
AN APPLICATION OF DISTRIBUTED ENVIRONMENT
IN FLIGHT SIMULATION

D. Canetta, S. Ceriani, D. Eufri
Agusta S.p.A.

Via Isonzo, 33
21049 Tradate (VA) Italy

Abstract

Today's flight simulators are
rather expensive, mainly
because only by high-cost
supermini computers the
required computational power
can be obtained. However a
different approach can be
adopted, using a distributed
environment of microprocessors.
In our paper we describe this
approach to flight simulator
realization, taking into
account new concepts of
parallel computing and the use
of transputers. To evaluate the
possibility of using these
processors in flight
simulators, applications to the
flight mathematical model and
visual system will be
described.

1 Introduction

In these last years the
computational power of
computers has become very high,
increasing the number of
operations sequentially run in
the time unit. This process,
carried out maintaining the Von
Neumann logic for the computer
design, is now approaching to
the physical limits of
technology. This is the reason
that drove to the design of
multi-processor supercomputers,
that allow for distributing
processing.
In this scenario, at
beginning of the 80's,
transputer appears (Rif.

the
the
1).

This processor was designed
taking into account the
parallel architecture concepts,
however preserving some
characteristics of the
traditional microprocessors.
The transputer is becoming of
great importance in the
simulation world, where high
computational power is
requested and parallel
architectures are useful for
reducing costs.
In this paper the application
of transputers to two critical
parts of helicopter simulators
are described, that is the
mathematical model of the
helicopter rotor and the visual
system.

2 The Transputer

The transputer is a
programmable chip,
communicating with other chips
of the same kind in parallel
networks. Since it was design
from the beginning to operate
on parallel networks, the
transputer offers high
performances if well utilized,
showing a low overhead
(overhead = lost of
effectiveness due to the
presence of several processors)
and low communication time. The
difference with respect to the
other processors is the absence
of the traditional bus, that is
usually the communication
channel for all the resources
of the computer. The bus is the

!.3.4.1

rigin of bottlenecks during
p:ogram run.
lbreover, difficulties arising
in synchronizing and management
llf data are easily overridden
lli.th transputer, because the
serial links for communication
md relevant instructions for
~chronization are implemented
111. the processor instruction
fllt.
Together with transputer, the
(beam language was developed.
1hi.s language describes any
eystem as a group of processes
that operate concurrently and
oommunicate through channels.
(beam was developed with
transputers, but it is
mportant to note that it can
re used on other system, in the
same way as transputer can be
med without Occam. It is the
relationship between Occam and
transputers that facilitates
retwork design: a program run
on a transputer is formally
~uivalent to an Occam process,
m a manner that transputer
ootwork can be described as an
Occam program.
As far as the software is
roncerned, a program is seen as
an interconnected group of
processes, considered
mdependent units communicating
between them through point-to­
point channels. By the
connection between processes it
is possible to build complex
eystems.
A group of processes is
process as well: process

a
can

In
of

have internal concurrency.
this way a hierarchy
processes is created inside any
process.
In the same manner a group of
transputers tpat operate
concurrently can be seen as a
single transputer and then from
the physic point of view a
hierarchy is represented.
From the hardware point of view
the communication between

transputer is realized
links, that are the
implementation of the
channels.

through
physic

Occam

The traditional kind of
transputer is the model IMS
T800, that has the architecture
shown in Fig. 1.
On the single chip there is:

- CPU 32 bit
- Floating Point Unit 64 bit
- 4 communication link
- 4 kB RAM
- external memory interface
- device interface
- hardware scheduler for

concurrent programs granting
a switch lower than 1 micro­
second

The processor can have 10 MIPS
or 1.5 MFlops at 20 MHz.
Other kind of transputers can
have different computational
power and can be integrated on
boards with possibility of
static and dynamic memory
expansion.
To be all components
implemented on chip, the
processor must be very small:
it is similar to a RISC
(Reduced Instruction Set
Computer). The processor
accesses directly the on-chip
memory. When more memory is
required, the access is to the
external memory through the
appropriate interface.
But what really characterizes
the transputer is the
communication. Each transputer
presents 4 links that
substitute the traditional bus.
A communication link is
constituted by two serial lines
(one for each direction) and
implements a simple
communication protocol. The
connection between the two
transputer is made connecting
the link interfaces of the two
chips using two serial lines
that carry both data and

1.3.4.2

.•

identifiers.

3 Transputer Network

The network configuration
consists of associating the
processes that make a program
to the processors (Rif. 2). All
that is made possible by
special instructions of the
Occam language.
A particular instruction allows
to specify the transputer where
to allocate part of the
program. The same procedure can
also be allocated on different
processors.
Another instruction allows to
associate the Occam channel to
the physical links. Each
channel must obviously be
positioned in input on a
transputer and on output on
another one.
It is important to observe that
the configuration procedures do
not affect the logic behaviour
of a program written for a
single transputer. The
implementation on more
transputers can then represent
the final phase of a of the
software development.
The transputer networks can be
built without limit of shape or
dimension, with the only limit
of the availability of 4 links.
There is not an absolute
correct network for each
application. Each possibility
can correspond to a compromize
between easy of programming and
effectiveness, taking into
account the reliability and the
final hardware cost. It is
clear, in any way, that the
choice of a topology must have
the target to have max
cooperation between
transputers, to reach the best
performances in speed and
precision.

4 Tbe Rotor Model

To really evaluate the
performances of transputer, it
was employed in two parts that
are critical for helicopter
flight simulators: the
mathematical model and the
image generator.
For the rotor model a Blade
Element Theory (BET) model was
assumed. The faithful
reproduction of the rotor
dynamics was achieved by
dividing the blade in 10
elements. For each element the
dynamic laws of motion were
written, taking into account
the aerodynamic and inertial
forces and moments. Forces and
moments are then summed
together to give the total
forces and moments supplied by
the rotor.
The code, called BETTI, was at
the beginning written in
FORTRAN, then translated in
Occam. The previous version in
FORTRAN was used to check
results and to compare the
computational time.
Looking at Fig. 2 it is easily
understood how an integration
step is performed. In input the
initial conditions are
supplied: data is required to
define the geometrical and
physical conditions of the
aircraft, for example
dimensions, areas, aerodynamic
coefficients, etc. In
particular the aerodynamic
coefficients of the wing
sections are represented by two
profiles, one for the first 7
elements and the others for the
remaining 3 elements. Data is
supplied for 99 angles of
attack for the two profiles.
Moreover, a dependence from 5
Mach numbers (first profile)
and 7 Mach numbers (second
profile) is taken into account.
Then kinematic transformations
are carried out: for each
element velocity and
acceleration in the local

1.3.4.3

reference frame are requested.
llt this point an important part
of the code begins: the induced
velocity calculation. For this
velocity two expressions have
been adopted: momentum theory
and Young method. For the
calculation an iterative method
is used: iterations are stopped
when the error is less than
0.01 or the iteration number is
more than 20. Experimental
results have shown that 3 or 4
iterations are usual for
convergence.
After the induced velocity
calculation, the motion
equations are solved. The blade
is considered to be stiff,
therefore flapping and lagging
are only allowed. Being two
degrees of freedom permitted,
two differential equations of
second order must be written
and solved for each blade. To
solve the equations Euler
method is used.
Two versions of the BETTI code
were written, BETTISER (serial
version) and BETTIPAR (parallel
version). For parallelization
two ways could be employed: a
mathematical parallelization,
that is to group together parts
of the code that for their

" implementation are easily
parallelized, and physical
parallelization, that is a
parallelization that follows
the physical model. The second
way was adopted and, where
possible, calculation for the
four blades was executed in
parallel.
Fig. 3 shows the network used
for the rotor model. The host
computer was a personal
computer interfacing the root
transputer, The transputer
called 'shaft' deals with the
management of the other four
transputers, called 'blade o·,
'blade 1', 'blade 2' and 'blade
3'. Each 'blade' transputer
simulates the dynamics of the

single blade: the program is
the same for the four
transputers, except the 'blade
o· that also deals with
input/output.
To obtain a good model of the
rotor dynamics the experience
has shown that an integration
rate of 180 Hz is useful for
rotor simulation. This value is
also what usually asked by
customer requirements. The 180
Hz rate means an integration
step of 5.6 ms.
BETTISER reached a performance
of 10 times slower than the
real time. BETTIPAR, the
parallel version, some
modification was needed. In
fact the memory capacity of
each T800 used for blade
simulation was too small if the
aim is to implement the
aerodynamic coefficient tables
in the on-chip memory. Then one
table only for each blade was
kept and the dependence from
Mach number was not taken into
account. Data was reduced to
1/12 and, in this case, the
results were different of about
5% after 1000 steps.
The parallel version reached a
very interesting result: an
integration step was performed
in 8.8 ms (average). This
result showed that a good use
of the low part of the memory
allows for a very short
computing time.
To reach the real time, some
other modifications were
carried out. The number of
elements was reduced to 5, but
other tests will have to be
performed, in order to be able
of having a larger number of
results to be compared with
flight tests and to increase
the simulation faithfulness.

5 The Image Generator

Before describing
implementation of the

the
image

1.3.4.4

generator, a short description
of the graphic pipeline
utilized for the system will be
geven (Rif. 3).
The image to be shown is
memorized in a data base in
terms of 3D coordinates of the
polygon vertex which compose
the scene. This scene model is
retrieved at the beginning of
the graphic pipepline and
transformed step by step. The
modules are:

- View Transform. It makes the
transformation from the data
base reference frame (world) to
the reference frame ~;i th the
origin in the view point of the
pilot (eye). The objects
composing the scene are
expressed in a clock--wise
reference frame, with the z­
axis up and the eye reference
system is counter clock-wise
with Z-axis toward the line of
sight, X-· axis on the right of
the observer and Y--axis up.
This choice allows the X- and
Y-axis to be the axis
horizontal and vertical of the
screen.

Clipping. The observer can
see only part of the objects
present in the scene. Clipping
eliminates all polygons outside
the vision pyramid of the
observer.

Perspective transform. It
makes the transformation from
3D to 2D, that is from the 3D
eye reference frrune to the 2D
screen reference frame.

Scan conversion. It spots
pixels that are within each
face starting from vertex that
determine the contour. After
spotting, to each pixel a value
of brightness is associated.

Shading. It determines the
shading of each face, depending

on the light source direction.

Z-buffer. It
elimination of
surfa.ces.

allows the
the hidden

The first simple implementation
of the graphic pipeline can was
carried out utilizing one
transputer for each pipeline
step. This configuration
utilizes 7 transputers but
experimental results showed
that it is too slow for real
time. A second implementation
was then performed utilizing
two processors for each of the
last three steps of the
pipeline. In this case the
production of images was 1 per
second, far from real time but
showing to be in the right way
for real time. At this point,
however, it was noticed that
the bobtleneck was the graphic
board. For this reason new
configurations were not tried,
waiting for the new graphic
board INMOS G300 Graphics TRAM
B419. With this new graphic
board, it is expected real time
to be met.

6 Concluding Remarks

Transputers have been proved to
be effective microprocessors to
be employed in simulation
applications. The features that
make transputers so attractive
for these applications are low
costs and modularity, that are
important features in
simulation were costs are
usually high and computational
power always unsufficient.
However, the transputer is
recently appeared on the market
and suffer from the poor
software tools availability and
the need of new boards, for
example the graphic board for
image generators. We are
expecting in the future the
elimination of these issues.

I.3.4.5

References

(1) "The Transputer Databook",
INMOS, November 1988.

(2) Laurie Pegrum, "Configuring
Occam Programs", INMOS,
Technical Note 31, January
1988.

(3) Newmann, Sproull,
"Principles of interactive
computer graphics", Me Graw
Hill, 1979.

Reset
Analyse~

Error
BootfroMROM ~

Cl ocki n

t
-

~ ucc
GND -

Syst.eH

services

On-chip

Rn~

r-

I<

I<
)

~

0
(lpplioation

Specific

Interface

\
I

FIG. 1 - Architecture of a Transputer

!.3.4.6

Proces.;or

Link

Int.erface

1--·

~
LinJdn

LinkOut

.•

Costant values
Dis~ read

winCJ section
data coMputation

start values

'
SEQ i t::e
For niter

I'\ ext it

\-......_.,..
i
'

O!JT?lJ!

El!D.

Input frOM FUSEL

FUSEL data elab.

RineMatic trans£.

~
\IHILE

call <= ze
AND

err > €1.01

Blades equations

MOtion

I
T

FIG. 2 - BETTI code scheme

1.3.4.7

'
call::: call+i

Induced velocity
aHod. ionP.s

forces trans!'.
error calculation

total forces &.
angular MOMents

and
their geoMetric
tnnsfomat1ons

Disk

X~yboa!'d

Scr~~n

Host

•

'

EJ
• I
I '

EJ
• I
I '

Blade3 I• 'I Shdt I• 'I B 1 a de~
• I
I '

E:J
FIG. 3 - Transputer Network for Rotor Model

1.3.4.8

