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Abstract 

This paper describes a new, two-dimensional, com­
pressible unsteady aerodynamic model developed for 
dynamic analysis of a rotor blade/actively controlled 
flap combination. Aerodynamic loads are approxi­
mated in the frequency domain as rational functions 
of the Laplace variable using a least squares fit to os­
cillatory response data. Transformation to the time 
domain yields a state space model for the unsteady 
aerodynamic loads. Expressions for the unsteady 
lift, moment, and hinge moment for an airfoil/flap 
combination are presented. Frequency domain loads 
are obtained using a two dimensional doublet-lattice 
analysis. A provision is included for representing 
the unsteady effects associated with time-varying 
freestream. The aerodynamic model for the air­
foil/flap is implemented in an aeroelastic simulation 
of a fully elastic hingeless helicopter rotor with a par­
tial span trailing edge flap. A time domain solution 
of the coupled trimfaeroelastic response problem is 
presented together with illustrative results. 
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Introduction 

Vibration is a problem of major concern for heli­
copter manufacturers due to its impact on helicopter 
comfort, performance, and reliability. With military 
and civilian customers adopting increasingly strin­
gent requirements for acceptable vibration levels in 
new helicopters, development of effective vibration re­
duction strategies has assumed greater importance in 
recent years. Fortunately, new active control strate­
gies that are being considered have the potential for 
reducing vibration to levels that are substantially 
lower than what can be achieved using traditional 
passive approaches [1-3]. 

In forward flight, periodic aerodynamic loading on 
the blades is a major source of vibratory loads. Fairly 
mature active control strategies such as higher har~ 
monic control (HHC) and individual blade control 
(IBC) attempt to modify these loads directly, at their 
source, by actively controlling the blade pitch at the 
root. The effectiveness of these approaches has been 
demonstrated in analytical simulations, wind tunnel 
tests, and flight tests. The levels of vibration re­
duction achieved vary between 70-90% [1]. However, 
there exist a number of problems associated with the 
practical implementation of these approaches in a 
production helicopter. These include high power con­
sumption and airworthiness concerns arising from the 
need to modify the primary control system [1 J. 

Recently, an alternative strategy for vibration re~ 
duction has emerged that is based on an actively con­
trolled partial span trailing edge flap located at the 
outboard spanwise portion of the blade. Controlled 
deflection of this flap modifies the aerodynamic load-

ing on the blade in a manner similar to HHC and IBC, 
without the need for oscillating the entire blade, or 
employing the primary control system for vibration 
reduction. Thus, the actively controlled trailing edge 
flap retains the most promising features of HHC and 
IBC while avoiding some of their disadvantages. Re­
cent studies have confirmed these expectations and 
therefore improved analytical models are needed to 
enhance our understanding of this device and facili­
tate its development [1, 4-6]. 

A significant deficiency in existing analytical mod­
els is the lack of a suitable time domain unsteady 
aerodynamic theory to provide the sectional airloads 
needed to model the blade j actively controlled flap 
combination in compressible flow. Such a model has 
to be capable of representing (a) unsteady effects to 
accurately resolve the amplitude and phasing at high 
frequencies; (b) compressibility effects; (c) time vary­
ing freestream effects; and (d) unsteady control flap 
hinge moments. The model should also be computa­
tionally efficient. 

A number of recent unsteady aerodynamic theories 
have been developed to model a airfoil/flap combina­
tion. Leishman and his associates [7-9] have devel­
oped a theory using an indicia! approach that par­
tially satisfies the above requirements. However, the 
hinge moment modeling capability is incomplete, and 
the model has not been extended to the time-varying 
freest ream case (although a method has been sug­
gested [10] ). Another model has been developed by 
Peters and his co-workers [11]. However its details 
were presented for the incompressible case. 

The principal objectives of this paper are: (1) To 
present a new compressible unsteady aerodynamic 
model, developed specifically for dynamic analysis of 
the blade/actively controlled flap combination, that 
meets the requirements stated above; (2) Validation 
of the new aerodynamic model; and (3) Implementa­
tion of the new aerodynamic model in an aeroelastic 
response analysis of a flexible hingeless blade, com­
bined with a trailing edge flap. 

Aerodynamic Modeling 

A new two~dimensional unsteady aerodynamic 
model for an airfoil/trailing edge flap combination 
has been developed using an approach commonly em­
ployed in fixed wing aeroelastic applications [12-14]. 
In this approach, oscillatory aerodynamic response 
data is used to generate approximate transfer func­
tions that relate airloads to generalized motions in 
the frequency domain. These expressions take the 
form of rational functions, which can be transformed 
to the time domain to yield a state space model for 
the aerodynamic loads that is compatible with con­
trol approaches and periodic systems. 
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In the present analysis, oscillatory lift, moment, 
and hinge moment response quantities for a two 



dimensional flapped airfoil are generated using a 
doublet-lattice approach [15] based on the Possio in­
tegral equation [16]. Using this approach, oscilla­
tory response quantities can be obtained for any air­
foil/flap geometry at any reduced frequency and sub­
sonic Mach number. 

Airfoil motion is described by the generalized coor­
dinates W 0 and W1 which represent, respectively, air­
foil motions producing constant and linearly varying 
normal velocity distributions on the airfoil as shown 
in Figure 1. These can be expressed in terms of the 
classical pitch and plunge coordinates a and h, shown 
in Figure 2, using the relations: 

W0 (t) = U(t)a(t) + h(t), 

W1 (t) = M(t), 

(1) 

(2) 

where, for simplicity, a and hare measured at the 1/4 
chord of the airfoil. In a similar manner, flap motion 
is described by the generalized motions D 0 and D 1 , 

which represent motions that produce constant and 
linearly varying normal velocity distributions on the 
flap, as shown in Figure 1. Using flap deflection o and 
deflection rate J, these can be written as 

Do(t) = U(t)o(t), 

D,(t) = b6(t). 

(3) 

( 4) 

The normal velocity distributions associated with 
these generalized airfoil and flap motions are used 
by the doublet-lattice code to generate correspond­
ing sets of oscillatory response data for each motion. 

A convenient finite-dimensional approximation of 
the Laplace trat!Sformed unsteady airloads was de­
veloped by Roger [12]. The present study uses a vari­
ation of this approximation, given by 

Np G ~ 

Q( -) C C - '"" J+!P 
p= o+ IP+LJ(-+ ·)' 

j~l p "!, 
(5) 

where Q (ji) is a transfer function that relates general­
ized motion to an aerodynamic load. The coefficients 
Cn are chosen such that they provide a best fit, in a 
least squares sense, to oscillatory response data. The 
Nv terms in the series are aerodynamic lag terms, and 
contain an associated set of poles 'Yi· The poles are 
assumed to be positive valued so as to produce stable 
open loop roots, but otherwise play a non-critical role 
in the approximation [12]. 

In general, the quality of the approximation de­
pends on the number oflag terms NP. However, when 
Eq. (5) is rewritten in state space form, each lag term 
will generate an aerodynamic state which is governed 
by a first order differential equation. In an aeroelastic 
simulation, aerodynamic state equations are coupled 
with the structural equations of motion, and must 
be solved simultaneously. Thus, the addition of lag 
terms to improve the accuracy of the approximation 
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has to be balanced by the competing need for com­
putational efficiency. 

Using lift as an example, a frequency domain rep­
resentation of the aerodynamic system can be written 
as 

.C[Cz(s)U(s)] = Czw, (ji)Wo(:P) 

+ Czw, (ji)W1 (ji), (6) 

where Wo(:P) and W,(ji) represent Laplace trar!Sforms 
of W0 ( s) and W1 ( s) respectively. The trat!Sfer fnnc­
tions Czw

0 
(ji) and Czw, (ji) are approximated by the 

following rational expressions, based on Eq. ( 5): 

N,, A -
C ( -) A A - '"" J+lP 

lw0 P = 0 + lP + LJ (- + ·), 
j=l p "!, 

C ( -) B B - ~ BJ+zP 
lw, P = 0 + lP + LJ ( _ + ·) · 

j=l p K; 

(7) 

(8) 

To identify the coefficients of the rational approx­
imant, the nondimensional Laplace variable p is first 
replaced by ik. Using Eq. (7) as an example, this 
yields 

N,, A . . I: J+12k 
Czw ( k) = Ao + A, tk + ( "k ) · 

' ' +"!· j=l J 

(9) 

A set of oscillatory response data is obtained, and can 
be written as 

Czw, (kn) = F(kn) + iG(kn), n = 1 ... Ndp, 
(10) 

where Ndp is the number of reduced frequencies kn 
for which response data has been generated. The ap­
proximants are constrained at k = 0 to recover the 
steady state response by setting 

Ctw, (0) = F(O) = Ao. (11) 

The remaining coefficients are identified using a least 
squares fit to the oscillatory response data. The ap­
proximant is then extended to the complex plane us­
ing analytical continuation. 

Repeated Pole Formulation 

A variety of different methods have been devel­
oped to reduce the number of lag terms (and result­
ing aerodynamic states) necessary to achieve a given 
level of accuracy [12, 14, 17]. The present model em­
ploys a simple variation on these approaches whereby 
the rational approximants associated with a partic­
ular aerodynamic load share a common set of poles. 
Using Eqs. (7) and (8) as an example, this yields 

C ( -) A A - ~ AJ+!P 
lw, P = 0 + 1P + LJ ( _ + ·), (12) 

j~l p 'YJ 

N, B -
( -) - '"" J+lP Ctw,P =Bo+B,p+LJ(-+ ·)· 

J~l p 'YJ 
(13) 



By repeating the poles, the total effective number of 
lag terms in this system is NP instead of 2Np. This 
is evident by substituting Eqs.(12) and (13) into Eq. 
(6) to yield the single approximant 

C[G1(s)U(s)J = (Ao+A,jj)Wo(P)+(B0+B!13)W,(p) 

~(A;+> W 0 (p) + B;+1 W,(jj))p 
+ LJ (- ) , (14) 

j~l p + "/j 

with Np lag terms. Note that when NP = Np2 + Npl, 
Eqs. (7) and (8) represent a special case of Eqs. (12) 
and (13). Thus, the repeated pole formulation im­
poses fewer rest.rictions on the choice of coefficients, 
and will generally produce a more accurate approxi­
mation. In practice, this means that a smaller num­
ber of lag terms is needed for a given level of accu­
racy, thus increasing the computational efficiency of 
the model. 

Optimal Pole Placement 

Pole placement is not critical to the approximation 
process, but can influence the fitting error .. Numerical 
optimization techniques have been developed to find 
the pole locations that minimize this error [17-19]. 
In our case, this is accomplished using a standard 
numerical optimization routine. Casting the problem 
in the form: 

subject to the constraints 

(15) 

(16) 
(17) 

where Xdv is a vector of Ndv design variables, F(xdv) 
is an objective function, and 9i(xdv) represents a set 
of constraint equations . In this case, the design vari­
ables are the poles "f;, which are constrained only by 
the requirement that they be positive, and the ob­
jective function to be minimized is the least squares 
error parameter X 2 which is used to fit the rational 
approximant to oscillatory response data. 

In the repeated pole formulation, the choice of poles 
will effect the quality of fit in more than one approx­
imation. This is a multiobjective optimization prob­
lem, and involves the selection of a 'best' design from 
a set of Pareto optimal solutions. This is carried out 
by creating a single objective function of the form 

No/ 

F(xdv) = ~ Ak/k(Xdv), (18) 
k=l 

using a set of Not objective functions fk (xdv ), with 
Ak taken to be scalar coefficients chosen such that 

No/ 

1->k = 1, (19) 
k=l 

Using the lift expressions as an example, the approx­
imants in Eqs. (12) and (13) will have the associated 
error parameters Xi(,, and Xi(,,. Using Eqs. (18) and 
(19), these can be combined to yield a single objective 
function of the form 

where 0 :<; >. :<; 1. The optimization problem given in 
Eqs. (15)-(17) can then be restated as: 

min(>.xi(,, + (1- .\)Xi(, ), (21) 
' ' 

subject to 

"/i ?. 0, (22) 

Using thls formulation, a standard numerical opti­
mization code is used to generate t 'ptimal pole values 
for a given error weighting param<'ter .A. 

State Space Model 

To transform the rational apprmJmant given in Eq. 
(14) to state space form, first define 

(23) 

where j = 1. .. NP. Substituting .Eq. (23) into Eq. 
(14), and taking the inverse Laplace transform yields 
the lift expression 

Cz(s) = U~s) ( Ao Wo(s) + A1 :. W0 (s) 

d N, ) 
+ B0W1 (s) + B, ds W1 (s) + ~Xj(s) , (24) 

where the quantities Xj represent aerodynamic states. 
Taking the inverse Laplace transform of Eq. (23) 
yields the following set of first order differential equa­
tions governing the aerodynamic st .:ttes: 
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d 
ds x;(s) + 'Y;x;(s) 

d d = Aj+l ds Wo(s) + Bj-ll ds Wr(s), (25) 

where j = 1 ... Np. Expressed in terms of timet, Eqs. 
(24) and (25) become 

1 ( b . 
Cz(t) = U(t) AoWo(t) +A, U(t) W0 (t) 

b N, ) 
+ BoW,(t) + B, U(t) W,(t) + ~Xj(t) , (26) 

U~t) x;(t) + 'Y;x;(t) = A;+1 U~t) Wo(t) 

b 
+B;+rU(t) W,(t), j = l. .. Nw (27) 



The unsteady aerodynamic lift is given by Eq. (26), 
and is a function of the Np aerodynamic states x;. 
Each state is governed by a first order differential 
equation, given in Eq. (27), which is driven by the 
generalized airfoil motions. 

Complete Sectional Aerodynamic Model 

The complete RFA aerodynamic model for the air­
foil and flap is composed of a set of constituent RFA 
aerodynamic components, which can be represented 
by 

C1 C1A (Wo, WI) + C1F (Do, DI), (28) 

Cm = CmA(Wo,WI)+CmF(Do,Dl), (29) 

ch ch (Wo, W1, Do, DI), (30) 

where each term on the right side of Eqs. (28)-(30) 
represents au independent RF A component with an 
associated set of aerodynamic states and aerodynamic 
state equations. The subscripts A and F desiguate 
contributions due to airfoil motions and flap motions, 
which are modeled independently in Eqs. (28) and 
(29). This representation is convenient because it al­
lows the model to be implemented at any point along 
a rotor blade, omitting the components associated 
with the flap at stations where they are not needed. 

The component of the aerodynamic model provid­
ing the lift response to airfoil motions, represented by 
the term C1A in Eq. (28), is given in Eqs. (26) and 
(27). The remaining components of the model for 
lift and moment are obtained in an identical manner. 
Since these components have a form similar to that 
given in Eqs. (26) and (27), they will not be repeated 
here. 

As indicated in Eq. (30), the contributions to hinge 
moment due to airfoil and :flap motions are not mod­
eled independently. In this case, a set of four rational 
approximants are used, each associated with a par­
ticular generalized airfoil or flap motion. These share 
a common set of N n P poles, given by 

Nnp A ~ 

C ( -) A +A _ "' H(n+l)P 
hw0 p = HO HlP+ LJ (- + ) > 

n~l p 'YHn (31) 

Nnp B -
C ( -) B B _ "' H(n+!)P 

hw, P = HO + HlP+ LJ (- + ) , 
n~l p 'YHn (32) 

Nnp E -
C ( -) E E _ "' H(n+!)P 

hn0 P = uO + HlP + LJ ( _ + ) , 
n~l p 'YHn (33) 

NHP F -
chn, (ii) = F HO + F HlP+ L ( -H~n+l)~. 

n~l p 'Yun (34) 

The corresponding time-domain aerodynamic model 

for the hinge moment is given by 

(35) 

with the associated state equations 

b . b . 
Uzn(t) + 'YHnzn(t) = Au(n+lliJ Wo(t) 

b . b . 
+ Bu(n+l) U W1(t) + EH(n+l) UDo(t) 

b . 
+FH(n+l)iJDl(t), n=l. .. NHP· (36) 

In the present analysis, the drag force is given by the 
static profile drag Gao of the airfoil section. 

Structural Model 

The hingeless rotor blade is modeled as a slender 
beam composed of a linearly elastic, homogeneous 
material, cantilevered at the hub as shown in Fig­
ure 3. The blade model is taken directly from Ref. 4 
and describes the fully coupled flap-lag-torsional dy­
namics of an isotropic blade. Small strains aud fi­
nite rotations (moderate deflections) are assumed, 
and the Bernoulli-Euler hypothesis is assumed to ap­
ply. In addition, strains within the cross-section are 
neglected. The equations of motion for the elastic 
blade consist of a set of nonlinear partial differential 
equations of motion, formulated in the undeformed 
system, with the distributed loads left in general sym­
bolic form. 

The control surfaces are assumed to be an integral 
part of the blade, attached at a number of spanwise 
locations using hinges that are rigid in all directions 
except about the hinge axis, constraining the control 
surface cross-section to pure rotation in the plane of 
the blade cross-section (see Fig. 3). The control sur­
face does not provide a structural contribution to the 
blade, aud influences the behavior of the blade only 
through its contribution to the blade spanwise aero­
dynamic and inertial loading. 
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In this study, the flap deflection is assumed to be a 
controlled quantity, and thus does not contribute an 
additional degree of freedom to the aeroelastic sys­
tem. 

Aeroelastic Formulation 

Two approaches co=only used to formulate the 
aeroelastic equations of motion are the implicit ap­
proach and the explicit approach [20]. In the im-



plicit approach, the equations of motion do not ap­
pear as detailed expressions of the blade degrees of 
freedom, and are instead generated numerically, in 
matrix form, using a computer. The present analysis 
is based on an explicit approach, with the inertial, 
structural, damping, and aerodynamic terms appear­
ing as explicit functions of the blade degrees of free­
dom and aerodynamic states. This approach allows 
term by term comparison of the equations of motion 
with models from other sources, adds physical insight, 
and is computationally efficient. 

Explicit expressions for the distributed inertial, 
gravitational, and damping loads were derived in 
Ref. 4 using MACSYMA [26], and have been used 
in the present analysis. To keep these expressions of 
manageable size, an ordering scheme [21,22] was used 
based on a dimensionless parameter E (0.1 < E < 0.2), 
which represents typical blade slopes due to elastic 
deformation. The ordering scheme implies that 

(37) 

so that terms of order 0( <2 ) are neglected in compar­
ison with unity. 

Distributed Airloads 

The formulation of distributed airloads is closely 
coupled with the method of solution. As part of the 
solution process, the aerodynamic loads must be eval­
uated at a number of specific span wise locations along 
the blade span. The aerodynamic loads at these span­
wise locations require a unique RFA aerodynamic 
model for each station. 

One feature that complicates the RFA aerodynamic 
model when used in rotary wing aeroelastic applica­
tions is that the oscillatory response data must be 
generated for a specific value of Mach number. How­
ever, the velocity distribution along the span of a ro­
tor blade changes as a function of azimuth due to 
forward flight and also due to blade dynamics in the 
chordwise direction. 

Two corrections to the RFA aerodynamic model 
were developed to take into account the spanwise 
and azimuthal variation of the Mach number. The 
first correction was implemented as follows: The ro~ 
tor disk was divided into a number of azimuthal seg­
ments. Neglecting the contribution of the blade flex­
ibility, the velocity in the plane of the disk depends 
only on the azimuth and the radial location along the 
blade span. Using this velocity allows one to define a 
constant Mach number within the azimuthal segment 
by taking the average of the Mach ntunbers at the re­
gion boundaries. Using this Mach number, an RFA 
aerodynamic model is constructed for the azimuthal 
segment. This is repeated for a desired number of 
azimuthal segments, producing a varying RFA aero­
dynamic model around the rotor disk. The transition 
of the blade from one segment to another requires 
only a change in the coefficients of the aerodynamic 

model (i.e. the coefficients A; and B; in Eqs. (26) 
and (27)). However, this introduces an undesirable 
discontinuity in the aerodynamic loads. 

This problem is remedied by recognizing that, in 
the limit, as the number of azimuthal segments be­
comes infinite, the coefficients of the RFA aerody­
namic model will change continuously as functions of 
1/J. The Mach number is also an explicit function of 
1jJ when blade dynamics are neglected. Using coeffi­
cients of the RFA model generated at various values 
of Mach number, the dependence of each coefficient 
on M can be represented by an approximate function 
generated using a least squares fit. Using this ap­
proach, a new correction is implemented as follows: 
The velocity in the plane of the disk is evaluated for a 
given blade station over one revolution to determine 
the upper and lower bounds on the Mach number. 
A set of Mach numbers are then selected that span 
this Mach number range in increments of 0.02. At 
each of these Mach numbers, an RFA aerodynamic 
model is generated. The coefficients of each aero­
dynamic model are thus known at intervals of Mach 
number, and constitute data points that can be used 
to develop approximate expressions for each coeffi­
cient, as a function of Mach number, using a least 
squares fit. These approximate coefficient functions 
are then used to replace the original coefficients in the 
sectional aerodynamic model. Poles are taken to be 
constant at each blade station, and are optimized at 
the beginning of the process to produce a minimum 
error approximant at the mean Mach number. 

Method of Solution 

The solution of the rotary-wing aeroelastic re­
sponse problem is carried out in two steps. First, 
spatial discretization based on Galerkin's method [21] 
is used to eliminate the spatial dependence, and sub­
sequently the combined structural and aerodynamic 
state equations are solved in the time domain. 

In this study, Galerkin's method is based on three 
flap, two lead-lag, and two torsional free vibration 
modes of a rotating beam. The free vibration modes 
were calculated using the first nine exact nonrotating 
modes of a uniform cantilevered beam. Integrations 
over the blade span associated with the application 
of Galer kin's method are carried out using Gaussian 
quadrature. This requires that the integrand be eval­
uated at a fixed number of stations along the span 
of the blade corresponding to Gaussian points which 
are determined by the order of Gaussian quadrature 
being used. The number and location of these sta­
tions must be carefully combined with the implemen­
tation of the RF A aerodynamic model. At each sta­
tion, the sectional air loads are provided by a specific 
RFA aerodynamic approximation, each contributing 
a number of aerodynamic state equations to the final 
model. These state equations are fully coupled with 

60.6 



the blade equations of motion through the blade de­
grees of freedom and aerodynamic states. 

The complete aeroelastic model for the blade and 
actively controlled flap consists of three sets of equa­
tions. The first two sets consist of nonlinear differ­
ential equations that describe the structural degrees 
of freedom and aerodynamic states. The equations 
of motion for the elastic blade are represented by the 
expression 

fb( qb,c'J.b, <i.b, x., q,; ,p) = o, (38) 

where qb represents the vector of blade degrees of 
freedom, Xa represents the vector of aerodynamic 
states, and qt represents the trim vector, given by 

q, = {A,a:R,Oo,Ol"O"}T, (39) 

where>. is the inflow ratio, O:R is the rotor pitch angle, 
and 00 , 01" and 01, are the collective and cyclic pitch 
inputs. Similarly, the complete set of aerodynamic 
state equations are represented by the expression 

fa(qb,qb,qb,X8 ,X8 ,qt;1/J) = 0, (40) 

A third set of equations are used to represent a 
propulsive trim condition in which force equilibrium 
is enforced in the vertical plane, and pitch and roll 
moments are set equal to zero. These equations were 
derived in Ref. 4 and include an inflow equation. 
They can be symbolically represented by the expres­
sion 

f,(qb,qb,qb,Xa,qt;1/J) = 0. (41) 

To obtain the coupled trim/response solution, only 
the steady state response of the system is considered. 
In this case, the trim condition can be represented by 
the implicit nonlinear equations 

(42) 

Evaluation of Eqs. (42) requires the steady state 
hub loads that correspond to the trim parameters q,. 
These are obtained by integrating Eqs. (38) and ( 40) 
numerically over time, until the response solution has 
converged to the steady state. 

The trim solution q, is currently obtained using a 
simple discrete time controller. This control strategy 
is based on the minimization of a performance index 
that is a quadratic function of the trim residuals R 1, 

where 

( 43) 

at the ith time step. An optimal controller is ob­
tained using a linear, quasistatic representation of the 
response to control qt, given by 

R; = R;_, + [To](q,,- q,,_,), (44) 

where [To) is a matrix of control sensitivities given by 

(45) 

evaluated about the set of initial trim parameters q,,. 

Results and Discussion 

The sectional RFA aerodynamic model for the air­
foil/flap combination uses twelve separate rational 
approximations to represent the transfer functions re­
lating lift, moment, and hinge moment to each of 
four generalized airfoil and flap motions. The process 
of fitting these approximants to oscillatory response 
data involves five separate pole optimizations, one for 
each aerodynamic component shown in Eqs. (28)­
(30). Figures 5 through 7 present typical examples of 
optimized rational approximations that are used in 
the sectional aerodynamic model for the airfoil/flap 
combination. The figures show the lift, moment, and 
hinge moment response to oscillatory Do motion, ap­
proximated using one, two, and three lag term ratio­
nal approximants. The oscillatory response data used 
to derive these approximants was generated using the 
doublet-lattice approach at M = 0. 7 and a reduced 
frequency range 0.0-0.4. 

Figure 5 shows that the accuracy of the lift re­
sponse to Do motion improves with each additional 
lag term. For this case, the approximation based on 
two lag terms seems to be more accurate than the 
single lag approximation. However, the difference be­
tween the two and three lag approximations is small, 
and both exhibit good agreement with the doublet­
lattice data points. This suggests that, in this case, 
the addition of a third lag term may not be cost ef­
fective. 

The moment response to Do motion, shown in 
Fig. 6, exhibits similar characteristics to those evi­
dent in the lift plot. In this case, the approximation 
based on two lag terms is again superior to the single 
lag approximation, and the responses corresponding 
to the two and three lag term approximations are 
almost identical, displaying close agreement to the 
doublet-lattice data points. Again, the improvement 
in accuracy due to the addition of a third lag term 
does not appear to justify the additional aerodynamic 
state. 

For the hinge moment response to Do motion, 
shown in Fig. 7, the approximations based on one and 
two lag terms are very similar and the best agreement 
with doublet-lattice data is obtained when using three 
lag terms. 

The approximations generated for the remaining 
generalized airfoil and flap motions are not substan­
tially different from those presented in Figs. 5-7. 
These results provide insight into the state variable 
requirements of the RFA aerodynamic model. For 
the case presented here, two lag terms appear to pro­
vide sufficient accuracy for each of the four lift and 
moment components given in Eqs. (28) and (29). As­
suming three lag terms for the hinge moment model, 
Eq. (30), a total of eleven states would be neces­
sary to completely model the compressible unsteady 
lift, moment, and hinge moment of a flapped airfoil 
section. However, actual state variable requirements 
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could be higher or lower, depending upon the applica­
tion. The differences in modeling accuracy are some­
what exaggerated by the scale used in the plots in 
Figs. 5 through 7, and a single lag term could proba­
bly be sufficient for many applications thereby reduc­
ing the number of aerodynamic states needed. Alter­
natively, it may be necessary to fit the approximants 
to oscillatory data taken over a wider range of re­
duced frequencies, particularly if high frequency flap 
motion is required. For such situations 1 the number 
of lag terms required for a certain level of accuracy 
could increase, requiring a larger number of aerody­
namic states for time domain modeling. 

Another aspect of the RFA aerodynamic model 
that needed to be validated was its behavior in an 
oscillating freestream. For this purpose, results from 
our model were compared with an exact incompress­
ible solution to the time varying freestream prob­
lem obtained by Isaacs [24], and later extended in 
Ref. 25 to account for plunge motion and pitch vari­
ation about an arbitrary axis. The manner in which 
this comparison was conducted is similar to that used 
in Ref. 10. Ouly unsteady lift is considered, and the 
freestream velocity was assumed to be represented by 

(46) 

The reduced frequency of oscillation is 0. 2, and Au = 
0.8 representing large amplitude freestream velocity 
variations. Unsteady lift results were generated for 
three types of pitch motion: a = ao (constant), 
a = sin,P, and a = cos,P, with lift normalized by 
the static value at constant angle of attack given by 
C1 0 = 2na0 • Results are shown in Figures 8 through 
10 for the incompressible case. Results were gener­
ated for the RFA aerodynamic model using approxi­
mations based on one and two lag terms, each fitted 
to oscillatory data taken over a reduced frequency 
range of 0.0-0.8. 

For the case of constant angle of attack, Fig. 8, ex­
cellent agreement between the response of the RFA 
aerodynamic model and the exact theory [24] is ev­
ident. There is no visible difference between the re­
sponses from the one and two lag term approxima­
tions. For angle of attack varying with sin,P, shown 
in Fig. 9, good agreement between the response of the 
RFA aerodynamic model and the exact theory [24] is 
again evident. In this case, the approximation based 
on two lag terms is slightly more accurate than that 
based on a single lag term. Similar results are pre­
sented in Fig. 10 for the case when angle of attack 
varies as cos 1jJ. 

Next, a few preliminary results are presented show­
ing the blade aeroelastic response behavior with the 
RFA aerodynamics incorporated in the rotor aeroe­
lastic analysis. Figures 11 and 12 show, respectively, 
the aerodynamic lift and moment distributions on an 
isolated blade, over one revolution, for a trimmed ro­
tor at an advance ratio of 0.4. A soft-in-plane blade 

configuration was used, given in Table 1. The quanti­
ties XFA 1 ZFA 1 Xpc, Zpc represent offsets of the he­
licopter aerodynamic center and center of gravity, as 
shown in Figure 4. All parameters have been nondi­
mensionalized using the unit quantities 

[length] 
[mass] 

[time] 

rotor radiun, 
mass of one blade, 

inverse of the rotor speed. 

where R = 4.91 m, Mb = 52 ~g, and [! = 425 
RPM, similar to a MBB-105 helicopter [28]. Lift and 
moment have been nondimensionalized by dividing 
by the quantities Mbfl 2 R and Mbf! 2 R 2

, respectively. 
The upper plot in both figures pre:;ents the response 
obtained using the new RFA aerodynamic model with 
two lag terms, and the lower plo·'; presents the re­
sponse obtained using the modified quasisteady in­
compressible Theodorsen aerodyne mics described in 
Ref. 4. The configuration of the RFA aerodynamic 
model is summarized in Table 2. For this compari~ 
son, the quasisteady Theodorsen results were found 
using the same blade response solution that was gen~ 
erated using the RFA aerodynamic model. It was 
assumed that by using the same blade motion, dif­
ferences in the the loading distributions would better 
reflect differences in the aerodynan tic models. 

Significant differences in the am,>litude and phas­
ing of the aerodynamic loads predicted by the two 
models is evident in both figures, J.•articularly in the 
outer region of the blade where compressibility ef­
fects are most pronounced. In Fig. 11, the largest 
differences in the predicted lift distributions occur on 
the advancing side, 0 < ¢ < n. In this region, the 
lift predicted by the RF A aerodynamic model at the 
end of the blade is approximately 50% greater than 
that predicted by the quasisteady Theodorsen model, 
with a smaller phase shift. A similar behavior can be 
seen in the moment distribution shown in Fig. 12. 
On the advancing side, the RFA aerodynamic model 
predicts moments that are approxinwtely three times 
greater at the tip of the blade tha:a those predicted 
using quasisteady aerodynamics. lu vibration reduc­
tion studies using the actively controlled trailing edge 
flap [4], the flap was usually centered at 75% of the 
blade span. Thus, the results shown in Figs. 11 and 
12 reaffirm the need for a compressible flow, unsteady 
aerodynamic model for analysis of the actively con­
trolled trailing edge flap. 

Concluding Remarks 
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Recent studies of the actively controlled trailing 
edge flap have revealed a need for improved aero~ 
dynamic models for the blade/flap combination. To 
address this need, a new two dimensional unsteady 
aerodynamic model for an airfoil/flap combination 
has been developed that includes the effects of com­
pressibility and time-varying oncoming flow velocity. 



The model is expressed in state space form, and re­
sults indicate that only a small number of states are 
required for aerodynamic modeling. Thus, the model 
is efficient, and suitable for vibration reduction stud­
ies using trailing edge flaps. 

The results show that in many cases, a good ap­
proximation for the time domain aerodynamics can 
be obtained using only a few aerodynamic states. 
Preliminary results for blade response reinforce the 
need for time domain compressible modeling when 
calculating the loads in the flap region. 
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Table 1: Soft-in-plane elastic blade configuration 

Rotor Data 
N, =4 
Cb = 0.05498 
Wp = 1.123, 3.41, 7.65 
WL = 0. 732,4.485 
WTl = 3.17 
I= 5.5 
Helicopter Data 
Cw = 0.005 
XFA = 0.0 
Xpc = 0.0 

Lb = 1.0 
Opt= 0 
Cdo = 0.01 

(T = 0.07 

/Cdf = O.OlAR 
ZFA = 0.25 
Zpc = 0.5 

Table 2: RFA aerodynamic model parameters 

Number of lag terms: 

Reduced Freq. Range: 
# of Blade Stations: 

2 Lag Terms, Lift 
2 Lag Terms, Mom. 
0.0-0.4 
10 

Total Aerodynamic States: 40 

u 

1!!!1!1!1 

Do: w 
D,: ------..,-,..-, 

Figure 1: Normal velocity distributions correspond­
ing to generalized airfoil and flap motions W0 , W1, 
Do, and D 1 . 
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Figure 2: Airfoil/flap combination undergoing pitch­
ing and plunging motions. 

,, 

Dr.formad 
Blastic bis -~~,.,------1----r- .. 

tTndaformGd 

113 
:<lastic Axis 

Figure 3: Fully elastic blade model incorporating a 
partial span trailing edge flap. 

Shaft Axis 

Figure 4: Schematic of a helicopter in level forward 
flight. 
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Figure 5: Rational function approximation of the Cz 
response to oscillatory Do motion at M = 0.7, over 
reduced frequency range k = 0.0-0.4, using 1, 2, and 
3 lag term approximants. 
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Figure 6: Rational function approximation of the Cm 
response to oscillatory Do motion at M = 0. 7, over 
reduced frequency range k = 0.0- 0.4, using 1, 2, and 
3 lag term approximants. 
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Figure 7: Rational function approximation of the Ch 
response to oscillatory D 0 motion at M = 0. 7) over 
reduced frequency range k = 0.0- 0.4, using 1, 2, and 
3 lag term approximants. 
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Figure 9: Cz response to freestream velocity variation, 
angle of attack varying with sin(,P), M = 0. 
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Figure 10: C1 response to freestream velocity varia­
tion, angle of attack varying with cos(,P), M = O. 
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Blade Lift Response, RFA Aero, ~=0.4 

Blade Lift Response, Quasisteady Theodorsen, ~=0.4 

3 4 
11 (rad) 5 0 

Figure 11: Blade lift distribution over one revolu­
tion, 11 = 0.4, using RFA aerodynamic model (up­
per plot) and quasisteady Theodorsen aerodynamics 
(lower plot). 

Blade Moment Response, RFA Aero, ~~:::0.4 

2 

Blade Moment Response, Quasisteady Theodorsen, ~""0.4 

Figure 12: Blade lift distribution over one revolu­
tion, 11 = 0.4, using RFA aerodynamic model (up­
per plot) and quasisteady Theodorsen aerodynamics 
(lower plot). 
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