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Abstract 

Today's flight simulators are 
rather expensive, mainly 
because only by high-cost 
supermini computers the 
required computational power 
can be obtained. However a 
different approach can be 
adopted, using a distributed 
environment of microprocessors. 
In our paper we describe this 
approach to flight simulator 
realization, taking into 
account new concepts of 
parallel computing and the use 
of transputers. To evaluate the 
possibility of using these 
processors in flight 
simulators, applications to the 
flight mathematical model and 
visual system will be 
described. 

1 Introduction 

In these last years the 
computational power of 
computers has become very high, 
increasing the number of 
operations sequentially run in 
the time unit. This process, 
carried out maintaining the Von 
Neumann logic for the computer 
design, is now approaching to 
the physical limits of 
technology. This is the reason 
that drove to the design of 
multi-processor supercomputers, 
that allow for distributing 
processing. 
In this scenario, at 
beginning of the 80's, 
transputer appears (Rif. 

the 
the 
1). 

This processor was designed 
taking into account the 
parallel architecture concepts, 
however preserving some 
characteristics of the 
traditional microprocessors. 
The transputer is becoming of 
great importance in the 
simulation world, where high 
computational power is 
requested and parallel 
architectures are useful for 
reducing costs. 
In this paper the application 
of transputers to two critical 
parts of helicopter simulators 
are described, that is the 
mathematical model of the 
helicopter rotor and the visual 
system. 

2 The Transputer 

The transputer is a 
programmable chip, 
communicating with other chips 
of the same kind in parallel 
networks. Since it was design 
from the beginning to operate 
on parallel networks, the 
transputer offers high 
performances if well utilized, 
showing a low overhead 
(overhead = lost of 
effectiveness due to the 
presence of several processors) 
and low communication time. The 
difference with respect to the 
other processors is the absence 
of the traditional bus, that is 
usually the communication 
channel for all the resources 
of the computer. The bus is the 
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rigin of bottlenecks during 
p:ogram run. 
lbreover, difficulties arising 
in synchronizing and management 
llf data are easily overridden 
lli.th transputer, because the 
serial links for communication 
md relevant instructions for 
~chronization are implemented 
111. the processor instruction 
fllt. 
Together with transputer, the 
(beam language was developed. 
1hi.s language describes any 
eystem as a group of processes 
that operate concurrently and 
oommunicate through channels. 
(beam was developed with 
transputers, but it is 
mportant to note that it can 
re used on other system, in the 
same way as transputer can be 
med without Occam. It is the 
relationship between Occam and 
transputers that facilitates 
retwork design: a program run 
on a transputer is formally 
~uivalent to an Occam process, 
m a manner that transputer 
ootwork can be described as an 
Occam program. 
As far as the software is 
roncerned, a program is seen as 
an interconnected group of 
processes, considered 
mdependent units communicating 
between them through point-to­
point channels. By the 
connection between processes it 
is possible to build complex 
eystems. 
A group of processes is 
process as well: process 

a 
can 

In 
of 

have internal concurrency. 
this way a hierarchy 
processes is created inside any 
process. 
In the same manner a group of 
transputers tpat operate 
concurrently can be seen as a 
single transputer and then from 
the physic point of view a 
hierarchy is represented. 
From the hardware point of view 
the communication between 

transputer is realized 
links, that are the 
implementation of the 
channels. 

through 
physic 

Occam 

The traditional kind of 
transputer is the model IMS 
T800, that has the architecture 
shown in Fig. 1. 
On the single chip there is: 

- CPU 32 bit 
- Floating Point Unit 64 bit 
- 4 communication link 
- 4 kB RAM 
- external memory interface 
- device interface 
- hardware scheduler for 

concurrent programs granting 
a switch lower than 1 micro­
second 

The processor can have 10 MIPS 
or 1.5 MFlops at 20 MHz. 
Other kind of transputers can 
have different computational 
power and can be integrated on 
boards with possibility of 
static and dynamic memory 
expansion. 
To be all components 
implemented on chip, the 
processor must be very small: 
it is similar to a RISC 
(Reduced Instruction Set 
Computer). The processor 
accesses directly the on-chip 
memory. When more memory is 
required, the access is to the 
external memory through the 
appropriate interface. 
But what really characterizes 
the transputer is the 
communication. Each transputer 
presents 4 links that 
substitute the traditional bus. 
A communication link is 
constituted by two serial lines 
(one for each direction) and 
implements a simple 
communication protocol. The 
connection between the two 
transputer is made connecting 
the link interfaces of the two 
chips using two serial lines 
that carry both data and 
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identifiers. 

3 Transputer Network 

The network configuration 
consists of associating the 
processes that make a program 
to the processors (Rif. 2). All 
that is made possible by 
special instructions of the 
Occam language. 
A particular instruction allows 
to specify the transputer where 
to allocate part of the 
program. The same procedure can 
also be allocated on different 
processors. 
Another instruction allows to 
associate the Occam channel to 
the physical links. Each 
channel must obviously be 
positioned in input on a 
transputer and on output on 
another one. 
It is important to observe that 
the configuration procedures do 
not affect the logic behaviour 
of a program written for a 
single transputer. The 
implementation on more 
transputers can then represent 
the final phase of a of the 
software development. 
The transputer networks can be 
built without limit of shape or 
dimension, with the only limit 
of the availability of 4 links. 
There is not an absolute 
correct network for each 
application. Each possibility 
can correspond to a compromize 
between easy of programming and 
effectiveness, taking into 
account the reliability and the 
final hardware cost. It is 
clear, in any way, that the 
choice of a topology must have 
the target to have max 
cooperation between 
transputers, to reach the best 
performances in speed and 
precision. 

4 Tbe Rotor Model 

To really evaluate the 
performances of transputer, it 
was employed in two parts that 
are critical for helicopter 
flight simulators: the 
mathematical model and the 
image generator. 
For the rotor model a Blade 
Element Theory (BET) model was 
assumed. The faithful 
reproduction of the rotor 
dynamics was achieved by 
dividing the blade in 10 
elements. For each element the 
dynamic laws of motion were 
written, taking into account 
the aerodynamic and inertial 
forces and moments. Forces and 
moments are then summed 
together to give the total 
forces and moments supplied by 
the rotor. 
The code, called BETTI, was at 
the beginning written in 
FORTRAN, then translated in 
Occam. The previous version in 
FORTRAN was used to check 
results and to compare the 
computational time. 
Looking at Fig. 2 it is easily 
understood how an integration 
step is performed. In input the 
initial conditions are 
supplied: data is required to 
define the geometrical and 
physical conditions of the 
aircraft, for example 
dimensions, areas, aerodynamic 
coefficients, etc. In 
particular the aerodynamic 
coefficients of the wing 
sections are represented by two 
profiles, one for the first 7 
elements and the others for the 
remaining 3 elements. Data is 
supplied for 99 angles of 
attack for the two profiles. 
Moreover, a dependence from 5 
Mach numbers (first profile) 
and 7 Mach numbers (second 
profile) is taken into account. 
Then kinematic transformations 
are carried out: for each 
element velocity and 
acceleration in the local 
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reference frame are requested. 
llt this point an important part 
of the code begins: the induced 
velocity calculation. For this 
velocity two expressions have 
been adopted: momentum theory 
and Young method. For the 
calculation an iterative method 
is used: iterations are stopped 
when the error is less than 
0.01 or the iteration number is 
more than 20. Experimental 
results have shown that 3 or 4 
iterations are usual for 
convergence. 
After the induced velocity 
calculation, the motion 
equations are solved. The blade 
is considered to be stiff, 
therefore flapping and lagging 
are only allowed. Being two 
degrees of freedom permitted, 
two differential equations of 
second order must be written 
and solved for each blade. To 
solve the equations Euler 
method is used. 
Two versions of the BETTI code 
were written, BETTISER (serial 
version) and BETTIPAR (parallel 
version). For parallelization 
two ways could be employed: a 
mathematical parallelization, 
that is to group together parts 
of the code that for their 

" implementation are easily 
parallelized, and physical 
parallelization, that is a 
parallelization that follows 
the physical model. The second 
way was adopted and, where 
possible, calculation for the 
four blades was executed in 
parallel. 
Fig. 3 shows the network used 
for the rotor model. The host 
computer was a personal 
computer interfacing the root 
transputer, The transputer 
called 'shaft' deals with the 
management of the other four 
transputers, called 'blade o·, 
'blade 1', 'blade 2' and 'blade 
3'. Each 'blade' transputer 
simulates the dynamics of the 

single blade: the program is 
the same for the four 
transputers, except the 'blade 
o· that also deals with 
input/output. 
To obtain a good model of the 
rotor dynamics the experience 
has shown that an integration 
rate of 180 Hz is useful for 
rotor simulation. This value is 
also what usually asked by 
customer requirements. The 180 
Hz rate means an integration 
step of 5.6 ms. 
BETTISER reached a performance 
of 10 times slower than the 
real time. BETTIPAR, the 
parallel version, some 
modification was needed. In 
fact the memory capacity of 
each T800 used for blade 
simulation was too small if the 
aim is to implement the 
aerodynamic coefficient tables 
in the on-chip memory. Then one 
table only for each blade was 
kept and the dependence from 
Mach number was not taken into 
account. Data was reduced to 
1/12 and, in this case, the 
results were different of about 
5% after 1000 steps. 
The parallel version reached a 
very interesting result: an 
integration step was performed 
in 8.8 ms (average). This 
result showed that a good use 
of the low part of the memory 
allows for a very short 
computing time. 
To reach the real time, some 
other modifications were 
carried out. The number of 
elements was reduced to 5, but 
other tests will have to be 
performed, in order to be able 
of having a larger number of 
results to be compared with 
flight tests and to increase 
the simulation faithfulness. 

5 The Image Generator 

Before describing 
implementation of the 

the 
image 

1.3.4.4 



generator, a short description 
of the graphic pipeline 
utilized for the system will be 
geven (Rif. 3). 
The image to be shown is 
memorized in a data base in 
terms of 3D coordinates of the 
polygon vertex which compose 
the scene. This scene model is 
retrieved at the beginning of 
the graphic pipepline and 
transformed step by step. The 
modules are: 

- View Transform. It makes the 
transformation from the data 
base reference frame (world) to 
the reference frame ~;i th the 
origin in the view point of the 
pilot (eye). The objects 
composing the scene are 
expressed in a clock--wise 
reference frame, with the z­
axis up and the eye reference 
system is counter clock-wise 
with Z-axis toward the line of 
sight, X-· axis on the right of 
the observer and Y--axis up. 
This choice allows the X- and 
Y-axis to be the axis 
horizontal and vertical of the 
screen. 

Clipping. The observer can 
see only part of the objects 
present in the scene. Clipping 
eliminates all polygons outside 
the vision pyramid of the 
observer. 

Perspective transform. It 
makes the transformation from 
3D to 2D, that is from the 3D 
eye reference frrune to the 2D 
screen reference frame. 

Scan conversion. It spots 
pixels that are within each 
face starting from vertex that 
determine the contour. After 
spotting, to each pixel a value 
of brightness is associated. 

Shading. It determines the 
shading of each face, depending 

on the light source direction. 

Z-buffer. It 
elimination of 
surfa.ces. 

allows the 
the hidden 

The first simple implementation 
of the graphic pipeline can was 
carried out utilizing one 
transputer for each pipeline 
step. This configuration 
utilizes 7 transputers but 
experimental results showed 
that it is too slow for real 
time. A second implementation 
was then performed utilizing 
two processors for each of the 
last three steps of the 
pipeline. In this case the 
production of images was 1 per 
second, far from real time but 
showing to be in the right way 
for real time. At this point, 
however, it was noticed that 
the bobtleneck was the graphic 
board. For this reason new 
configurations were not tried, 
waiting for the new graphic 
board INMOS G300 Graphics TRAM 
B419. With this new graphic 
board, it is expected real time 
to be met. 

6 Concluding Remarks 

Transputers have been proved to 
be effective microprocessors to 
be employed in simulation 
applications. The features that 
make transputers so attractive 
for these applications are low 
costs and modularity, that are 
important features in 
simulation were costs are 
usually high and computational 
power always unsufficient. 
However, the transputer is 
recently appeared on the market 
and suffer from the poor 
software tools availability and 
the need of new boards, for 
example the graphic board for 
image generators. We are 
expecting in the future the 
elimination of these issues. 
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