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Abstract 
 
This work presents a study of the nonlinear flapping 
motion of helicopter rotor blades in hover considering 
gust effects. The nonlinear differential equation for the 
flapping motion is obtained and the computational 
simulations and bifurcation analysis show that above a 
critical collective pitch angle, large flapping 
oscillations can occur due to a jump phenomenon, 
particularly under high winds and with reduced 
rotational speeds. These large, possibly destructive, 
oscillations are not predicted by the linear model and 
may be related to the phenomenon of blade sailing, a 
common occurrence in naval operations. 
 
Keywords. helicopter, rotor, flapping, nonlinear, 
dynamics, oscillations, gust, naval operations. 

 
 

Nomenclature 
 

R - rotor radius, m 
w - vertical gust velocity, m/s 

mwV - mean wind velocity, m/s 
α - gust amplitude, m/s 
β  - flapping angle, rad 
γ  - Lock number 
λ  - wavelength, m 

1λ - nondimensional flapping frequency ratio 

iv - induced velocity, m/s 

φ  - inflow angle, rad 

0θ - collective pitch angle, rad 

Ω - rotor rotational speed, rad/s 

BBB rqp ,, - components of the blade angular velocity  
 
 

Introduction 
 
Helicopter response in gusty air has been poorly 
studied, despite its importance for several applications, 
particularly in naval operations. Large flapping 
oscillations in helicopter rotors can occur at low 
rotational speeds in high winds, a phenomenon called 
blade sailing (Refs. 1,2). Tail-boom strikes have 
happened during the startup or shutdown of the rotor 
system, occasionally yielding severe damage (Refs. 
3,4,5). For some naval helicopters, like the H-46 Sea  
 
 

 
 
Knight, a relatively small flapping angle is enough to 
result in blade strike and thus a linear analysis is 
suitable to study the phenomenon. However, despite 
the standard low collective and inflow inputs, the 
coupling with a high amplitude gust at low rotor speeds 
can amplify the nonlinear structural effects.  

This work investigates the resulting nonlinear 
flapping motion of rotor blades in hover considering 
gust effects. The aim is to compare the linear model 
commonly used for small flapping oscillations analysis 
(Refs. 6,7,8) to a more general nonlinear model for the 
rotor blades in hover that allows large flapping 
oscillations to occur due to gusty air and collective 
pitch command. 

The arising of large destructive oscillations in 
structures due to a gust input is not a new phenomenon. 
The famous case of the Tacoma Narrows Bridge, not 
still completely understood, illustrates that the linear 
approach, based on resonance, may not be the correct 
explanation for the observed large oscillations. The 
resonance phenomenon requires stringent conditions of 
damping and gust/structure frequencies to take place. A 
recent and more plausible hypothesis is based on the 
nonlinearity of the system, which obviously cannot be 
captured by linearizing the model, under the small 
angle assumption (Ref. 9). 
 
 

Previous Work 
 
Large flapping oscillations in helicopter rotors have 
been studied by some researchers (Refs. 1-5). The 
focus has been the blade sailing, which is an aeroelastic 
phenomenon affecting helicopter rotors when rotating 
at low speeds in high wind conditions. 

Particularly at low speeds, during startup or 
shutdown, gusts are of concern since the blade is free 
to flap and bend in the absence of strong centrifugal 
forces (Ref. 10). 

For very low rotor speeds, the aerodynamic forces 
are much less than at full rotor speed and the droop 
stops are of some value. Many rotors have spring-
loaded, centrifugally operated droop stops that prevent 
the blades from going below the rotor hub’s height 
until the rotor speed is near its operating value. 

Despite this there have been numerous events 
where the helicopter blades have actually impacted the 
helicopter fuselage, which is called “tunnel strikes”. 
Besides the airframe, the flight crew and any personnel 
working close to the aircraft can be affected. The U.S. 
Army requires that the rotor can be safely started and 
stopped in 45-knot winds, while U.S. Navy requires a 
60-knot capability (Ref. 10). 
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The blade sailing phenomenon is particularly 
applicable to naval helicopters or those operating off 
exposed sights such as oil rigs (Refs. 1,2). 
 
 

Naval Helicopters 
 
Naval helicopters, like LYNX, NH90 and EH101, are 
vertical flight vehicles that operate from the deck of 
ships like aircraft carriers, frigates and naval 
amphibious assault vessels. They often operate in bad 
weather, involving harsh and unstable conditions. 
Statistically, a helicopter can safely land on a frigate in 
the North Sea only 10 percent of the time in winter 
(Refs. 3,4,5). 

High winds, the rotor downwash and the turbulent 
airflow over the ship’s superstructure generate an 
aerodynamic environment that increases the pilot’s 
workload and reduces the operational safety, 
particularly during helicopter approach, landing and 
takeoff. These severe conditions affect the control 
performance, handling qualities and structural limits of 
the helicopter, yielding the blade strikes. 

The occurrence of the large flapping oscillations 
may be related to resonance due to the matching 
between the angular frequency of the rotor and the 
shedding frequency of vortices from the sharp edges of 
the ship.  

However, when the rotor is prone to large flapping 
deflections, the nonlinear effects become relevant and 
resonance may not be the unique explanation for the 
large flapping motion observed in practice. Bifurcation, 
limit cycles and chaos must also be taken into account. 

Sensitive dependence on initial values and strong 
change of flapping behavior according to several 
varying parameters are conditions that must be 
evaluated through analytical and numerical tools. 

The nonlinear theory based on a topological 
approach is still poorly understood and used by 
engineers. Except possibly for limit cycle oscillations 
(Ref. 11), concepts like attractors, bifurcations and 
Lyapunov exponents are nearly absent of the 
aeronautical research, even about helicopter rotor 
dynamics, which is inherently nonlinear. 

The engineering analysis based on Computational 
Fluid Dynamics (CFD) and Wind Tunnel tests is very 
important, but the tools of the bifurcation and chaos 
theory can shed light on the complex dynamics of 
naval helicopters, driving and complementing the 
experimental work. The investigation and 
understanding of the nonlinear aeroelastic phenomena 
related to helicopter operations in a hostile wind 
environment can determine operational and design 
modifications for improved safety and autonomy. 

 
 

Integrated Model for Rotor Dynamics with 
Aerodynamic Gust Disturbance 

 
The aerodynamics and structural dynamics of the rotor, 
linked to an autopilot used to trim the system, may be 
represented by Fig. 1 (Refs. 12,13): 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Structure-Aerodynamics-Control Interactions 
 

 The airloads theory relates the velocity field about 
the section to the lift, drag and pitching moment. The 
induced flow theory links the rotor airload distribution 
to the inflow velocity distribution at the rotor disk. The 
structural model relates the rotor airloads to the blade 
motions. The autopilot provides the collective and 
cyclic control inputs required for the desired flight 
condition, specified by hub thrust, roll and pitch 
moment coefficients. 

The pilot must keep a trimmed flight condition in 
an aeroelastic context and, thus, an aeromechanical 
control problem must be resolved (Ref. 12). 

 Aiming to consider a possible aerodynamic 
disturbance, like a vertical gust or turbulence, the 
integrated rotor model includes this external effect on 
the velocity distribution.  The resulting airloads (lift 
and pitching moment) can produce significant 
deviations from the specified hub thrust, roll and pitch 
moment coefficients, possibly preventing the autopilot 
from keeping the planned set-points and trajectories 
and, thus, increasing the pilot workload. 
 

 
Nonlinear Flapping Model with Gust 

Effects 
 
The flapping degree of freedom of helicopter rotors 
was introduced to isolate the problem created by the 
advancing and retreating sides, associated to the 
dissymmetry of lift in forward flight (Ref. 7). 

The flapping, lagging and torsional degrees of 
freedom of the flexible rotor interact nonlinearly and a 
lot of work has been dedicated to analyze these 
couplings (Ref. 11). 

According to the integrated model in Fig. 1, the 
aerodynamic loads are dependent on the structure 
deformation (Ref. 14). However, the structure is also 
dependent on the aerodynamic environment and gusty 
air can produce large deflections, amplifying the 
nonlinear effects. 

In order to study the flapping behavior in gusty air 
and analyze the nonlinear effects, the rotor is assumed 
to be fully articulated, operating in a hovering state 
with no translational velocity. The rotor blade is 
assumed to be rigid and the nonlinear flapping model is 
derived using the blade element theory (Ref. 8). 

Inflow (Wake) Theory

Airloads Theory 

Structural Dynamics

Autopilot

Gust
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The flapping model includes a simplified 
sinusoidal vertical gust and collective pitch inputs with 
constant inflow, neglecting the couplings with the other 
degrees of freedom. 

Initially it is important to identify the sources of 
the flapping nonlinearities and the conditions under 
which these nonlinearities are significant. 

In order to accomplish this, the equation of motion 
of the rotor blade about the flapping axis must be 
obtained. Using the Newtonian approach and Euler’s 
equations based on a blade-body axis system and 
considering the blade as a very slender rod, the angular 
acceleration of the blade about the flapping axis y is 
given by (Ref. 8): 
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where 
 

 

β
β

β

cos
/

sin

Ω=
−=
Ω=

B

B

B

r
dtdq

p

                                                   (2) 

Therefore the angular acceleration of the blade 
about the y axis is: 
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The Equation (3) determines the flapping 
nonlinearity, which is significant only for large angles. 
However, this condition is typical for blade sailing 
phenomenon and thus the linear approximation is not 
applicable. 

The inflow angle for a radial blade element located 
at distance r from the rotor hub obtained in Ref. 8, 
made up of the effect of induced velocity (downwash) 
and the induced angle due to flapping velocity, can be 
modified by including gust effects, as follows:  
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where φ  is the new inflow angle, assumed to be 
relatively small. 

Therefore, the nonlinear differential equation for 
the flapping motion in hover with gust effects is: 
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The gust effects are modeled by a simplified 
vertical sinusoidal wave actuating uniformly over the 
rotor blades (Ref. 15): 

 





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

= tVw mwλ
πα 2sin                (6)

      
This gust model is far from the complex air wake 

patterns that exist in a real environment, particularly 
over ships (Ref. 16), but it allows a preliminary study 
of the fluid-structure-pilot nonlinear interactions in 
dangerous situations. 

The term ββλ cossin22
1 Ω  of the Equation (5) 

represents the nonlinearity of the flapping motion and 
it is usually approximated by the term βλ 22

1 Ω  for 
small amplitude oscillations (Refs. 6,7,8). While this 
approximation seems reasonable for stability analysis 
purposes around an equilibrium position, the gust 
response may require a nonlinear analysis considering 
the possibility of the arising of large oscillations. 
 
 

Simulation of the Nonlinear Flapping 
Equation 

 
A common approach for rotor stability analysis is to 
find the equilibrium points using the complete 
nonlinear equations and then linearize the equations 
around these points. However, though commonly 
assumed, this static nonlinear approach may not be 
adequate for response problems, for, in fact, the 
modeling requires the use of non-homogeneous 
differential equations with forcing terms that interact in 
a complex way. 

Therefore, the aeroelastic investigation developed 
in the present work uses the fully nonlinear model 
describing the dynamic flapping behavior and is based 
on the Runge–Kutta simulation of the Equation (5). 
Fig. 2 shows the differences between the solutions 
predicted by the nonlinear model and the linear one, for 
the following set of parameters and inputs: 
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Figure 2. Nonlinear and linear gust / collective pitch 
response. 
 

The low rotational speed used in the simulation 
represents a condition of startup or shutdown of the 
rotor system, when the centrifugal force is small. This 
condition is also associated with a low stiffness of the 
rotor blades. The simulation considered a high 
amplitude sinusoidal gust input, thus generating a large 
aerodynamic force. The combination of low stiffness, 
large aerodynamic force and nonlinear effects gave rise 
to the excessive flapping of the rotor blades shown in 
Fig. 2. Possibly this nonlinear phenomenon is present 
in some blade sailing occurrences. 

A linear model can be used to study this 
phenomenon if relatively small flapping angles are 
considered. However, for large angles the nonlinearity 
becomes important and a new class of phenomena can 
occur, including bifurcations and, possibly, chaos. 
 
 

Bifurcation Analysis 
 

Approximating the term ββλ cossin22
1 Ω  in 

Equation (5) by )3/2( 322
1 ββλ −Ω , valid for the 

considered range of the flapping angles (0 to 1 rad), a 
nonlinear Duffing-type model is obtained, as follows: 
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Equation (7) can be written in the general form: 
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A first approximate solution is given by: 
 

)sin()( 10 σωβ ++= tCCt                           (9) 

 
Substituting (9) in (8) and using the method of 

harmonic balance (Refs. 17,18), the result is a system 
of algebraic equations involving σ,, 10 CC : 
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The flapping response given by (9) and (10) 

exhibits the nonlinear behavior called jump 
phenomenon, related to a cycle bifurcation (Ref. 19). 
This occurrence is due to the multi-value solutions of  

1C  for a particular 0B . Two limit cycles with different 
stability properties coexist for some values of the 
control parameter (collective pitch command theta0). 

Fig. 3 shows the jump phenomenon related to the 
Duffing-type Equation (7). 
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Figure 3. Bifurcation diagram for beta (flapping 
amplitude) varying according to the control parameter 
theta0 (collective pitch command). 

 
 

Discussion of the Analysis Results 
 
The large damping, approximately equal to γ/16 (γ 
range is, typically, from 5 to 15), prevents large 
flapping oscillations from occurring in normal 
conditions, which is a highly desirable property. 

However, the computational simulations and the 
bifurcation analysis show that a combination of low 
rotational speeds, low gust frequencies and large gust 
amplitudes can give rise to large, possibly destructive, 
flapping oscillations if the collective pitch is 
commanded above a critical angle. This jump 
phenomenon is inherent to nonlinear systems and is not 
predicted by the linear model. Fig. 2 shows the large 
difference between the flapping amplitudes predicted 
by the two models. 

The origin of the discrepancies between the two 
models is that the principle of superposition does not 
apply for the nonlinear flapping and, thus, the gust and 
collective pitch input contributions are not additive, 
yielding the large oscillations.  

14-4



Therefore the reduction of excessive tip deflections 
by increasing the blade collective pitch setting as 
suggested in Refs. 3-5 should be carefully analyzed, 
taking into account the possible onset of the jump 
phenomenon. 

The analysis of the Equation (5) reveals that a 
helicopter rotor, as a nonlinear dynamic system, may 
be extremely sensitive to a gust input, despite the large 
flapping damping. Probably a careful nonlinear 
analysis validated by experimental results will be 
particularly important for naval operations, where high 
winds are common. 

Future work includes a nonlinear analysis of the 
coupling of the flapping motion with the other degrees 
of freedom, particularly the torsional motion, including 
gust effects.  Eventually, this aeroelastic coupling may 
constitute itself as the basis for a control method to 
reduce rotor oscillations. 
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