
ERF91-19 

TESTING OF 
ON-BOARD MISSION-CRITICAL SOFTWARE 

A. Santarelli, F. Di Pace 

DATAMAT Ingegneria Dei Sistemi SpA 

ViaS. Martini 126 - 00143 Roma, Italy 

Abstract 

The paper describes the DATAMAT experience gathered 
in testing on-board critical applications and focuses on the 
approach adopted to manage the testing activities. 

The experience led to the definition of a formal approach 
to testing, whose characteristics were derived not only 
from the theoretical approach, but mainly from the know· 
how drawn from the testing activities carried out within 
the Mission Critical Programs in which DATAMAT has 
been involved since late seventies. 

The approach, aimed to the formalization of the test proce­
dures, to their automation and to the standardization of the 
test documentation, and the tools developed to implement 
it are described. The benefits obtainable using this ap· 
proach are discussed. 

Then a description of the experience drawn in implement· 
ing the above approach is given, focusing on the testing of 
the EHlOl (Anti-Submarine Warfare Anglo-Italian Heli· 
copter) Mission Software/Mission System Integration and 
on the testing of the Hermes (European Spaceplane) On­
Board Mission Software Mock-Up. 

Introduction 

One of the major problems related to the Quality Assur· 
ance in the designing and implementing critical systems is 
the ensuring of the quality during all the phases of the life 
cycle of the systems at the maximum level, keeping the 
overall costs, and specifically the ones related to the test· 
ing activities, within the scheduled limits. 

The efforts for the verification and validation carried out 
during the Mission Critical Programs in which DATAMAT 
has been involved since late seventies (like the Italian 
Navy On-Board Command and Control Systems for Hy· 

173 

drofoils, Minehunters and Submarines; like the EHlOl 
Mission Software/Mission System Integration and the 
Hermes On-Board Mission Software Mock-Up), have led 
to the definition of a set of strategies and methodologies 
that meet the above goals. 

They are based on the concepts of the Test Formalization 
and Test Automation, whose aim is to migrate the test en­
gineers' efforts towards the definitions of the test proce­
dures while relying on the machine for the test execution 
and documentation. 

The Approach to the V & V Testing 

During the development of large systems, it is necessary to 
verify the compliance of the intermediate products with 
the functionalities allocated to them during the architectur· 
a! decomposition (water-fall model (1.)), and, at the end of 
the development effort, to verify the compliance of the 
whole system versus the user requirements (the valida· 
tion). The above V&V activities (6.) are not limited to the 
described phases, but they also continue in the mainte· 
nance one, when updatings and upgradings of the systems 
require to re-validate the new deliveries. 

Traditional V &V techniques for the testing activities in· 
elude the development of test drivers and stubs (mainly at 
the unit level testing), and environment simulators (at the 
system level testing). 

Drivers and stubs are generally developed by designers to 
verify their products in the early coding phases, without 
following standards and rendering difficult the control on 
the test activities. Furthermore the requirement coverage 
of the tests performed using drivers and stubs is little evi­
dent, unless the designer provides the necessary documen­
tation. 



Environment simulators are vice versa used in the integra­
tion and system testing, to generate the stimuli of the envi­
ronment around the system and to get the system 
responses. 

As the environment simulation can involve the manage­
ment of complex scenarios, or the amount of different data 
exchanged with the system is considerable, simulators can 
be large software products, and therefore require a sepa­
rate development and maintenance life cycle. 

The experience in the usage of environment simulators 
shows that they take the advantage of better addressing the 
dynamic and intuitive testing, but have the following 
drawbacks: 

• The related problem of testing the environment simula­
tors • "who tests the tester?" -. 

• The difficulty in locating bugs when system under test 
and environment simulators run together - "the bug is 
in the system or in the simulator?"-, and consequent 
disagreements between the designers and test engi­
neers. 

• The complexity in tracing the requirements, unless an 
extensive additional documentation is produced. 

• The difficulty in tracking the results of the tests, often 
assigned to the visual observation of the test personnel 
during the test executions. 

• The more complex is the simulator, the more difficult is 
to obtain predefined and deterministic behaviors (re­
quired for validation tests). 

The above considerations along with the necessity to gen­
erate a test documentation that spans all the testing phases 
according to predefined standards (often required by the 
customer), leaded to the definition of a more formalized 
approach towards the testing activities, in which the cover­
age of the requirements and, more in general, the test pro­
cedures understanding and transparency become the 
central aims. 

The Formal Approach to Testing 

The adopted formal approach to testing is based on the fol­
lowing main ideas: 

1. Data Formalization, that means the unambiguous 
specification of the interfaces. 

2. Test Formalization, meaning the unambiguous specifi­
cation of the test procedures. 

3. Linkage towards the Requirements, meaning that the 
requirements must be traced from the test procedures. 

4. Test Report Standardization, that means the production 
of the test reports, according to predefined and con­
trolled standards, in all the testing phases. 

The formalization of the data exchanged through the rele­
vant interfaces of the system is not related to the testing 
activities only, but it is a general requirement for the sub· 
system integration. We highlight here this concept because 
the interface specifications, as direct product of the system 
specification, are the basic inputs for the test procedures, 
that are in charge of the stimulation/verification of the sys­
tem under test through the interfaces themselves. 

The formalization of the test procedures aims to the pro­
duction of documents increasing the comprehensive un­
derstanding of them by the quality assurance personnel 
and by the customer. 

Moreover the clearness of the test procedures eases the ac­
tivities related to the regression testing, assuring the re­
peatability of the validation tests each time a new delivery 
of the system is released (a typical situation in the life cy­
cle of large systems). 

The linkage of the test procedures towards the require­
ments is the straightforward way to verify which require­
ment is covered by which test procedure (needed for the 
requirements' matrix filling). This linkage also allows to 
know, for each requirement, if it has been successfully 
tested or not. 

The choice of focusing on the formalization as guideline in 
the testing activities carried to the definition of a set of for­
mallanguages for the test description. In such a way it was 
possible to overcome the intrinsic ambiguities of the natu­
ral languages, assuring the comprehension of the test read­
ers, and to obtain the automation of the test procedw·es. 
The following three main concepts summarize the efforts 
in testing fmmalization: 

1. The Data Language, allowing the unambiguous inter­
face specification. 

2. The Test Language, providing a set of simple state­
ments for test procedure definitions and requirement 
reference. 

3. The Automatic Report Generation, providing an auto­
matic and comprehensive documentation of test execu­
tion results. 

Data Language 

The aim of the Data Language is the formalization of the 
interfaces relevant for testing. This means that both the in-

174 



terfaces of the whole system towards the environment and 
the internal interfaces separating its structural components 
can be described in the same fonnal way. 

Generally speaking, we have that the system under test (or 
its components) communicates with the environment via 
one or more, logical or physical, communication chan­
nels(Fig. 1.). The interface description focuses on the gen­
eral characteristics of these channels and on the data 
exchanged through them. 

General characteristics of the communication channels are 
type and address (the address is necessary to identify chan­
nels of the same type). Supported channel types by the 
Data Language are those ones opened towards the 1553 
bus, the generic SW link among tasks (based on the !PC 
facilities of the operating platfonn), etc. 

Moreover, the system exchanges data through the channels 
packed into messages. For the messages it is possible to 
specify their addresses (to identify each message from 
each other), and their data structures. 

Communicalion 
Channel 

Messages sent to the system (Stimuli) 

Messages received from the system (Responses) 

... 

Fig. 1. System Interface whh the Environment 

The approach to the data description provided by the Data 
Language starts from the description of the physical layout 
of the datum (till the atomic quantum - the bit), then al­
lows logic views (the "engineered" data). This approach 
guarantees an unambiguous data representation, but, on 
the other hand, includes also the constructs to make the 
data description comprehensive to different users (like the 
QA personnel). 

175 

The basic data types supported for the description of the 
physical layout (the "raw" data) range from the integer 
types (bits, bytes, words, etc.) to reals (single and double 
precision) and to texts. For each basic type, the memory 
size and the set of allowed operations are fixed: it is also 
possible to define ranges for them, such as intervals or set 
of allowed values. Basic data can be aggregated using 
commonly known constructs, like structures, unions and 
arrays. In such a way it is possible to describe messages as 
complex as needed. 

Often data are stored in the messages in order to match 
some constraints (mainly the memory occupancy) - the 
"raw" data- while their usage needs a conversion to a high 
level representation - the "engineered" data -. The logic 
views of the physical layout are supplied by means of the 
declarations of engineered data (belonging to the set of ba­
sic data types, of course) specifying the raw ones from 
which they derive, and the conversion procedures applied 
to compute them (Fig. 2.). A set of predefined conversion 
criteria is supplied, and the user can add own conversion 
procedures. 

BF2 ·~i""- (2 bits) }F 

W2' 3.14 

STAND_BY s 1 

Fig. 2. The Physical-Logic Data Layout 

Hence the Data Language allows to create a centralized 
Test Data Dictionary, containing all the infonnation re­
quired for the interface descriptions. This infonnation is 
used by the test procedures to handle operations over the 
interface data (like sending and check operations). 

Test Language 

The Test Language is a fonnal language, independent 
from the common programming languages, that supports 



the test engineer in the execution and documentation of the 
tests. 

The language, containing a set of general statements (like 
data handling and control flow ones), is mainly character­
ized by a set of powerful statements specific for the de­
scription of sequences of actions needed to stimulate the 
system (or its components), and verify the related respons­
es. It also includes a statement that allows the requirement 
references. 

As the involved data are those exchanged via the interfac­
es of the system under test, the Test Language statements 
are fully integrated with the descriptions contained in the 
Test Data Dictionary. 

The Test Language provides a test session organization 
based on a hierarchical structure. At the top level there are 
the Test Procedures: each Test Procedure can be related to 
a main component of the system under test A Test Proce­
dure is divided into a set of Test Sequences that focus on 
specific requirements (derived by the related functional­
ities). Then each Test Sequence is instantiated to a set of 
elementary Test Cases (minimal number of test steps ad­
dressing specific test conditions to be verified). 

The verification of the system responses is managed with 
two classes of test statements. 

The first class includes statements that express reception 
of data from the system under test. These statements, 
along with the statements involving data sending, allow 
the test engineer to describe the expected behavior of a 
single component (unit test) or of the whole system (vali­
dation test), according to a functional (Black Box) testing 
methodology (2.). 

The second class includes statements that capture data ex­
changed among components under test. These statements 
allow to describe the expected data traffic among compo­
nents under test (integration test). 

Therefore the language covers all the testing phases, from 
unit test to integration test, and, finally, to the validation 
test of the whole system, providing a unique approach 
(Fig. 3.). 

With regard to the usage of the first class of statements, it 
is clear that the test engineer can carry on it uP to minimal 
components, increasing the inspection level to something 
similar to the White-Box testing. 

The set of statements, specific for the testing activities, in­
clude: 

Stimuli 
, ... ~A 

Responses 

Stimuli/Responses Fr"=='11 --· Stimuli/Responses 

Fig. 3. UniVSystem Test and Integration Test 

• Declaration of Test Procedures/Sequences/Cases. 
• Declaration of assertions. Assertions are predicates 

evaluated at the test execution time. 

• Transmission and reception of data towards physical/ 
logical devices, using two different classes of state­
ments: 
o Data sending/receiving statements (to/from the 

component under test). 

o Data traffic capturing. 

• Logging of data. The user can log own informational 
messages that will increase the readability of the test 
results (see the Automatic Report Generation). 

• Monitoring of data exchanging. 
• Definition of surveillance conditions and related ac­

tions. 

• Automatic generation of test input data. 

• Dialogues with the test personnel to correctly step 
through the test procedures (semi-automatic test: the 
user's responses affect the test evolution). 

• Requirement references. 

The test procedures written by the user are compiled by a 
tool developed ad hoc, the Test Compiler, that generates an 
object version of the source module containing low level 
instructions plus additional infonnation (like the compila­
tion time, etc.). Moreover, the Test Compiler generates 
ASCII files containing, for each item of the test hierarchy, 
the list of referenced requirements: these files are imported 

176 



by a tool producing the cross-reference between the re­
quirements (extracted by the user data bases) and the tests. 

Another tool, the Test Controller, is in charge of the actual 
test execution: when it is invoked to execute a supplied 
test procedure, it performs the settings for the dynamic ev­
olution and the checks necessary to verify that the func­
tional dependencies among modules (generated by the test 
procedure calls) are respected. 

The Test Controller supplies a connection-oriented mecha­
nism for the data exchanging with the system under test. 
Actually, the communications are established by a differ­
ent tool, the Communication Server, that is structured in 
two main layers: the low level one is dependent of the type 
of communication channels to be managed (e.g. the 1553 
bus), whilst the upper level one is the general back-end to­
wards the Test Controller. The Communication Server can 
be hosted on a machine connected by means of the net­
work with that one where the Test Controller runs: there­
fore it is possible to perform a distributed testing. 

Once the communications with the system under test are 
established, the Test Controller "executes" the instructions 
contained in the loaded objects, sending and receiving data 
and performing all the specified checks. 

An additional tool, the Monitor Tool, has been developed 
to capture the messages running among the components 
under test during the integration testing activities, and to 
record the whole messages traffic (when requested for off­
line analysis). Also this tool is handled at run-time by the 
Test Controller, while the files containing the recorded 
traffic are used by a set of utilities that allow to analyze the 
data evolution by means of queries and statistics. 

Automatic Report Generation 

During the execution of the tests, the Test Controller pro­
vides a double recording of the execution into ASCII files: 
the Log File and the Result File. 

The Log File is intended to be an auxiliary support in the 
trouble-shooting analysis. In fact it contains the informa­
tional messages logged explicitly by the user (with the log 
statement), plus messages logged by the Test Controller, 
when entering and exiting from the items of the test hierar­
chy, and messages raised by failures in testing actions (like 
data out of range, time-out expired when expecting mes­
sages, etc.). 

The Result File summarizes the results of the executed test 
session. More in detail, it contains a set of parameters re-

177 

lated to the test execution, like the identifier of the test ses­
sion, the identifier of the test engineer and additional 
information, plus, above all, the completion stati of the ex­
ecuted levels of the test hierarchy (Procedures/Sequences/ 
Cases). All the information is saved in ASCII transport 
format: therefore an off-line report generator imports it in 
order to produce reports according to predefined documen­
tation standards. 

As consequence of the described characteristics, the Re­
sult File must be considered the relevant output automati­
cally generated by the proposed test environment. The 
documents generated from this file can be used as official 
documents to certificate the testing activities on the deliv­
ered system. 

Advantages and Drawbacks of tbe Approach 

The choice of formalizing and automating the test activi­
ties by means of the above described approach, leads to 
the following advantages: 

• The test unambiguity, since the languages, being un­
derstandable by the machine, do not admit ambiguities. 

• The test readability, because the description of the test 
procedures is made by a language containing powerful 
statements for the specification of the test actions. 

• The test repeatability, as each test procedure can be ex­
ecuted as many times as necessary. This is useful not 
only for the regression testing, but just to locate the 
reascns of test failures (when they are not immediately 
clear). 

• The test exhaustiveness, because large quantities of in­
put data for testing can be automatically generated with 
the provided statements of the languages. 

• The test is incremental, as the availability of a formal 
language allows to easily add new test cases during the 
life cycle of the project. 

• The test traceability, since the possibility of referring 
the requirements inside the test procedures and the au­
tomatic recording of the test results, allow to keep track 
of the current status of each requirement (coveted by at 
least one test, not covered by any test, not tested, suc­
cessfully tested, not successfully tested). 

• The test controllability, because the test procedures, be­
ing described inside ASCII files, can be put under the 
configuration control: therefore the revision of the test 
procedures can be always linked to that of the related 
system. Moreover the tool facilitates the control opera­
tions, as it inserts in the test results (the Result File) all 
the information necessary to identify the version of the 
executed tests. 



• The automated test documentation, as the documents 
containing the cross-reference of the tests against the 
requirements and the test reports are automatically 
generated. 

• The test reusability, as the test procedures written for a 
prototype of the system can be reused for real system, 
except for the changes regarding the connection with 
the system under test. Moreover, also the test proce­
dures written for the unit test can be reused in many 
cases with some changes for the integration test. 

Vice versa the approach has the following drawbacks: 

• The dynamic test in which the timing constraints must 
be strictly respected is better fulfilled with environment 
simulators. 

• A larger initial effort is required for the formalization 
of the test interfaces and test procedures. 

Anyway, the dynamic testing can be addressed also with 
the proposed approach writing simple simulators (contain­
ing only the code governing the dynamic evolution) con­
trolled by the test procedures via the statements allowing 
data exchange among logical devices. 

With regard to the efforts in test formalization, it has been 
already underlined how these efforts leads to the standard­
ization of all the test phases (unit test/ integration test/ sys-

tern test) that, along with the automation of test execution 
and documentation, provide an overall reductions of the 
costs. 

The EH101 Mission SW and Integration 
Testing 

This section of the paper describes the experience gathered 
using the formal approach in the testing activities related 
to the EH!Ol program located at the DATAMAT premises. 

The Avionic System of the EH!Ol is based on a dual re­
dundant MIL-STD-1553B buses. Each bus connects a 
complex system controlled by a dual redundant computer 
unit. The fust system is dedicated to the monitoring and 
control of the helicopter flight. The second one, named in 
the following Mission System, controls and monitors the 
operational mission of the helicopter. 

DATAMAT is in charge of the development of the soft­
ware for the mission computer unit (Mission Software) 
controlling the mission system, and of the preliminary 
ground integration of the mission system on the whole. 
The developing activities kicked off in the mid 80s are 
foreseen to end in 92. 

~--··••ono••·-----~--DDDDDDDDftDD~DDD ______ D _____ D~ 

(Vax 8250) 

ISS3B Bask 

. 
• : . • : 

-----Mi;~i~~-s;~t~;;.;(p~;;t~i;·--: 
• 

Mission CWG i 
Computer (graphic output) CCU i 

(keyboard & : 
joystick) i 

• • • : 
• • • • . . 

Fig. 4. The EH1 01 Mission Software Test Bed 

178 



A detailed discussion about the development of the Mis­
sion Software (MSW) can be found in (5.). 

The complexity and criticality of this program imposed a 
controlled life cycle, in which all the intermediate prod­
ucts (both documents and software) are subjected to a for­
mal validation by the customer. Consequently, the 
proposed formal approach for the testing activities has 
been fully applied. 

The Testing Support Environment 

The testing activities related to the EH101 DATAMAT 
program are: 

1. The support to the Validation of the Mission Software 

2. The support to the Integration of the Mission System. 

In order to meet the above needs, it was thought to develop 
a unique testing system, named in the following Mission 
Integration Rig (MIR), supplying the means for both the 
test of the Mission Software and the integration of the 
Mission System. 

As all the subsystems of the Mission System, involving 
the mission equipments and the operator interfaces (like 
the CCUs- Common Control Units - multifunction termi-

15538 Bask 
Mission CWG 

Computer (graphic output) 

(Microvax II) 

nals), are connected via the 1553 mission bus, it is clear 
that the interface through which stimulate and verify the 
tested object is the Bus itself. Therefore the testing has 
been carried out accessing to the data traffic on the bus. 
The MIR, hosted on a commercial computer, is connected 
to the 1553 bus via non-intrusive standard interface cards 
that allow the message delivering and capruring. 

The Fig. 4. shows the MIR architecture for the testing of 
the Mission Software. The architecture for the Mission 
System Integration (Fig. 5.) is quite the same with the sub­
systems simulators replied by the real equipments, or their 
emulators, ccnnected to the 1553 bus. The emulators, pro­
vided by the developers of the real subsystems, are gener­
ally implemented using the part of the real equipment 
interfacing the 1553 bus, and simulating the remainder 
part interfacing the external environment: typically the 
emulator behavior is controlled, via serial lines, from this 
side. 

The main software components supporting the approach to 
the Mission System Integration are shown Fig. 6.: the Test 
Manager, a simplified version of the Test Controller, exe­
cuting the test procedures, the SW 1553 Drivers, providing 
the low level connection with the bus 1553, and the CCU 
Output Formatter. This task has been developed to format 
the output of the CCUs (decoding the messages sent to 
them) in order to be easily managed by the test procedures 

Mission System 

ccu 
(keyboard & 

joystick) 

Fig. 5. The EH101 Mission System Integration Test Bed 

179 



and to be displayed by an alphanumeric terminal. A last 
block contains a set of simple simulators supporting the 
development and informal testing of the Mission Soft­
ware. 

Mission System 

1553B Mission Bus 

Fig. 6. Mission System Integration Approach 

Test Procedures 

The following three examples are drawn from two main 
testing phases of the EH!Ol program: the Mission Soft­
ware Unit and Validation test, and the Mission System In­
tegration test. 

A Unit is an architectural component of the Mission Soft­
ware implementing a particular function (like the manage­
ment of an equipment): it is composed by one or more 
tasks running on the Mission Computer. A typical se­
quence of events during the test of a Unit is the following 
(indicated in the Fig. 7 .): 

1. Sending of a request (e.g. the presetting of an equip­
ment, sent by another Unit), simulated by the MIR (ac· 
cording to the specifications contained in the Test 
Procedures). 

2. Action of the Unit (e.g. command towards the equip­
ment), received and verified by the MIR. 

3. Response of the equipment, built and sent by the MIR. 

4. Answer of the Unit (e.g. the function call result), re· 
cei ved and verified by the MIR. 

MCU 
MSWUnit 

? 
( 

li_ener.c '\ 
Stub/Drive') 

1 

1 r-1 4 2 3 ,... 
1553B Mission Bus 

Stimuli Responses 

MIR 't 

'1-------1 
Test Procedures 

Subsystem 
Simulation 

Fig. 7. Mission Software Unit Test 

The listed steps can be easily translated by the test engi­
neer in the appropriate sequence of statements of the Test 
Language (using the sending and receiving constructs). 

The test procedure containing the above steps can be wide­
ly reused in the Mission Software Validation test. In fact, 
the steps 1 and 4 are replaced by actions involving the 
Mission Software on the whole instead of the single Unit 
(Fig. 8.): 

1. Sending of the Operator request (e.g. the presetting of 
an equipment), simulated by the MIR. 

2. Action of the MCU (e.g. command towards the equip­
ment), received and verified by the MIR. 

3. Response of the equipment, built and sent by the MIR. 

4. Answer of the MCU towards the Operator (e.g. the ac­
tual presetting status of the equipment), received and 
verified by the MIR (via the CCU Output Formatter). 

The test procedure can be also reused in the Mission S ys­
tem Integration test. In fact, in this case the steps 2 and 3 
need to be changed because the actions simulating the real 
equipments must be substituted with actions monitoring 
the equipment behavior (Fig. 9.): 

1. Sending of the Operator request (e.g. the presetting of 
an equipment), simulated by the MIR. 

2. Action of the MCU (e.g. command towards the equip­
ment), captured and verified by the MIR. 

180 



MCU 

1) 4 2 3 - 15538 Mission Bu s 

s timuli Responses 

Subsystem ... MIR Simulation 

'-

Test Procedures 

Fig. 8. Mission Software Validation Test 

3. Response ot" the equipment. captured and verified by 
theMIR. 

4. Answer of the MCU towards the Operator (e.g. the ac­
tual presetting status of the equipment), received and 
verified by the MIR (via the CCU Output Fonnatter). 

MCU 

Responses ~1 .2t 
r JJUS I ) 

\ 

Stimuli 
,2.,3 

rl \.~ 
MIR 

~ 

Subsystems 
Test Procedures 

Fig. 9. Mission System Integration Test 

The Hermes On-Board Mission Mock-Up 
Testing 

This application is a prototype written in Ada language of 
the Hermes On-Board Mission Software, whose purpose 
was to gather information for the requirement definition 
phase of the Hermes Avionic System program. The 

181 

project, in which DATAMAT was involved in the period 
1989-1990, was also a test bench for the adopted design 
methodologies and language (Ada) and for the corre­
sponding automated tools, and it also aimed to the set-up 
of standards for the product quality assurance (7 .). For 
these reasons, it was chosen to apply the fonnal approach 
to the testing activities related to this project. 

The fonnal approach to the testing leaded also in this case 
to a standard strategy in test developing and documenta­
tion, spanning from the Unit to the Validation test of the 
Mission Mock-Up, up to the Integration test of some 
Mock-Ups. 

The Testing Support Environment 

For the designed Hennes Avionic System architecture, and 
for the requirements fonnulated for the Mission Software, 
the Mock-Up can be considered a very reduced scale of 
the EH!Ol Mission Software, implemented using Ada on 
a UNIX operating system (in two steps: first UNIX com­
mercial host, then UNIX embedded configuration). 

The Hennes Mission Software is characterized by two 
main interfaces towards the environment. 

1. The 1553 bus (to be simulated in this application) con­
necting the on-beard subsystems (external to the mis­
sion computer). 

2. The line for downloading the Operations Plan. This 
plan contains the activities to be perfonned during the 
mission exploitation; the downloading had to be p·ro­
vided by the test environment, too. 

In this case we had not to develop drivers for specific 
hardware devices (the real 1553 bus), but only the basic 
communications between the task implementing the Mis­
sion Software and the test environment. These means were 
provided developing two simple Ada packages based upon 
a standard communication library associated to the test 
tools. An additional benefit provided by this library, is that 
the testing environment and the tested tasks can be hosted 
on different machines (networked over TCP/IP). The Fig. 
10. shows the test bed for the integration of Hennes Mock­
Ups. 

Once available the Mission Mock-Up Test Environment 
(MMTE), the test engineers activities focused on the de­
velopment of the Drivers and Stubs for the Mission Mock­
Up Unit test (simple packages with standard templates 
supplying the data exchange between the task under test 
and the MMTE), and on the test procedures, of course. 



For the analogies with the requirements of the EHIOI Mis­
sion Software, the strategy followed in designing the test 
procedures was the same as in the former case, therefore 
no example of test activity is provided. 

An important benefit gained from the usage of the formal 
languages for test description, was the automation of re­
gression testing activities, that were frequently exercised. 
In fact the Hermes Mission Mock-Up passed through four 
different releases, from Ada to Ada different compilers, 
and from host to target configurations. The automatic test 
re.execution strongly reduced the time spent in the porting 
phases, putting quickly in evidence the related problems, 
such as the data codification (an important issue in inter­
facing products developed with different languages and/or 
compilers). 

Conclusions 

The experience in using the adopted formal approach in 
the two programs (EH!Ol and Hermes Mission SW Mock-

MMUHost 
(Commercial or 
embedded HW) 

MITE Host 

Up) has shown that the initial effort to produce formalized 
test descriptions has been largely paid-back by a reduction 
of the overall testing work, due mainly to the automation 
of the testing activities (execution and report generation), 
and by the compliance with the customer needs in terms of 
quality and deadlines fulfillment 

Moreover, even if the physical context of the EH!Ol Avi­
onics Testing and the Hermes Mission Mock-Up Testing 
(the fom1er based on a real 1553 bus, the latter on a soft· 
ware simulation of it) are different, the test procedures 
structure of the two applications is similat. This is an im • 
portant result of the formal approach, that allows the stan­
datdization of the testing activities. 

The most meaningful evolution trends in this matter are to­
watds the automation of the test design itself. This objec­
tive might be achieved with efforts in deepening the test 
theory associated with the systems topology, and studying 
the formalization methods for the systems requirements 
and functions. Techniques related to the Artificial Intelli-

Subsystems Host 

TCP/IP 

Fig. 10. Hermes Mock-Ups Integration Test Bed 

182 



gence, and specifically to the Expert Systems, may proba­
bly conuibute to this research. 

Another outstanding issue to be investigated is the impact 
of the testing and maintenance over the structures of the 
systems themselves. The more testable and maintainable 
will be the systems, the more valid and economic will be 
their testing and maintenance activities. 

References 

1. Boehm, B.W., "Software Engineering", IEEE 
Transactions on Computer (C25), pp. 1226-1241, 
Dec. 1976. 

2. Myers, G. J., The Art of Software Testing, John 
Wiley and Sons, Inc., New-York, 1979, pp. 8-9. 

3. Beizer, B., Software Testing Techniques, Van Nos­
trand Reinhold Company, Inc., New York, 1986. 

4. DeMilio, R.A., McCracken, W.M., Martin, R.J., 
Passafiume, J.F., Software Testing and Evaluation, 
The Benjamin/Cummings Publishing Company, 
Inc., 1987. 

5. Cambise, E., Gazzillo, S., "An Integrated Ap­
proach to Airborne Software Development", F o­
rum Proceedings of the 13th European Rotorcrajt, 
Paper n° 24, Aries, France, Sep. 1987. 

6. Wallace, R.W., Fujii, R.U., "Software Verification 
and Validation: An Overview", IEEE Software, 
May 1989. 

7. Barcellona, A., Santarelli, A., "Proto typing in Ada: 
Experiences in Developing the Hermes On-Board 
Mission Software Mock-Up", Ada in Aerospace, 
Eurospace Symposium, Barcelona, Dec. 1990. 

183 


