross-ply laminates. Quantity
‖Ca

1

c1

‖ is maximum atα ± 38o, showing that twist actuation
is maximum atα± 38o. But for practical purposes and ease
of manufacturing,α ≈ 45o is most suitable. Hence, we
considerα ≈ 45o for maximum actuation authority in the
given laminate.

Fig. 5 shows non-linear coupling between axial force and
twist, well known as trapeze effect [15]. With increase in
negative pretwist, coupling effect inreases. Fig. 6 shows
linear variation of twist actuated with actuation voltageV1 for
different values of axial forceF1. Here, direction of electric
field due actuation voltageV1 is from x = l to x = 0. At
V1=0, twist is due to trapeze effect. All the plots in Figs. 6-
7 pass through a common point of intersection in respective
figures. This means that there is a particular actuation electric
field, Ea

1 = (c3−θo)c1

Ca

1

which completely nulilfies the trapeze
effect. When the voltage corresponding to this electric field
is applied, the tip twist remains a constant attheta = c3−θo,
irrespective of the axial force. With increase in axial forceF1,
the slope of actuation curves decrease, showing that actuation
authority is reduced. Presence of pretwist along with axial
force affects the slope of actuation curves.

Plot in Fig. 6 shows very high actuation authority because of
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Fig 9. Twist actuation in a typical tail rotor flex-beam with AFC [α = 45
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antisymmetric layup and use of only active AFC layers. Also
thickness of the laminate is small. If we include passive layer,
(e.g. AS4/3506-1 Graphite/Epoxy, E-glass/Epoxy), actua-
tion authority reduces drastically. For example, considerthe
thinnest part of a typical tail rotor flex-beam with thickness
of 8 mm consisting of 16 plies, each 0.5mm thick and apply
these active layers on the top and bottom of the composite to
make [AFC(PZT-5H/Epoxy)+45o/(E-Glass/Epoxy)0o

16/AFC
(PZT-5H/Epoxy)−45o] laminate with a lengthl = 0.318
m, width b = 0.07m. Material properties of E-Glass/Epoxy
lamina areQ11 = 34.059GPa, Q12 = 0.3634GPa, Q22

= 6.2295 GPa, Q66 = 2.1945 GPa. For this flex-beam
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configuration, twist actuation results are shown in Figs. 8
and 9, with and without pretwist.

One can observe that twist actuation authority is reduced very
much as compared to that of antisymmetric laminate with
active layers only. The present theory, when specialized for
antisymmetric laminates with no bending and torsion loads,
reduces into a very simple form of expression that relates the
actuation electric fields with the actuated twist in the laminate
in the presence of axial loads.

Conclusion

A variational asymptotic analysis was proposed and then
employed to predict the effective stress constants of the AFC
laminate. This is the first analysis in the literature to general-
ize all piezoelectric stress constants of active fiber composites
to be non-zero. Expression for strain energy density of an
active pretwisted anisotropic strip using piezoelectric fibers
of any type of crystal structure have been derived, in which all
the components of electric fields are present. This analysis
separates the material properties from the external electric
field components and produces an easy way to estimate the
twist actuation, when electric field is applied in any direction.
The analysis is applied for the twist actuation in antisymmet-
ric laminates. In numerical study, it has been proved that twist
actuation authority is maximum when piezoelectric fibers are
oriented at38o with strip axis. For the material considered,
it is found that twist actuation is possible only by actuation
electric field in the direction of the fiber. In the presence
of external axial force, actuation authority is decreased.The
actuation curves depend upon the sign and magnitude of
pretwist and axial force. In the absence axial force, pretwist
does not affect twist actuation authority. The main accom-
plishment of this work was to predict the performance of
the generally active fiber composite for the actuation electric
field in any possible direction of application. Although the
experimental verification of the present work turns out to
be beyond the scope of this paper, the presented analysis
may provide useful information for optimizing the active
fiber composite performance by selecting the optimal micro-
structure and properties of composite constituents.

Appendix

Expressions forQ̄ij

Q̄11 = Q̄∗

11 cos2 θ + 2(Q̄∗

12

+2Q̄∗

66) cos2 θ sin2 θ + Q̄∗

22 sin4 θ,

Q̄12 = 1
8 (Q̄∗

11 + 6Q̄∗

12 + Q̄∗

22 − 4Q̄∗

66

−(Q̄∗

11 − 2Q̄∗

12 + Q̄∗

22 − 4Q̄∗

66) cos 4θ),

Q̄16 = 1
4 (Q̄∗

11 − Q̄∗

22

+
(
Q̄∗

11 − 2Q̄∗

12 + Q̄∗

22 − 4Q̄∗

66

)
cos 2θ) sin 2θ,

Q̄22 = Q̄∗

22 cos2 θ + 2(Q̄∗

12 + 2Q̄∗

66) cos2 θ sin2 θ
+Q̄∗

11 sin4 θ,

Q̄26 = − 1
4 (−Q̄∗

11 + Q̄∗

22 + (Q̄∗

11

−2Q̄∗

12 + Q̄∗

22 − 4Q̄∗

66 cos 2θ sin 2θ,

Q̄66 = 1
8 (Q̄∗

11 − 2Q̄∗

12 + Q̄∗

22

+4Q̄∗

66 − (Q̄∗

11 − 2Q̄∗

12 + Q̄∗

22 − 4Q̄∗

66) cos 4θ).

Expressions for̄eij

ē11 = ē∗11 cos2 θ − 2ē∗16 cos θ sin θ + ē∗21 sin2 θ,
ē12 = ē∗12 cos2 θ − 2ē∗26 cos θ sin θ + ē∗22 sin2 θ,
ē16 = ē∗16 cos2 θ − 2ē∗66 cos θ sin θ + ē∗26 sin2 θ,
ē21 = ē∗21 cos2 θ + ē∗11 sin2 θ + ē∗16 sin 2θ,
ē22 = ē∗22 cos2 θ + ē∗12 sin2 θ + ē∗26 sin 2θ,
ē26 = ē∗26 cos2 θ + ē∗16 sin2 θ + ē∗66 sin 2θ,
ē16 = 1

2 (2ē∗16cos2θ + ē∗11 − ē∗12 sin 2θ) ,
ē26 = 1

2 (2ē∗26cos2θ + ē∗21 − ē∗22 sin 2θ) ,
ē36 = 1

2 (2ē∗36cos2θ + ē∗31 − ē∗32 sin 2θ) .

I. Reduced laminate coefficients

Expressions forĀij , B̄ij , D̄ij

Ā11 = A11 − A2

16
A22−2A12A16A26+A2

12
A66

A22A66−A2

26

,

B̄11 = B11− −A16A26B12+A12A66B12+A16A22B16−A12A26B16

A22A66−A2

26

,

B̄12 = B12− −A16A26B22+A12A66B22+A16A22B26−A12A26B26

A22A66−A2

26

,

D̄11 = D11 − A66B2

12
−2A26B12B16+A22B2

16

A22A66−A2

26

,

D̄12 = D12 − A66B12B22+A22B16B26−A26(B16B22+B12B26)
A22A66−A2

26

,

D̄22 = D22 − A66B2

22
−2A26B22B26+A22B2

26

A22A66−A2

26

,

B̄16 = B16− −A16A26B26+A12A66B26+A16A22B66−A12A26B66

A22A66−A2

26

,

D̄16 = D16 − A66B12B26+A22B16B66−A26(B16B26+B12B66)
A22A66−A2

26

,

D̄26 = D26 − A66B22B26+A22B26B66−A26(B
2

26
+B22B66)

A22A66−A2

26

,

D̄66 = D66 − A66B2

26
−2A26B26B66+A22B2

66

A22A66−A2

26

.

Expressions forĀa
ij , B̄a

ij

Āa
11 = Aa

11 − Aa
12

−A16A26+A12A66

A22A66−A2

26

− Aa
16

A16A22−A12A26

A22A66−A2

26

,

Āa
21 = Aa

21 − Aa
22

−A16A26+A12A66

A22A66−A2

26

− Aa
26

A16A22−A12A26

A22A66−A2

26

,

Āa
31 = Aa

31 − Aa
32

−A16A26+A12A66

A22A66−A2

26

− Aa
36

A16A22−A12A26

A2

26
−A22A66

,

B̄a
11 = Ba

11 − Aa
16

−A26B12+A22B16

A22A66−A2

26

− Aa
12

A66B12−A26B16

A22A66−A2

26

,

B̄a
21 = Ba

21 − Aa
26

−A26B12+A22B16

A22A66−A2

26

− Aa
22

A66B12−A26B16

A22A66−A2

26

,

B̄a
31 = Ba

31 − Aa
36

−A26B12+A22B16

A22A66−A2

26

− Aa
32

A66B12−A26B16

A22A66−A2

26

,

B̄a
12 = Ba

12 − Aa
16

−A26B22+A22B26

A22A66−A2

26

− Aa
12

A66B22−A26B26

A22A66−A2

26

,

B̄a
22 = Ba

22 − Aa
26

−A26B22+A22B26

A22A66−A2

26

− Aa
22

A66B22−A26B26

A22A66−A2

26

,

B̄a
32 = Ba

23 − Aa
36

−A26B22+A22B26

A22A66−A2

26

− Aa
32

A66B22−A26B26

A22A66−A2

26

,

B̄a
16 = Ba

16 − Aa
16

−A26B26+A22B66

A22A66−A2

26

− Aa
12

A66B26−A26B66

A22A66−A2

26

,

B̄a
26 = Ba

26 − Aa
26

−A26B26+A22B66

A22A66−A2

26

− Aa
22

A66B26−A26B66

A22A66−A2

26

,

B̄a
36 = Ba

36 − Aa
36

−A26B26+A22B66

A22A66−A2

26

− Aa
32

A66B26−A26B66

A22A66−A2

26

.

II. 1-D stiffness and actuation coefficients

Expressions forSij

S11 = b
(

Ā11 − B̄2

12

D̄22

)

,

S12 =
b3k1(−B̄12

2+Ā11D̄22)+24b(−B̄12D̄22+B̄12D̄26)
12D̄22

,

S13 = bB̄11 − bB̄12D̄12

D̄22

,
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S15 = b3

24

(

Ā11 − B̄2

12

D̄22

)

,

S22 =
−3b5k1

2(B̄2

12
−Ā11D̄22)−80b3k1(B̄16D̄22−B̄12D̄26)

240D̄22

+
960b(−D̄2

26
+D̄22D̄66)

240D̄22

,

S23 = b3k1(−B̄12D̄12−B̄11D̄22)−24b(D̄16D̄22−D̄12D̄26)
12D̄22

,

S25 = b5k1Ā11

160 − b3B̄16

12 − b5k1B̄2

12

160D̄22

+ b3B̄12D̄26

12D̄22

,

S26 = − b5k1B̄2

12
D̄12

360D̄22

+ b5k1Ā11D̄12

360D̄22

,

S27 = − b5k1B̄3

12

360D̄2

22

+ b5k1Ā11B̄12

360D̄22

,

S33 = b
(

D̄11 − D̄2

12

D̄22

)

,

S35 = b3B̄11

24 − b7k1
2B̄3

12

10080D̄2

22

+ b7k1
2Ā11B̄12

10080D̄22

− b3B̄12D̄12

24D̄22

+
b5k1B̄2

12
D̄26

180D̄2

22

− b5k1Ā11D̄26

180D̄22

,

S44 = b3Ā11

12 − b3B̄2

12

12D̄22

,

S48 =
b5B̄3

12

720D̄2

22

− b5Ā11B̄12

720D̄22

,

S55 = b5Ā11

320 − b5B̄2

12

320D̄22

,

S57 = − b5B̄3

12

720D̄2

22

+ b5Ā11B̄12

720D̄22

,

S59 = − b7k1B̄3

12

10080D̄2

22

+ b7k1Ā11B̄12

10080D̄22

+
b5B̄2

12
D̄26

360D̄2

22

− b5Ā11D̄26

360D̄22

,

S66 = − b5B̄2

12
D̄2

12

720D̄3

22

+
b5Ā11D̄2

12

720D̄2

22

,

S67 = − b5B̄2

12
D̄2

12

720D̄3

22

+ b5Ā11B̄12D̄12

720D̄2

22

,

S69 =
b7k1B̄3

12
D̄12

60480D̄3

22

− b7k1Ā11B̄12D̄12

60480D̄2

22

+
b5B̄2

12
D̄12D̄26

360D̄3

22

− b5Ā11D̄12D̄26

360D̄2

22

,

S77 =
b7k1B̄2

12
(B̄2

12
−Ā11D̄22)

720D̄3

22

,

S79 =
b7k1B̄4

12

60480D̄3

22

− b7k1Ā11B̄2

12

60480D̄2

22

+
b5B̄3

12
D̄26

360D̄3

22

− b5Ā11B̄12D̄26

360D̄2

22

,

S88 = 2
(

− b7B̄4

12

15120D̄3

22

+
b7Ā11B̄2

12

12096D̄2

22

− b7Ā2

11

60480D̄22

)

,

S99 = 2[− 31b9k1
2B̄4

12

7257600D̄3

22

+
71b9k1

2Ā11B̄2

12

7257600D̄2

22

− b5B̄2

12
D̄12

720D̄2

22

− b9k1
2Ā2

11

181440D̄22

+ b5Ā11D̄12

720D̄22

− b7k1B̄3

12
D̄26

30240D̄3

22

+ b7k1Ā11B̄12D̄26

30240D̄2

22

− b5B̄2

12
D̄2

12

360D̄3

22

+
b5Ā11D̄2

26

360D̄2

22

],

Others are zero.

Expression forSa
ij

Sa
11 = b

2

(

Āa
11 −

B̄12B̄a

12

D̄22

)

,

Sa
21 = b

2

(

Āa
21 −

B̄12B̄a

22

D̄22

)

,

Sa
31 = b

2

(

Āa
31 −

B̄12B̄a

32

D̄22

)

,

Sa
12 =

b(b2k1(−B̄12B̄a

12
+Āa

11
D̄22)+24(−B̄a

16
D̄22+B̄a

12
D̄26)))

24D̄22

,

Sa
22 =

b(b2k1(−B̄12B̄a

22
+Āa

21
D̄22)+24(−B̄a

26
D̄22+B̄a

22
D̄26)))

24D̄22

,

Sa
32 =

b(b2k1(−B̄12B̄a

32
+Āa

31
D̄22)+24(−B̄a

36
D̄22+B̄a

32
D̄26)))

24D̄22

,

Sa
13 = b

2

(

B̄a
11 −

B̄a

12
D̄12

D̄22

)

,

Sa
23 = b

2

(

B̄a
21 −

B̄a

22
D̄12

D̄22

)

,

Sa
33 = b

2

(

B̄a
31 −

B̄a

32
D̄12

D̄22

)

,

Sa
14 = b3

48

(

Āa
11 −

B̄12B̄a

12

D̄22

)

,

Sa
24 = b3

48

(

Āa
21 −

B̄12B̄a

22

D̄22

)

,

Sa
34 = b3

48

(

Āa
31 −

B̄12B̄a

32

D̄22

)

,

Sa
15 = b5k1

720

(

Āa
11 −

B̄2

12

D̄22

)
B̄a

12

D̄22

,

Sa
25 = b5k1

720

(

Āa
21 −

B̄2

12

D̄22

)
B̄a

22

D̄22

,

Sa
35 = b5k1

720

(

Āa
31 −

B̄2

12

D̄22

)
B̄a

32

D̄22

,
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