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Abstract

The objective of this study is to simulate and
model 3D Dynamic Stall. Computational fluid
dynamics is the main tool and after careful vali-
dation, results for the flow field and the surface
pressure distribution were used to obtain a qual-
itative understanding of the complex flow during
dynamic stall. The variety of flow configurations
and the interactions between the tip and dynamic
stall vortices result in a complex surface loading
which was modelled using neural networks. In
this work the neural networks were trained using
experimental and CFD-generated Cp distributions
over the suction side of a ramping wing for a
number of reduced pitch rates. Subsequently,
the neural network was switched to a predictive
mode and produced the temporal and spatial Cp
distibutions, for conditions within and outside its
training envelope. The obtained results were very
encouraging. The training stage was found to be
an order of magnitude cheaper than each of the
corresponding CFD computations. The predictive
stage was found to be even faster thus establishing
neural networks as suitable for modelling complex
unsteady aerodynamic phenomena.

Nomenclature

Latin

c Chord length of the airfoil
CP Pressure coeff., CP = 1

2ρU2
∞

(P −P0)

k Reduced frequency of oscillation,
k = ωc

U∞

M Mach number
Re Reynolds number, Re = ρU∞c/µ
t Time
x Chord-wise coordinate axis (CFD)
y Normal coordinate axis (CFD)
z Span-wise coordinate axis (CFD)
U Local Axial Velocity
U∞ Free-stream axial velocity

Greek

α Oscillatory incidence
α0 Mean incidence for oscillatory cases
α1 Amplitude of oscillation
α+ Reduced ramp rate, α+ = dα

dt
c

2U∞

β Yaw angle
ρ Density
ρ∞ Density at free-stream

Acronyms

AR Aspect Ratio
CFD Computational Fluid Dynamics
DS Dynamic Stall
DSV Dynamic Stall Vortex
FFBP Feed-Forward Back-Propagation
NN Neural Network
RNN Recursive Neural Network
TEV Trailing Edge Vortex
TV Tip Vortex

1 Introduction

Dynamic Stall (DS) is important to rotorcraft, wind
turbines as well as highly maneuverable aircraft.
The complexity of this highly non-linear, unsteady,
three-dimensional (3-D) flow yields aerodynamic
loads that are hard to characterise and predict. Ex-
perimental and computational work has established
that a predominant feature of DS is the presence of
large vortical structures on the suction side of the
lifting surface, which distort the pressure distribu-
tion and produce transient forces that are funda-
mentally different from their static counterparts [1].
A review up to 1996 of all CFD efforts related to DS
has been provided by Ekaterinaris and Platzer [2, 3].
Several other papers have appeared in the literature
(see reference [4] amongst others). In addition, the
recent paper by Barakos and Drikakis [5] provides
an update on CFD prediciton of DS. In contrast to
the numerical studies of two-dimensional (2-D) DS,
3-D works are rare. Newsome [6] focused on the
laminar flow regime and attempted to simulate the
experiments of Schreck and Helin [7]. Newsome’s
work was the first 3-D investigation to predict the 3-
D Dynamic Stall Vortex (DSV). The work by Mor-
gan and Visbal [8] considered the oscillatory motion
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of a square wing at laminar flow conditions with end
plates at both tips. The objective was to approxi-
mate the conditions inside a wind tunnel with the
model spanning the test section, and focussed on
the development of vorticity near the wing surface.
The work of Ekaterinaris [2] dealt to a great extend
with 2-D configurations and the 3-D problem was
also attempted. The work by Spentzos et al.[9], is
the most recent work on 3-D DS and to our knowl-
edge, the only CFD investigation, to date, present-
ing detailed comparisons with experiments.

Overall, CFD studies of 3-D DS produce results of
varied levels of accuracy depending on the employed
grids, solvers, turbulence and transition models and
computations can be expensive in terms of comput-
ing time. A variety of alternative approaches have
also been undertaken, aiming to produce reduced
models that are efficient and capable to characterise
the flowfield of DS. Efforts along these lines in-
clude the ONERA model [10], the Leishman-Bedoes
model [11] as well as a models based on Lagrangian
functions devised by Veppa [12].

Past experience has shown [13, 14] that Neural
Networks (NN) can recreate histories of unsteady
aerodynamic loads on the suction side of pitching
aerofoils, following appropriate training. Faller et

al.[13, 14], used sets of experimental data to train a
Recursive NN (RNN) into predicting the Cp read-
ings along three spanwise positions on the upper
surface of their wing. He concluded that RNNs
are suitable for time-dependent problems. Faller et

al.[13, 14], trained their network using experimen-
tal data for a total of 45 Cp transducers distributed
along three spanwise positions on the upper surface
of a ramping wing. They had measured data for a
total of 8 different pitch rates, 5 of which were used
for training and the rest for validation. Their NN
included 47 input layer neurons, 45 neurons on the
output layer, and two hidden layers with 32 neurons
each. Apart from the 45 Cp predictions that where
fed back to the input layer, the angle of attack α
as well as the angular velocity dα/dt where used to
teach the RNN.

In view of the above, the objectives of this work
are: a) To explore the qualitative characteristics of
DS in realistic rotor motions and b) to assess the
suitability of NN models in reproducing the evolu-
tionary characteristics of 3-D DS.

2 Numerical Method

2.1 CFD solver

The CFD solver used for this study is the PMB code
developed at the University of Glasgow [15]. The
code is capable of solving flow conditions from invis-
cid to laminar to fully turbulent using the Reynolds

Averaged Navier-Stokes (RANS) equations in three
dimensions. The use of the RANS form of the equa-
tions allows for fully turbulent flow conditions to
be calculated with appropriate modelling of turbu-
lence. The turbulence model used for this study has
been the standard k−ω turbulence model [16], how-
ever, many other turbulence models are available.
To solve the RANS equations, a multi-block grid is
generated around the required geometry, and the
equations are discritised using the cell-centered fi-
nite volume approach. Convective fluxes are discre-
tised using Osher’s upwind scheme because of its ro-
bustness, accuracy and stability properties. Third
order accuracy can be achieved using a MUSCL
interpolation technique and viscous fluxes are dis-
cretised using central differences. Boundary condi-
tions are set using sets of halo cells. The solution
is marched implicitly in time using a second-order
scheme and the final system of algebraic equations
is solved using a Krylov sub-space method.

2.2 Neural Network Model

Two different types of NNs were developed and as-
sessed, both based on a standard feed-forward back-
propagation (FFBP) model: (a) a standard FFBP
NN and (b) a FFBP NN with feedback (Recursive
NN). The above are based on the assumption that
the Cp distribution on the suction side of a mov-
ing wing, can be approximated by the continuous
mapping: Cp = Cp(t, α, α+, x, y). The theoretical
justification for the suitability of a NN to approx-
imate such a mapping, comes from the existence
theorem put forward by Kolmogorov [17]. Various
NN topologies have been investigated having 1 to 4
layers of neurons and 10 to 100 neurons per layer.
The choice of the number of hidden layers as well as
the number of neurons on each hidden layer is not
straight forward and depends on the complexity of
the problem at hand and the number of patterns
used for training. A pattern is a combination of a
set of input parameters together with their corre-
sponding target value. It seems that the effect of
increasing the number of layers is to make a NN
’smarter’ and the effect of increasing the number of
neurons per layer, makes a NN more accurate. Fig-
ure 1(a) shows the topology of the FFBP NN model.
Each neuron is connected to all the neurons of the
previous layer and to all the neurons of the next
layer. All neurons are exactly the same, the only
distinguishing characteristics between them being
the number of inputs and outputs they have. Each
neuron can be seen as a ’black box’ which internally
performs two basic operations: a) a combination
which computes a linear summation over its input
signals and b) a scaling through an activation func-
tion which bounds the result of the summation to
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a required interval. In the present case, the activa-
tion function was chosen to be a sigmoid and the
signal at the output of the ith neuron on layer l is
given by:

outputil =
1.0

1.0 + exp(−
∑nl−1

j=1
outputjl−1

)
(1)

The range of values is the interval 0−1 and nl−1 is
the number of neurons on layer l − 1. In that man-
ner, the NN can be seen as a ’tree’ which ’propa-
gates forward’ the input signals to the output. Each
one of the branches of this tree as seen in figure
1(a), is essentialy a ’synaptic weight’ that defines
the connection magnitude of each neuron at a given
layer to each neuron at the layer ahead. Thus, if all
synaptic weights are known, a given combination of
input values will yield a single value at the output of
the NN. The process described so far is essentially
the NN’s predictive mode, were all synaptic weights
are assumed to be known, hence the resulting Cp is
a function of the input parameters. Based on this
description, it is evident that the predictive mode
is very cheap, as the process from input to output
involves a small number of operations.

During training, a set of input parameters for
which the resulting Cp values are known, are fed
into the NN. An initial random distribution of
synaptic weights is assumed, based on which, the
predicted Cp values are calculated. Then, the pre-
dicted Cp values are compared against the known
’true’ Cp values and an error based on this descrep-
ancy is produced. The next stage is to iteratively
adjust the synaptic weights in order to minimise the
network’s error in a back-propagation fashion. The
method used here is by ’gradient descent’ on the
error function, during which all synaptic weights
are re-approximated, based on how much the error
changes by a small change on each weight. This is
done by calculating the partial derivatives of the to-
tal error with respect to the individual weights and
then shifting the weights by a small amount in the
direction that reduces the error. This process is re-
peated for all patterns many times, until the result-
ing total error becomes less that 1% of the total ini-
tial error based on the initial random weights. The
total error is defined as the summation of the abso-
lute value of the errors over each pattern. In each
iteration (epoch), all patterns are swept through at
random order as this accelerates the learning pro-
cess and prevents the network from being biased
towards the last patterns presented and a particu-
lar sequence of pattern presentation.

2.2.1 NN with Feedback

The second NN model used is a variation of the
model described in the previous paragraph. A feed-
back loop feeds the output vector at point t in time
into the input layer in view of predicting the out-
put vector at time t + dt. Thus time is no longer
fed explicitly to the NN via an input node, but it is
’implied’ during training since the training patterns
are presented in their true time sequence. Another
significant difference, is that the values of Cp used
for training are presented in a flat manner, i.e. out-
put neuron 1 corresponds to the Cp transducer at
position x1, y1 etc, therefore the information of the
spatial relations between the transducers is lost and
the network can no longer interpolate or extrapolate
in physical space. The RNN model used here can
be seen in Figure 1(b)were the values from 15 dif-
ferent transducers where used for training, together
with their corresponding α and α+. The different
training datasets were presented in a random fash-
ion as explained in the previous paragraph. The
main differences between the straight and recursive
implementations, are (a): the target file is now built
from the Cp histories used for training such as that
target[Cp

i(t)] = Cp
i(t + dt) and (b) the layer of in-

put values at step p is set to be the layer of output
values at step p−1 which accounts for the feedback
requirement.

The advantage of this method lies in applications
where it is convenient to exclude time from the
training (and predictive) procedures. The disad-
vantage is that the spatial association is lost.

3 CFD Computations

In this work, the three-dimensional DS was com-
puted in pitch-yaw and pitch rotation configura-
tions. The wings used where based on the NACA
0012 airfoil with rounded tips and aspect ratios of
10 and 5.

The formation and evolution of the DSV under
zero yaw and for a variety of flow conditions has
been investigated previously in [9]. Figures 2(a-f)
show the DSV cores for three different reduced rates
and two different yaw angles, corresponding to con-
ditions 1,3,4,6,8 and 10 of Table 2. The left col-
umn of Figure 2 contains the un-yawed conditions,
whereas, in the right column, there is an angle of
15o between the chord and the freestream. Exam-
ination of Figures 2 also shows that the main part
of the DSV remains parallel to the wing span irre-
spectively of the magnitude of the yaw angle. As
the DSV is primarily energised by the motion of the
wing, it tends to follow the particular geometry of
the suction side. When the yaw angle is non zero,
the parallel to the wing component of the freestream
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blows the DSV to the far side of the wing. As a con-
sequence, the DSV-wing junction area approaches
the right hand side tip of the wing (Figures 2(b,d
and f)) while the distance of the DSV-wing junction
at the left hand side of the wing increases.

It was shown in the previous paragraph, that the
effect of yaw (for moderate yaw angles and pitch-
ing frequencies) in DS is the deformation of the
spanwise formation of the DSV; the portion of the
DSV close to the near side of the wing departs from
the tip, while the portion of the DSV close to the
far side of the wing approaches the tip. However,
for rotor blades, the yaw angle is a function of the
azimuth, therefore the quantity dβ/dt is non-zero.
Figure 3(a) shows the DSV and Tip Vorted (TV)
cores for the case 15 of table 2. It is evident that the
Ω-shaped part of the DSV is now reduced to a part
of the wing closer to the outboard tip. The shape
the DSV attains soon after its formation is due to
the presence of the tips. The TVs introduce suc-
tion in their proximity due to the direction of the
induced velocity around the tip of the wing. This
means that the DSV is supressed in the near the
tip region while freely energised over the rest of the
wing’s span. This assymetric growth is forcing the
DSV to assume a distorted Ω shape. Figure 3(b)
shows streamlines on a spanwise plane located at
0.5c superimposed on Figure 3(a). One can observe
that despite the inboard tip (right tip in figure) ex-
periencing a lower inflow velocity (due to rotation)
than the outboard tip, the TV induced velocity field
stretches further away from the tip than for the case
of the outboard tip, supressing the growth of the
DSV until almost the half-span of the wing. Con-
sequently, the part of the DSV which remains unaf-
fected from the influence of the TVs is located closer
to the outboard tip. Another interesting observa-
tion is that the DSV is now closer to the TVs [9].
This is the only case in 3D DS where the authors
have encountered this vortical topology in the case
of a high Re flow.

4 Neural Network Validation

The first step in the present analysis, was to use
experimental data provided by Coton & Galbraith
[18], in order to check the suitability of the approach
described in the previous paragraphs. The measure-
ments of a total of 8 ramping cases were used, the
details of which are summarised in table 1. Out of
these eight data sets, five were used for training and
the remaining three were used for testing the pre-
dictions of the NN. Two of these cases were outside
the training regime (cases 1 and 8 of table 1) and
the third within (case 5 of table 1). This way both
the interpolating and extrapolating qualities of the
NN model are assessed.

Each ramping case was discretised in time into
150 unsteady steps and for each unsteady step read-
ings from 90 transducers covering the suction side of
the wing were used. Therefore the total number of
training patterns was equal to 5×150×90 = 67, 500
and around 105 epochs were necessary to achieve
convergence. The total computational time during
training was just under 48 hours on a single pro-
cessor 2.5 GHz linux box, based on a convergence
criterion of the total error being 1% of the total
initial error. The variables used to train the NN
where time, α, α+ and the x and y coordinates
of the Cp transducers on the wing’s suction side.
The NN was thereafter trained to approximate the
functional: Cp = Cp(t, α, α+, x, y) After training,
the NN was switched into the predictive mode and
simulated the evolutionary characteristics of a fur-
ther three ramping cases (cases 1,5 and 8 of Table
1) which were not included in the training dataset.
Comparisons between the experimental (left) and
predicted (right) surface Cp distributions can be
seen at Figure 4 at angles of attack above stall.
The comparison is good as both the overall load-
ing and the location of the DSV’s footprint have
been accurately predicted. The only exception is
figure 4(a) were the experiment shows the DSV ap-
pearing closer to the wing tip as opposed to the NN
prediction which shows the trajectory of the DSV
to be closer to the root.

This initial experiment, has shown that the
generic NN used, where time has been included in
the input variable list rather than being implic-
itly assumed via the feedback loop of the recur-
sive topology as used in [13, 14], has delivered very
promising results. The reduced ramp rate has been
the only differentiating parameter between the eight
cases listed in table 1. The validation exercise of
case 5 (Table 1) which represents a prediction in in-
terpolating conditions regarding the reduced ramp
rate clearly provides the best comparison between
the experiment and the NN computation. On the
left hand side of Figure 4, one can see the Cp con-
tours extracted by the experiments, while shown on
the right hand side are the NN predictions for the
cases of Table 1. The contour topologies as well as
the extrema of the Cp values are virtually identical
with 2% being the largest descrepancy of the mini-
mum Cp values. The same comparisons for the ex-
trapolated cases shown in Figures 4(a) and 4(c) re-
veal very favourable agreement, even if not as good
as in the interpolated case. The reason for these
small descrepancies, could be either due to a rela-
tive inability of the NN to extrapolate away from
its training regime or because the specific reduced
ramp rate training regime used was inadequate to
provide the NN with an ’understanding’ of the flow
physics outside this regime.
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Figure 5 presents the Cp time histories for several
chordwise locations on the suction side of the wing
at 58% span. Results are shown for both the extrap-
olated (Figures 5(a) and (c)) and interpolated (Fig-
ure 5(b)) cases. On the graphs, the Cp values are
shifted by 5 to allow for a clear presentation. The
footprint of the DSV is visible in the time histories
and can be seen at a dimensionless time of 110. The
interpolated case was in excellent agreement with
experiments while fair agreement was also obtained
for the extrapolated cases. The NN model provided
better comparison for the interpolated case (Figure
5(b)) and the RNN compared more favourably in
the extrapolated cases (Figures 5(a and c)).

5 Dynamic Stall Modelling

The next step in the exploration of the ability of
the NN to model DS, was to increase the complex-
ity of the problem by introducing the yaw angle as
an extra variable. The NN was then trained to ap-
proximate the functional: Cp = Cp(t, α, k, β, x, y).
Cases 1-12 of Table 2, refer to sinusoidal pitching
motions with an amplitude and mean angle of 10o

for different yaw angles. Various combinations of
these cases were used to train and validate the NN,
in order to assess it’s interpolating as well as ex-
trapolating capabilities.

5.0.2 Interpolation in Reduced Frequency

and Yaw

The training cases were (a) case 4 (k = 0.1, β = 0o),
(b) case 5 (k = 0.1, β = 10o), (c) case 8 (k =
0.15, β = 0o) and (d) case 9 (k = 0.15, β = 10o),
while the validation case was case 7 (k = 0.12, β =
8o) of Table 2. Figure 6(a) presents the comparison
of the CFD simulation and NN prediction for case
7 of Table 2, at 20o of angle of attack during up-
stroke. The comparison is outstanding, as both the
magnitude and the finer details of the Cp contour
topology have been captured by the NN. From this
results it becomes evident that at purely interpo-
lating conditions, the smallest possible number of
datasets, namely 4 for 2 interpolating parameters,
are adequate for prediction, provided that the val-
ues of these parameters are reasonably close for the
flow physics to be similar.

5.0.3 Interpolation in Reduced Frequency

and Extrapolation in Yaw

The training cases were (a) case 5 (k = 0.1, β =
10o), (b) case 6 (k = 0.1, β = 15o), (c) case 9 (k =
0.15, β = 10o) and (d) case 10 (k = 0.15, β = 15o),
while the validation case was case 7 (k = 0.12, β =

8o) of Table 2. Figure 6(b) presents the compari-
son of the CFD simulation and NN prediction for
case 7 of Table 2, at 20o of angle of attack during
upstroke. The comparison remains very favourable,
as both the magnitude and the overall details of the
Cp contour topology have been captured by the NN.
Again, both the magnitude as well as the location
of the DSV shedding are in excellent agreement be-
tween the CFD simulation and the NN prediction.
Analysis of the CFD data obtained at yawed con-
ditions indicated that yaw has a mild effect on 3-
DDS and this may be the reason good results are
obtained when the NN is asked to extrapolate pre-
dictions at yaw angles outside its training envelope.

5.0.4 Extrapolation in Reduced Frequency

and Interpolation in Yaw

The training cases were: (a) case 1 (k = 0.05, β =
0o), (b) case 3 (k = 0.05, β = 15o), (c) case 4 (k =
0.1, β = 0o) and (d) case 6 (k = 0.1, β = 15o), while
the validation case was case 7 (k = 0.12, β = 8o)
of Table 2. Figure 6(c) compares the CFD simu-
lation and NN prediction for case 7 of Table 2, for
an angle of attack of 10o during upstroke. Varia-
tion of the reduced frequency produced in this case
a non linear effect to the Cp and training based
on only two different values of reduced frequency is
evidently insufficient to provide an accurate predic-
tion. However, one would expect the descrepancy
between the actual and predicted values during the
formation stage of the DSV to be closer, since the
reduced frequency of k = 0.12 is not far from the
reduced frequencies used for training of k = 0.05
and k = 0.1.

Following the previous remark, the training
dataset was augmented with case 8 of Table 2 and
the case chosen for validation was case 11. Figure
6(d) shows the comparison of the CFD simulation
and NN prediction for case 11 of Table 2, again at
20o during upstroke. The comparison is now is very
good, since the physics incorporated in the training
datasets were adequate for an accurate extrapolat-
ing prediction.

Figures 7((a) and (b)) show the Cp histories for
the cases described in paragraphs 5.0.2 and 5.0.4
respectively for transducers placed on the wing’s
mid span. The interpolating case shown in Figure
7(a) shows an excellent agreement between the CFD
computations and NN prediction, whereas the ex-
trapolating case shown in Figure 7(b) shows a slight
phase shift between CFD and NN in the location of
the DSV. The same conclusion can also be drawn
by examining Figure ??(c) where the NN predicted
DSV footprint is shown slightly closer to the wing’s
trailing edge.
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6 Conclusions

CFD computations were used to provide insight
in the flow topology during 3-D DS combining
rotation and pitch or pitch at fixed yaw angles.
The resulted flow configuration revealed a distorted
omega-shaped vortex with a strong influence on the
surface pressure of the wing. The omega-shaped
3D-DSV was also found to interact with the tip
vortices. Neural Networks were then used to model
the wing loading using CFD and experimental re-
sults for training. It was found that the NN can
provide very accurate interpolations within their
training envelope as well as adequate extrapolations
provided enough cases are used during the training
phase.

Overall the NN was found to be more effective in
interpolating results than the RNN. On the other
hand the RNN was better when extrapolations were
needed. The training phase of the NN was found to
be faster than for the RNN.
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Figure 1: Schematics of employed NN models: (a) 2-layer, no feedback, (b) 2-layer with feedback, (c) 3-layer, no
feedback.
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Figure 2: cores for three different reduced rates and two different yaw angles, corresponding to conditions 1 (a),
3 (b), 4 (c), 6 (d), 8 (e) and 10 (f) of table 2 respectively. The angle of attack is 20o.
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Figure 3: Vortex cores (a) and a spanwise 2D slice at the wing’s half chord corresponding to condition 15 of table
2 respectively. The angle of attack is 14o.
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Figure 4: Comparison between experiments by Coton and Galbraith [18] (left) and NN predictions (right) for
the surface pressure distribution on the suction side of the square NACA-0015 wing with rounded tips. Ramping
motion between −5 and 40 degrees of incidence, Re = 1.47 × 106 and M = 0.16. (a) case 1, AoA=23.84o, (b)
case 5, AoA=28.74o and (c) case 8, AoA=35.55o of Table 1.
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Figure 5: Comparison between the predictions of the NN (red) and RNN (green) models against experimental
and CFD data for cases (a) 1, (b) 5 and (c) 8 of Table 1 respectively.
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Figure 6: CFD computations (left) and NN predictions (right). All cases refer to Table 2. The NN was trained
using cases (a) 4,5,8 and 9 (validation case was case 7), (b) 5,6,9 and 10 (validation case was case 7), (c) 1,3,4
and 6 (validation case was case 7) and (d) cases 1,3,4,6 and 10 (validation case was case 11). Note that the AR
has been compressed for illustration purposes.
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Figure 7: Comparison between the predictions of the NN (red) and RNN (green) models against experimental
and CFD data for cases (a) 7 and (b) 11 of Table 2 respectively.
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Case Reduced Ramp Rate Ramp Rate (deg/s) Used for Training/Prediction
1 0.0044 67.34 Prediction
2 0.0061 91.26 Training
3 0.0095 143.36 Training
4 0.0120 184.16 Training
5 0.0140 213.85 Prediction
6 0.0190 283.97 Training
7 0.0250 371.97 Training
8 0.0300 429.02 Prediction

Table 1: Details of the experimental data used [18] for the training and validation of the NN. Re = 1.47106 ,
M = 0.16 and the range of angles was −5o

− 39o.

Case Reduced Frequency Yaw/Rotation β M AR µ
1 0.05 Y 0o 0.3 10 -
2 0.05 Y 5o 0.3 10 -
3 0.05 Y 15o 0.3 10 -
4 0.10 Y 0o 0.3 10 -
5 0.10 Y 10o 0.3 10 -
6 0.10 Y 15o 0.3 10 -
7 0.12 Y 8o 0.3 10 -
8 0.15 Y 0o 0.3 10 -
9 0.15 Y 10o 0.3 10 -
10 0.15 Y 15o 0.3 10 -
11 0.20 Y 0o 0.3 10 -
12 0.40 Y 0o 0.3 10 -
13 0.10 Y 0o 0.25 5 -
14 0.10 Y 0o 0.55 5 -
15 0.15 R - 0.15 5 0.33

Table 2: Details of the CFD performed. The wings used were based on a NACA0012 aerofoil section with rounded
tips. The pitching component of the motion, where appicable, was a sinusoidal oscillation with both mean angle
and amplitude of 100, while the Reynolds number was always Re = 10× 106. In the runs that involved rotational
motion, the rotating frequency was the same as the pitching frequency.
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