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Abstract

Current analysis on static indentation predominantly fo-
cus on a plate models for simulation of indentation. In
this work, we consider the curvature effects that become
predominant with the increase in transverse displace-
ment of the plate. The 3-D shell model is employed
for simulating indentation to capture the non-linear be-
haviour due to curvature effects. VAM is applied to re-
duce the 3-D problem to a 2-D Reissner-Mindlin con-
stitutive form through a 1-D normal line analysis. The
resulting 2-D model is solved for unknown contact forces
and displacements at each level of indentation. The
model is meshed using 4-noded degenerate quadrilateral
elements with shape functions defined by the Bernstein
basis functions. Power law contact force-indentation re-
lationships have been proposed for symmetric, cross and
angle ply lay-ups. Curvature effects on contact force and
their dependence on indentation are also analysed. Vari-
ation of indentation energy with lay-up angle is also de-
picted for use in delamination studies. The simulation
results were compared with analytical and experimental
results for sandwich laminates of different lay-up config-
uration and they show good agreement with published
data.

Nomenclature

A Shell Stiffness Matrix
AR In-plane Shell Stiffness Matrix
B Strain-Displacement Matrix
Bi Strain-Displacement Matrix for i-th node
C1, C2 Fit Coefficients in Contact Law
Eindt Indentation Energy
F Force-Material Coupling Vector
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Fe Element Force-Material Coupling Vector
F Force-Material Coupling Vector

for unit load

F̃ Element Force-Material Coupling Vector
f Function of Indentor geometry
gN Gap function
h Indentation depth
J 2-D Jacobian Matrix
Ke,Kee Element Elastic Stiffness Matrix
Kce Element Displacement-Contact

Coupling Matrix
Ka

ee Assembled Element Elastic
Stiffness Matrix

Ka
ce Assembled Element Displacement

Contact Coupling Matrix
n Normal Vector at Contact Node
N Displacement Shape Function Matrix

Ñ Contact Force Shape Function Matrix
Ni Shape Function for i-th node
q Transformation Matrix from Lamina

Coordinates to Global Cartesian
Coordinates

q In-plane Transformation Matrix from Lamina
Coordinates to Global Coordinates

Ri Direction cosine Matrix of Lamina
Coordinates w.r.t. Local
Normal Vector for i-th node

Ri In-plane Direction cosine matrix of Lamina
Coordinates w.r.t. Local
Normal Vector for i-th node

ℜ In-plane Reissner-Mindlin Strain Measures
Rc Element Residual due to specified

Contact Constraints
Ra

c Assembled Residual for Specified
Contact Constraints
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ti Shell Thickness at i-th node
tN Contact Force
tN Nodal Contact Force
T Global Vector of Unknown

Contact Tractions
(u, v, w) Displacement Components
U Vector of Element Displacements
Ue Vector of Element Nodal Displacements
U Global Vector of Unknown Displacements
v3i Normal Vector at i-th node
(x1, x2, x3) Curvilinear Coordinate System
(x, y, z) Global Cartesian Coordinate System
(x, y, z) Local Cartesian Coordinate System
ǫ∗αβ In-plane Reissner-Mindlin

Strain Components
(ξ, η, ζ) Natural Curvilinear Coordinates for

Shell Element
γ∗

α3 Reissner-Mindlin Shear Strains
γ Shear Strain Vector
Γ Inverse 2-D Jacobian Matrix
∂ Partial Operator on Displacement Vector
θ1, θ2 Rotation of the Normal Vector

after Deformation
κ∗

αβ In-plane Reissner-Mindlin

Curvature Components
Πe Element Potential arising out of

Contact Constraints
Πc Total Energy Potential due to

Contact Constraints
Πℜ Total Elastic Potential of the

Shell Surface
ΠT Total Constrained Energy Potential of

any Shell Element

Introduction

One of the primary requirements to be fulfilled by a pri-
mary aeronautical structure made of carbon fiber rein-
forced plastic (CFRP) is its ability to bear the assigned
loads when a realistic distribution of barely visible im-
pact damages (BVID) is present. Although there is no
general agreement on the precise meaning of ’barely vis-
ible’ for an impact damage, the parameter almost uni-
versally used to quantify this property is indentation. In
practice, when the suitability of an aeronautical compo-
nent to withstand the design loads must be verified, the
dent depth corresponding to a BVID is conventionally
assigned, the geometry of an impactor destined to im-
part the wanted BVID is fixed, and the energy necessary
to induce the specified level of damage is experimentally
found by trial-and-error, using specimens representative

of the actual situation; finally, the information gathered
is employed to induce the desired damages in the real
component to be tested. This procedure is complicated
by the fact that, in general, the dent depth is strongly
dependent on many parameters, among which the most
relevant are the particular laminate under consideration,
its thickness, the constraints, the indentor geometry and
the impact speed. Therefore, the availability of analyti-
cal tools for prediction of the indentation induced defor-
mations and the estimation of the resulting stress field
would greatly help in simplifying the problem.

The problem of static indentation has been dealt with
through the help of experiments and is well understood
in the literature. Caprino[1] assessed a simple power-law
equation correlating the indentation depth with impact
energy. It was shown that the ratio of the impactor en-
ergy to the penetration energy when adopted as an in-
dependent parameter, the relationship proposed is neg-
ligibly affected by the laminate type and thickness. On
the other hand, the penetration energy was also calcu-
lated through a model developed by Caprino et al in [2]
and [3], accounting only for the reinforcement volume
and indentor diameter. Caprino et al in [4] performed
quasi-static indentation tests on CFRP plates and a new
efficient model was proposed indicating that impact tests
can be substituted with static tests, when the response
of a CFRP laminate in terms of indentation and pene-
tration is under study. Bogdanovich[5] did three dimen-
sional contact-impact analysis on composite laminated
beams and plates exposed to rigid body impact. He ap-
plied Bernstein basis polynomials for displacement ap-
proximation in the three directions for predicting the 3-
D transient deformation. Anderson[6] investigated force-
indentation response of sandwich panels subjected to a
rigid spherical indentor. A three dimensional analytical
solution method was used to obtain the complete stress
and displacement fields as well as the contact pressure
arising from static indentation. Hodges[7] gave analyt-
ical solution to a beam or plate being pressed against
a flat surface using the variational asymptotic method.
However, he only considered isotropic materials and the
beams and plates were modelled according to Timo-
shenko beam theory and Reissner-Mindlin plate theory
respectively.

In the above works, the stiffness, laminate properties,
lay-up and thickness effects were not taken into account.
The analytical studies on static indentation so far have
mainly focussed on plate models. They do not address
the development of membrane effects, as the plate un-
dergoes transverse displacements and assume the shape
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of a shell. This fact motivates us to go for shell models
to investigate the influence of curvature induced effects.

The simplest shell theory is the classical lamination
theory, which is based on the Kirchhoff hypothesis. How-
ever, even for thin composite shells this theory gives very
poor results compared to the actual 3-D solution. But
it is plausible to take into account the smallness of the
thickness of the structures and construct an accurate 2-D
model for a 3-D body. The attempts to rationally im-
prove upon the classical model have been based on ad
hoc kinematic assumptions like an a priori distribution
of displacement through the thickness, which cannot be
justified in case of composite structures. These short-
comings can be appreciated in review papers [8] and [9].

In this work, we model the laminated composite struc-
ture as a double curved shell under static indentation
and investigate the effect of curvature on the contact
force distribution in the shell. Employing the Varia-
tional Asymptotic Theory(VAM)[10] we obtain a modi-
fied constitutive functional which takes into account the
contact conditions prevailing on the contact surface in-
trinsically in the modeling process. The resulting the-
ory is of the Reissner-Mindlin type but is geometrically
exact. The shell deformable theory has three in-plane
membrane strains, three out-of-plane curvature strains
and two transverse shear strains as the unknowns. The
modified functional contains an additional material force
coupling term, taking into account the coupling between
material properties, lay-up and thickness with the ap-
plied load. This is a new feature not accounted for in
traditional 2-D Reissner-Mindlin shell solvers.

The non-linearity in contact analysis arises from the
fact that the contact constraints are not known a priori.
The contact forces are also not known and are solved
from the multifreedom constraint formulation using La-
grangian technique. A hemispherical indentor is used to
impart the specified indentation and simulation is done
in view of rigid sphere contacting a flexible body. The
indentor is represented using super-quadratics and an
implicit description of the contact surface is obtained.
Finite element analysis is done with 4-noded degenerate
quadrilateral shell elements using Bernstein basis shape
functions.

Variational Statement

A shell is a 3-D body with a relatively small thickness h
and smooth reference surface, usually chosen to be the
mid-surface (see Fig.1). The geometry of the reference
surface can be mathematically represented by a set of ar-

bitrary curvilinear coordinates, xα. (Here and through-
out the paper, Greek indices assume values 1 and 2 while
Latin indices assume values 1,2 and 3. Dummy indices
are summed over their entire range except where explic-
itly indicated). However, without loss of generality, the
lines of curvatures are chosen to be the curvilinear coor-
dinates to simplify the formulation. It is a natural and
convenient choice to take the third coordinate x3 normal
to reference surface. We denote the composite shell as
the master and the indentor as the slave. Excepting the

,r(x1 x2) ,R(x1 x2)

r(x1,x2,x3)

R(x1,x2,x3)

,U(x1 x2)

b1(x1,x2)

B1(x1,x2)

b2(x1,x2)

B2(x1,x2)

b3(x1,x2)

B3(x1,x2)

wi(x1,x2,x3)B i(x1,x2,x3)

O

^

^

Deformed
Configuration

Undeformed
Configuration

Figure 1. Schematic of shell deformation

variation of the warping field, all other variations are to
be taken care of by the 2-D shell theory. The variation of
the warping field is to be taken care of by VAM. Follow-
ing the method in [10], we obtain the model for the 2-D
Reissner-Mindlin composite shell. Where the indentor is
in contact i.e. within the contact area Γc ⊂ S we have
the shell energy potential

Πℜ =
1

2
ℜT ARℜ +

1

2
γT Gγ + ℜT F (1)

whereas on Γc ⊂ S, the portion of the shell outside the
contact area we have

Πℜ =
1

2
ℜT ARℜ +

1

2
γT Gγ (2)
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where the generalized shell strain measures, ℜ and γ are
given by

ℜ = [ǫ∗11 2ǫ∗12 ǫ∗22 κ∗

11 κ∗

12 + κ∗

21 κ∗

22 ]
T

(3)

γ = [2γ13 2γ23 ]
T

(4)

where ǫαβ are membrane strains, καβ are elastic curva-
tures and γα3 are transverse shear strains. However, the
F -vector in Eqn.[1] represents the coupling between the
unknown warping field and the unknown contact stresses
tN along x3 direction. Since we are assuming normal
contact, no in-plane forces act on the shell and as a re-
sult F -vector is a linear function of the contact traction
tN . Hence the AR,G and F matrices can be generated
for a unit load in the x3 direction. This won’t alter the
nature of the problem since the AR and G matrices do
not depend on applied forces but rather on the material
properties, ply lay-up and thickness. If F be the load-
coupling vector for a unit load in the x3 direction then
we can write

F = tNF (5)

Thus Eqn[1-2] are modified as

Πℜ =
1

2
ℜT ARℜ +

1

2
γT Gγ + ℜT tNF

∀ Γ ∈ Γc

(6)

Πℜ =
1

2
ℜT ARℜ +

1

2
γT Gγ

∀ Γ ∈ Γc

(7)

For the Reissner-Mindlin shell in local basis bi the strain-
displacement relations are given by

ǫ∗αβ =
1

2
([u]α,β + [u]β,α) (8)

γα3 = [w],α −[θ]α (9)

whereas the curvatures are given by

κ∗

αβ = [θ]α,β (10)

The strain vector can then be written in terms of the
unknowns as

ǫ∗ = ∂U (11)

where

∂ =































∂
∂x

0 0 0 0
∂
∂y

∂
∂x

0 0 0

0 ∂
∂y

0 0 0

0 0 0 ∂
∂x

0

0 0 0 ∂
∂y

∂
∂x

0 0 0 0 ∂
∂y

0 0 ∂
∂x

−1 0

0 0 ∂
∂y

0 −1































, U =























u
v
w
θ1

θ2























(12)

where the partial derivatives are expressed with respect
to the lamina co-ordinate system (x, y, z). Therefore,
using Eqns.[6,7 & 11] and combining them we have

Πℜ =

{

1
2ǫ∗T Aǫ∗ + tN [ǫT F̃ ∀ Γ ∈ Γc
1
2ǫ∗T Aǫ∗ ∀ Γ ∈ Γc

(13)

where

A =

[

AR 0
0 G

]

, F̃ =







F
0
0







(14)

The master displacement field is discretized as U = N ·Ue

where N =
[

Ñ1 Ñ2 Ñ3 Ñ4

]

and

Ñi =













Ni 0 0 0 0
0 Ni 0 0 0
0 0 Ni 0 0
0 0 0 Ni 0
0 0 0 0 Ni













(15)

and contact force field as tN = ÑtN where Ñ =
[

N1 N2 N3 N4

]

. Over an element the functional
can be written as

Πℜ =

{

1
2UT

e KeUe + UT
e FeÑtN ∀ Γ ⊂ Γc

1
2UT

e KeUe ∀ Γ ∈ Γc
(16)

where

Ke =

∫

Ae

BT ABdAe (17)

Fe =

∫

Ae

BT F̃ dAe (18)

and B is strain displacement matrix given by B = ∂N
of size 8 × 5n, n being the number of nodes.

If the entire master surface is discretized into ne el-
ements and if nc

e elements come into contact then the
functional for the entire surface can be written as

Πℜ =
∑

ne

1

2
UT

e KeUe +
∑

nc

e

UT
e FeÑtN (19)
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Contact Formulation

The contact constraints in the Lagrangian method are
given by the following conditions:

tN ≤ 0 (20)

gN ≥ 0 (21)

tNgN = 0 (22)

The above set of equations are the so called Kuhn-
Tucker-Karaush conditions, where tN is the contact trac-
tion and gN is the gap function. Since we are considering
the static indentation of the hemispherical impactor on
the composite laminated shell, the kinetic energy of the
indentor can be neglected. Moreover, the discretization
of the indentor is also not necessary. Since the geometry
of the rigid indentor is fixed once for all, the description
of the surface normal at the contacting surface can be
given in closed form at all points of contact. The gap
function for the case of non-penetrability can be written
according to [5] as:

gN = w(x, y) − f(x, y) − h = 0 (23)

where h is the indentation depth and f(x, y) represents
the indentor geometry in contact. Since we do not
have any idea of the contact area a priori, the function
f(x, y) is not known until we perform a search of all the
contact points that come into contact and satisfy the
non-penetrability criteria. Assuming that an element is
under contact at all the nodes, the contact contribution
of a single element according to the Lagrange multiplier
technique is given by

Πe = tN · gN (24)

i.e.

Πe = tN · (w(x1, x2) − fe(x1, x2) − he) (25)

or

Πe = ÑtN · (U − fe − he) · n (26)

where

U = ω ·U, fe =







0
0

fe(x, y)







, he =







0
0
he







(27)

with ω =





1 0 0 0 0
0 1 0 0 0
0 0 1 0 0



 (28)

The description of the indentor surface coming into
contact can be made with the use of the so-called super-
quadratics functions[11] which for the hemispherical in-
dentor become

f(x, y, z) =

(

x − x0

R

)2

+

(

y − y0

R

)2

+

(

z − z0

R

)2

− 1 = 0 (29)

The above explicit form is used for the contact detec-
tion phase. In the detection phase, each master node is
checked if it comes into contact or not. The contact de-
cision for a master node having coordinates (xs,ys,zs) is
governed by the following criteria[11]

(

xs − x0

R

)2

+

(

ys − y0

R

)2

+

(

zs − z0

R

)2

− 1 (30)

≤ 0 ⇒ contact

(

xs − x0

R

)2

+

(

ys − y0

R

)2

+

(

zs − z0

R

)2

− 1 (31)

> 0 ⇒ no contact

For the hemispherical contacting body, the direction of
the surface normal at a particular location (x1,x2) on the
master is given by

n =
grad(f)

|grad(f)|
(32)

Assuming that nc
e elements come into contact, the con-

tact energy is given by

Πc =
∑

nc

e

Πe (33)

Using discretized master displacement field in Eqn.[27]
and as a result in Eqn.[26] we have

Πc =
∑

nc

e

ÑtN (ωNUe − fe − he) · n (34)

Element Formulation

We consider a typical shell element in Fig.[2] with the
external faces curved while the sections across the thick-
ness are generated by straight lines[12]. Pairs of points,
itop and ibottom each with given Cartesian co-ordinates,
prescribe the shape of the element.

Let (ξ,η) be the two curvilinear coordinates on the
mid-surface of the shell and let ζ be the rectilinear
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Figure 2. Iso-parametric and curved thick shell elements

coordinate in the thickness direction. Furthermore,
we assume that ξ,η, and ζ vary between −1 and +1
on the respective faces of the element. Then in the
paradigm of iso-parametric mapping, the global Carte-
sian co-ordinates of the shell mid-surface are related to
the curvilinear co-ordinates by







x
y
z







=

ne=4
∑

i=1

Ni(ξ, η)











xi

yi

zi







+
1

2
tiζv3i



 (35)

where

v3i =
V3i

‖V3i‖
=







l3i

m3i

n3i







(36)

as the nodal vector is

V3i =







xi

yi

zi







top

−







xi

yi

zi







bottom

(37)

The strains in the direction normal to the mid-surface
are assumed to be negligible so that the displacement
throughout the element is taken to be uniquely defined
by the three cartesian components of the mid-surface
node displacement and two rotations about two orthog-
onal directions normal to the nodal vector V3i. These
two orthogonal directions are denoted by the unit vec-
tors v1i and v2i, with corresponding rotations θ1i and
θ2i, so that the global displacement field can be specified
in terms of curvilinear coordinates as







u
v
w







=

ne=4
∑

i=1

Ni(ξ, η)











ui

vi

wi







+
1

2
tiζRi

{

θ1i

θ2i

}



 (38)

where

Ri =
[

−v2i v1i

]

=





−l2i l1i

−m2i m1i

−n2i n1i



 (39)

Here V3i is the vector to which a normal direction is to
be constructed. The scheme for defining the vectors v1i

and v2i is given by the flowchart in Fig.[3]. B is defined

Figure 3. Flowchart for determining the orthogonal sys-
tem of vectors given the normal vector V3

with respect to the local Cartesian coordinates (x, y,
z). Therefore, two sets of transformations are necessary
before the element can be integrated with respect to the
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curvilinear coordinates (ξ,η). First, the derivatives of
the displacements related to the curvilinear co-ordinates,
with respect to the global (x,y,z) co-ordinates is given by
the inverse of the Jacobian as follows

Γ = J−1 =

[

x,ξ y,ξ
x,η y,η

]−1

=

1

|J|

[

y,η −x,η
−y,ξ x,ξ

]

(40)

where |J|=(x,ξ y,η −x,η y,ξ). A second transformation to
the local Cartesian system (x, y, z) will allow the strains
and hence the strain-displacement matrix to be evalu-
ated. The directions of the local axes are established
from the vector normal to the ξ − η mid-surface. This
vector is found from the two vectors x,ξ and x,η which
are tangential to the mid-surface. Thus,

V3 =





x,ξ
y,ξ
z,ξ



 ×





x,η
y,η
z,η





=





y,ξ z,η −y,η z,ξ
z,ξ x,η −z,η x,ξ
x,ξ y,η −x,η y,ξ



 (41)

The two orthogonal vectors V1 and V2 are constructed
using the same procedure as given in Fig.[3]. The three
orthogonal vectors are reduced to their unit magnitudes
to obtain a matrix of unit vectors in the (x, y, z) direc-
tions (which is in fact the direction cosine matrix) as

q = [v1,v2,v3] i.e. q =





l1 l2 l3
m1 m2 m3

n1 n2 n3





T

(42)

Using Eqns.[12,38] we have the strain-displacement
matrix for a particular node i as

Bi =





Bi
1 0 Bi

2

0 0 Bi
1

0 Bi
3





8×5

(43)

where the sub-matrices are defined as follows

B
i

1 =





Ni,x 0
Ni,y Ni,x

0 Ni,y



 (44)

B
i

2 =
ti
2





(ζNi),x 0
(ζNi),y (ζNi),x

0 (ζNi),y



Ri (45)

and

Ri =

[

−l2i l1i

−m2i m1i

]

B
i

3 =

[

Ni,x −1 − n2iNi n1iNi

Ni,y −n2iNi −1 + n1iNi

]

(46)

The derivatives of the shape functions in the local Carte-
sian coordinate system from coordinate transformation
is given as

{

Ni,x
Ni,y

}

= qJ−1

{

Ni,ξ
Ni,η

}

(47)

where

q =

[

l1 m1

l2 m2

]

, Ri =

[

−l2i l1i

−m2i m1i

]

(48)

In our analysis, we are focussing on the middle surface
of the shell. Hence ζ = 0. Moreover, based on the as-
sumption that the shell thickness is constant over all the

nodes, we can write for the elements of the B
i

2 matrix

(ζNi),x =
Nin1

x,ζ
(49)

(ζNi),y =
Nin2

y,ζ
(50)

and

x,ζ =

ne=4
∑

i=1

ti
2

Nil3i (51)

y,ζ =

ne=4
∑

i=1

ti
2

Nim3i (52)

The strain displacement matrix then takes the form

B =
[

B1 | B2 | B3 | B4
]

8×20
(53)

Therefore the element stiffness matrix is obtained as

[Ke]20×20 = h

∫ +1

−1

∫ +1

−1

BT AB ‖J‖ dξdη (54)

Bernstein Basis Shape Functions

Theory of Bernstein polynomials is well developed and
widely used in several areas of applied mathematics. It
has been shown in [13] that the use of Bernstein polyno-
mials for through the thickness approximations of dis-
placements and stresses in the displacement-assumed
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and mixed variational analysis of laminated composite
plates provides uniquely accurate results.

Bernstein basis functions of degree N are defined as

BN
n (t) =

N !

n!(N − n)!
tn(1 − t)N−n; (55)

t ∈ [0, 1]; n = 0, 1, ..., N

where N may be any integer. For any value of n, Eqn.[55]
defines the Nth degree polynomial. It is well-known that
all algebraic polynomials of degree ≤ N constitute a lin-
ear space of dimension N + 1. Since the N + 1 functions
BN

n (t), where n = 0, 1, ..., N are linearly independent,
they form a basis. Important properties of the Bernstein
basis polynomials include extreme values at (0,1) i.e.,

BN
n (0) = BN

n (1) =

{

0 for n = 1, 2, ..., N − 1
1 for n = 0, N

(56)

It satisfies symmetry as

BN
n (t) = BN

N−n(1 − t) (57)

and positivity BN
n (t) ≥ 0. With Bernstein polynomials,

we can design a 4-node quadratic element (i.e. N = 3)
in Eqn.[55] and still get cubic displacement interpolation
as well as slope continuity without the introduction of
additional nodes. Considering that the Bernstein basis
functions are applied in the (x1,x2) directions, we can
write the basis functions for a 4-node quadrilateral

iso-parametric element as

Xn(ξ) = B3
n(ξ) =

3!

n!(3 − n)!
ξn(1 − ξ)3−n (58)

∀ ξ ∈ [0, 1]

Yn(η) = B3
n(η) =

3!

n!(3 − n)!
ηn(1 − η)3−n (59)

∀ η ∈ [0, 1]

As can be seen, for the 4-node quadrilateral element we
have 5 field variables namely u, v, w, θ1 and θ2 which
implies that we have 20 d.o.f. per element. For compar-
ison sake, if we were to use Lagrange family of elements
with cubic approximations and 12-node quadrilateral iso-
parametric element, we should have 60 d.o.f. per element
compared to 20 d.o.f. in our case. Hence the current for-
mulation leads to much more computationally efficient
routines. Now each of the displacement approximations
can be represented as

Uα(ξ, η) =

F
∑

f=1

Uα
f Nf (ξ, η) (α = 1, 2, ..., 5) (60)

where

Nf (ξ, η) = Nij(ξ, η) = B3
i (ξ)B3

j (η) (61)

f = j + 1 + 4i (62)

F = (3 + 1)(3 + 1) = 16 (63)

However, Bernstein basis functions provide the following
properties to the functions Nf (ξ,η)

N1(−1,−1) = 1 (64)

N4(1,−1) = 1 (65)

N13(1, 1) = 1 (66)

N16(−1, 1) = 1 (67)

For the above four combinations of (i,j) all functions
Nf except those listed in Eqns.[64-67] take zero val-
ues. Therefore, Bernstein functions can be viewed as
special types of shape functions defining the 4-node iso-
parametric quadrilateral element without edge, side or
internal nodes. This element can have only 4-nodes re-
gardless of the degree of Bernstein basis functions that
is chosen to approximate the displacement field.

The iso-parametric shape functions for the 4-node el-
ement can then be written as

N1 =
1

64
(1 − ξ)3(1 − η)3 (68)

N2 =
1

64
(1 + ξ)3(1 − η)3 (69)

N3 =
1

64
(1 − ξ)3(1 + η)3 (70)

N4 =
1

64
(1 + ξ)3(1 + η)3 (71)

Solution of FE Equations

The total energy potential of any shell element in contact
is now obtained from Eqn.[16 & 26] as

ΠT =
1

2
UT

e KeUe + UT
e FeÑtN

+ÑtN · (ωNUe − fe − he) · n (72)

The Euler-Lagrange equations derived from the total
functional are now given in matrix form as

[

Kee Kce

KT
ce 0

] [

Ue

tN

]

=

{

0
Rc

}

(73)
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where

Kee = Ke (74)

Kce = FeÑ + (ωN)T · nÑ (75)

Rc =

[

(fe + he)
T · n · Ñ

]T

(76)

The submatrices defined in Eqn.[74-76] are assembled
and after application of appropriate displacement bound-
ary conditions and contact force constraints, the aug-
mented Lagrangian stiffness matrix can be obtained as

[

Ka
ee Ka

ce

Ka
ce

T 0

] [

U

T

]

=

{

0
Rc

}

(77)

The above set of coupled equations in U and T can be
solved to give the solution field as

T = Ka
mod

−1Rc (78)

U = −Ka
ee

−1Ka
ceK

−1
modRc (79)

where Kmod = −Ka
ce

T Ka
ee

−1Ka
ce (80)

The strains at the nodes are recovered through bilinear
extrapolation using the bilinear shape functions from the
computed strains at the Gaussian quadrature integration
points.

Results and Discussion

A composite laminated shell model is considered to anal-
yse the effects of curvature on the contact force within
the purview of the static indentation process. We con-
sider a composite laminated shell of chord diameter
2Rs = 50mm, thickness h = 3.8mm and radii of cur-
vature R1 = R2 = 80.9mm (i.e. having curvature
κ = 0.01236rad/mm). The contacting body is a steel
hemisphere of radius Rindt = 12.7mm. The geometric
model is depicted in Fig. [4].

The radius of indentor being quite small compared to
that of the shell, we can assume a normal contact. More-
over, the stiffness of steel is much larger that the trans-
verse stiffness of the laminates. Therefore, the contact
scenario can be thought of as a rigid body contacting the
flexible composite shell. The indentor is assumed to be
in contact with the shell reference/middle plane at the
origin of the system of coordinates as shown in Fig. [5].
The shell top and bottom surface are also assumed to be
indented equally.

The assumptions in the simulation can now be listed
as follows:

• Thin shell model.

Di = 25.4mm

2R    s   = 50mm

Z

X

h=3.8mm

Reference
Surface

Composite
Laminated
Shell

tN Indentor

O

Figure 4. Geometry of the shell-indentor model

tN

h(indentation)

Z

X

Figure 5. Simplified model for simulation of indentation

• Indentation is at the shell middle surface.

• Contact to be maintained at all stages.

• The top and bottom surfaces of the shell
assume the same deformed profile of the
middle surface upon indentation.

• The indentor is rigid.

The shell is clamped over the whole of the circumfer-
ance. The bottom surface is traction free and is allowed
to curve upon indentation, while at the top surface nor-
mal tractions are present only within the region of con-
tact. The 3-D shell reference surface is discretized with 4-
node quadrilateral degenerate shell finite elements. Due
to the symmetry of the structure, only a quarter of the
model is taken for analysis to optimize on computational
effort. The discretized shell reference surface is shown
in 3-D in Fig. [6(a)] and the plan model is shown in
Fig. [6(b)]. The discretization has 250 elements and 286
nodes. Assuming that the maximum contact area will
stretch to a radius of the indentor, a heavier discretiza-
tion is used upto a chord radius of 12.5mm from the
center while the elements are sparse in the rest of the
shell. Symmetric boundary conditions are imposed on
the quarter-circle model along the perpedicular radial
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lines. The indentor is placed in contact with the shell at

(a) 3−D Reference Surface Shell Model 

(b) Planar Discretized Shell Model 

Figure 6. Finite element model

the origin O with zero indentation, Fig.[4]. The identa-
tion is carried out in steps of 0.1 mm from h = 0 mm
to h = 10 mm. The material chosen for the shell is a
Carbon/Epoxy laminate with mechanical properties as
shown in Table[1]. The lay-up configurations chosen for
the simulation are [θ/ − θ]2S with θ = 0, 15, 30, ..., 90. In
addition, a cross ply configuration having a lay-up con-
figuration of [0/90]2S is also simulated. Therefore three
important cases are considered for simulation, namely

• Symmetric ply lay-up

• Cross ply lay-up

• Angle ply lay-up

Table 1
Mechanical Properties of Carbon/Epoxy Laminate

E1 E2 E3

(GPa) (GPa) (GPa)
130.0 10.0 10.0
G12 G23 G13

(GPa) (GPa) (GPa)
6.0 6.0 3.0
ν12 ν23 ν13

0.3 0.3 0.5

With the above mechanical properties, VAM was ap-
plied for obtaining the constitutive matrix and the force-
material coupling matrix for different lay-ups that were
considered. The contact area was determined at each
indentation step and the resultant contact force TN for
given indentation depth was obtained. It was desired to
obtain a power-law relationship of the form

TN = C1h
C2 (81)

between the contact force TN and indentation depth h.
C1 and C2 are coefficients which depend on lay-up config-
uration. Based on curve fitting technique, the coefficients
C1 and C2 were obtained and are given in Table[2] for
the different lay-ups that were considered. The fit curves

Table 2
C1 and C2 for different Lay-up Configurations

Lay-up Configuration C1 C2

(0/0)2S 327.9442 0.7021
(15/ − 15)2S 390.0318 0.7128
(30/ − 30)2S 481.8368 0.7286
(45/ − 45)2S 555.2646 0.7130
(60/ − 60)2S 582.3713 0.6987
(75/ − 75)2S 602.1435 0.7043
(90/ − 90)2S 564.8069 0.7019

(0/90)2S 533.0893 0.7137

for three distinct cases of angle ply [(45/ − 45)2S ], cross
ply [(0/90)2S ] and symmetric ply [(30/ − 30)2S ] lay-ups
are shown in Fig.[7]. The fit coeffiecients C1 and C2 for
the symmetric lay-ups change with the lay-up angle θ
and hence it was desired to obtain a functional relation-
ship between these coefficients and θ. The fitting of C1
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Figure 7. Contact Force relationship with Indentation
Depth

and C2 values gives a best fit cubic polynomial in θ. The
equations obtained are as follows

C1 = −21.222θ3 − 52.774θ2 + 127.14θ

+545.86 (82)

C2 = 0.011θ3 − 0.0063θ2 − 0.02θ + 0.71 (83)

The variation of C1 and C2 with θ is depicted in Fig.[8-
9]. Therefore, from the above proceedings for sym-
metric lay-ups the following general contact power-law
is proposed

TN = C1(θ)h
C2(θ) (84)

where the values of C1 and C2 can be obtained from
Fig[8-9] for any arbitrary (θ/ − θ)2S lay-up. One of the
primary objectives of the study was to understand the ef-
fects of curvature of the shell model on the contact force
arising out of indentation. In Fig.[10], the variations of
contact force TN with the curvature componenets κ11,
κ12, and κ22 are shown. For the three different types of
lay-ups that were considered, κ11 and κ22 tend to limit
the contact force i.e. the change in contact force with
increasing curvature, is reduced. If we consider κ11 and
κ22, there is a critical contact force for each of the lay-
ups beyond which curvature effects become predominant
and we start diverging from the plate model of analysis.
This critical contact force is the point of inflection in the
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Figure 8. Variation of C1 with lay-up angle θ
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Figure 9. Variation of C2 with lay-up angle θ

TN vs κ11 and TN vs κ22 curves. With indentation, the
curvature components increase almost linearly as shown
in Fig.[11]. The bending curvatures in the principal di-
rections κ11 and κ22 vary considerably, while the twisting
curvature κ12 shows little change for the cross ply lay-
up. This is expected, because in cross ply lay-ups, there
is no bending-twist coupling in the orthogonal principal
directions. For the same reason, we find in Fig.[10] ap-

6.11



MODELING OF STATIC INDENTATION ON LAMINATED COMPOSITE SHELLS

proximately infinite slope of the TN vs κ12 curve for the
cross-ply lay-up both at the onset and as the indentation
is increased.
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Figure 10. Effect of curvatures on contact force

The energy that is getting stored due to the inden-
tation process, as contact force is developed, is a very
important quantity. Especially in studies where the on-
set of delamination or damage is predicted by an energy
criteria, the energy stored becomes all the more impor-
tant. It can then be compared with the critical strain
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Figure 11. Variation of curvatures with indentation

energy till the onset of delamination to predict the same.
A polynomial curve-fitting is applied to get the variation
of indentation energyof symmetric ply lay-ups with θ. A
sixth order polynomial

Eindt(J) = 7.1θ6 + 61θ5 + 14θ4 − 250θ3

−150θ2 + 330θ + 350 (85)

6.12



MODELING OF STATIC INDENTATION ON LAMINATED COMPOSITE SHELLS

0 10 20 30 40 50 60 70 80 90
50

100

150

200

250

300

350

400

450

500
 
E = 7.1*θ6 + 61*θ5 + 14*θ4 − 2.5e+02*θ3 − 1.5e+02*θ2 + 3.3e+02*θ + 3.5e+02

θ (degrees)

E
n

e
rg

y 
E

(J
)

Figure 12. Variation of indentation energy with lay-up
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is found to fit the data best. The variation shows that
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Figure 13. Comparison of contact force-indentation rela-
tionship between experimental results and present analy-
sis for (02/902/02/Adh-/110WF/Adh/02/902/02) lay-up
sandwich laminate

for indentation from 0mm to 10mm, the (60/ − 60)2S

lay-up configuration stores the maximum energy, and is
most likely to undergo delamination/fracture when in-
dented within the above-mentioned limits. The results
of the simulation study were validated using the em-
pirical relations and experimental results proposed by
Anderson and Madenci[6] for sandwich laminated con-
struction. A sandwich laminate with carbon epoxy face
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Figure 14. Comparison of contact force-indentation
relationship between best-fit experimental re-
sults and present analysis for (02/902/02/Adh-
/110WF/Adh/02/902/02) lay-up sandwich laminate

sheets of lay-up (02/902/902/02) bonded by an adhesive
layer to 110WF foam core was considered. The mea-
sured contact force-indentation relationship for the panel
configuration (02/902/02/Adh/110WF/Adh/02/902/02)
was taken. A mean value curve is chosen for the given
results and the simulation results obtained are compared
in Fig.[13]. The power law curve-fitting technique is ap-
plied to the experimental results and the same are also
compared. The analytical expression proposed in [6] is
also plotted for comparison purposes. The results ob-
tained by the present analysis also are compared with
the best-fit curve of the experimental results in Fig.[14].

Conclusion

The bending curvature brings about a non-linear vari-
ation of curvature with indentation. Moreover, while
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investigating the contact force-indentation relationship
for different ply angles, it was found that the fit coeffi-
cients for the power law relationship themselves depend
on the lay-up angle. The coefficients turn out to be cubic
polynomials in terms of the lay-up angle. The curvatures
varied linearly with indentation while for no coupling be-
tween the orthogonal directions i.e. for the case of cross
ply lay-up, the twist curvature remained virtually unaf-
fected. Results compared with published experimental
as well as analytical expressions for sandwich laminates
showed better corelation with the experimental data, val-
idating the efficacy of the current approach. The simu-
lation results in this study had a correlation coefficient
of 0.99974 with experimental data while published ana-
lytical form gave a correlation coefficient of 0.99644. So
we can conclude that the present work predicts much
more effectively the contact force variation compared to
previous works, and is expected to mirror the real-life
experimental data with much more accuracy. The ex-
pression for indentation energy, expected to be useful in
delamination studies, was also provided.

REFERENCES

1. G. Caprino, V. Lopresto, The significance of inden-
tation in the inspection of carbon fibre reinforced
plastic panels damaged by low-velocity impact, Com-
pos.Sci Technol 60 (2000) 1003–1012.

2. G. Caprino, V. Lopresto, Factors affecting the pen-
etration energy of glass fiber reinforced plastics
subjected to a concentrated transverse load, Proc.
ECCM9, Brighton, UK, 4-7 June .

3. G. Caprino, V. Lopresto, On the penetration energy
of fiber reinforced plastics under low-velocity impact
conditions, Compos. Sci Technol 61 (2001) 65–73.

4. G. Caprino, A. Langella, V. Lopresto, Indentation
and penetration of carbon fiber reinforced plastic
laminates, Composites: Part B 34 319–325.

5. A. E. Bogdanovich, S. Yushanov, Three dimensional
variational impact contact analysis of composite bars
and plates, Composites: Part A 31 (2000) 795–814.

6. T. Anderson, E. Madenci, Graphite/epoxy foam
sandwich panels under quasi-static indentation, En-
gineering Fracture Mechanics 67 (2000) 329–344.

7. D. H. Hodges, Contact stress from asymptotic
reissner-mindlin plate theory, AIAA Journal 41 329–
331.

8. A.K.Noor, M.Malik, An assessment of five model-

ing approaches for thermo-mechanical stress analysis
of laminated composite panels, Computational Me-
chanics 25 (2000) 43–58.

9. A.K.Noor, S. W.Burton, Assessment of computa-
tional methods for multilayered composite shells, Ap-
plied Mechanics Review 43 (4).

10. W. Yu, D. H. Hodges, V. V. Volovoi, Asymp-
totic generalization of reissner-mindlin theory: accu-
rate three-dimensional recovery for composite shells,
Comput. Methods Appl. Mech. Engg 191 (2000)
5087–5109.

11. P. Wriggers, Computational Contact Mechanics,
John Wiley & Sons, 2002.

12. O. Zienkiewicz, R. Taylor, The Finite Element
Method, Vol. 2nd - Solid Mechanics, Butterworth &
Heinemann, 2000.

13. A.E.Bogdanovich, C.M.Pastore, B.P.Deepak, A com-
parison of various 3-d approaches for the analysis of
laminated composite structures, Composites Engrg.
5 (1995) 1105–1126.

6.14


	sumary: 


