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ABSTRACT
The aerodynamics of rotorcraft in forward flight, particularly at high advance ratios, are highly complex. Of
particular interest is the impact of crossflow on forward flight performance that occurs over large portions
of the rotor disk. Results from high fidelity numerical experiments on an infinite yawed wing, previously
validated with experimental data for a wide range of Mach numbers, angles of attack and yaw angles, are
analyzed for use in airfoil tables (C81 tables) for rotorcraft comprehensive codes. Investigation of the errors
introduced by interpolation of airfoil tables and application of the Betz crossflow and independence princi-
ples in various flight regimes has been completed, including further understanding of the physics driving
the behavior of the integrated airfoil performance. The analysis has also been extended to reverse flow
conditions, which become significant at high advance ratios. Empirical corrections have been developed
that improve the lift, drag and pitching moment predictions of the crossflow model.

NOTATION

a Lift curve slope (rad−1)
AR Aspect Ratio of the wing
c Airfoil chord length (m)
D′,L′ Sectional drag, lift per unit span (N/m)
Cd Sectional drag coeff., Cd = D′/

( 1
2 ρ∞V 2

∞c
)

Cl Sectional lift coeff., Cl = L′/
( 1

2 ρ∞V 2
∞c
)

Cm Sectional pitching moment coefficient about
the quarter chord, Cm = M′/

( 1
2 ρ∞V 2

∞c2
)

M′ Sectional pitching moment per unit span
about the quarter chord (N)

M Mach number, M = V/a∞

r Dimensionless radial distance
Re Reynolds number, Re = ρV c/µ

u,v,w x, y and z components of velocity (m/s)
V Velocity magnitude (m/s)
α Angle of attack (rad)
Λ Yaw angle (rad)
µ Molecular viscosity (Pa.s)
ρ Density (kg/m3)
∞ Freestream quantity

1 INTRODUCTION

The maximum speed of conventional rotorcraft has
historically been limited to advance ratios below 0.5,
based on the impact of retreating blade on the lift
and propulsive force. Over the past two decades,
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significant progress in both hardware and software
has sparked new engineering research and develop-
ment that have the potential to advance the capabili-
ties of conventional concepts. New designs such as
the Cartercopter [1] obtain improved efficiency over a
wide range of flight speeds, including advance ratios
greater than 1.0. This ability to achieve improved ef-
ficiency with traditional rotor systems is attractive, but
as Harris noted in 2008 [2], most comprehensive rotor-
craft codes have typically neglected some of the ram-
ifications of the flow over the rotor disk in these flight
conditions, including but not limited to larger regions
of transonic, reverse, cross, and stalled flows. Thus,
these codes introduce larger errors in the design and
analysis of these high speed conditions.

Conventional helicopters flying at high advance ra-
tio experience significant changes in the primary di-
rectional component of the flow on the rotor blade
for certain azimuthal regions. At µ = 0.5, the en-
tire retreating side of the rotor disk encounters lo-
cal incoming flow at angles of 30◦ or larger. As il-
lustrated in Fig. 1, this flow direction increases to
50◦ when µ = 1.0, resulting in large regions of cross
flow where the radial or spanwise component of the
flow is comparable to or exceeds the streamwise flow
component. In addition, a considerable amount of
reverse flow exists on the retreating side of the ro-
tor disk. In this circumstance, the rotor blades oper-
ate with the trailing edge in the relative wind so that
the blade appears more as a flat plate rather than an
airfoil. These effects require investigation and inclu-



sion of improved aerodynamics model to accurately
capture these physics as they influence the perfor-
mance predictions. Following World War II, the im-

Fig. 1: Iso-sweep angles [deg] over the rotor disk at
µ = 1.0 (counter-clockwise rotation). The red line in-
dicates the reverse flow region. From Ref. 3.

pact of cross flow on non-rotating systems was inves-
tigated via several experimental studies. Purser and
Spearman [4] established an extensive database with
yawed finite wings of aspect ratios 3 and 6, includ-
ing a NACA0012 profile. Their results indicated that
the use of the independence principle [5] was justified
in calculating the chordwise pressure distribution of
yawed wing in the linear regime. Purser and Spear-
man also observed an unexpected stall delaying phe-
nomenon due to crossflow. Despite this increase in
lift, there was no indication of a reduction in the sep-
aration drag. These findings were confirmed in the
1980s and 1990s by St. Hilaire [6,7] and Lorber [8] with
a NACA0012 and a Sikorsky SSC-A09 profile respec-
tively. Both authors noted substantial deviations from
the independence principle for combinations of flight
conditions resulting in non-linear interactions such as
stall and transonic effects. McCroskey [9] solved the
laminar boundary layer equations with small cross-
flow on a rotating wing. His results confirmed that
crossflow effects generally tend to delay separation
on the retreating side of the rotor.

Johnson et al. [10] and Harris [2] recently explored
the ability of five comprehensive rotorcraft codes to
predict rotor power at high advance ratio. Harris con-
cluded after detailed examination of the data indi-
cated that “not one of the codes can predict to engi-
neering accuracy above an advance ratio of 0.62 the
control positions and shaft angle of attack required for
a given lift.” Harris investigated high advance ratios,
but could not validate his predictions due to the lack
of experimental data for advance ratios above 1.0.

In addition to exploring the aerodynamics of high-
advance-ratio flight, the present study aims at probing
the potential of computational experiments as mean-
ingful rotor data. In 2008, Harris [2] suggested that
researchers measure the performance of a full-scale
rotor in a wind tunnel to at least an advance ratio
of 2.5. Since 2008, there have been two sets of
high-aspect-ratio wind tunnel tests on a three-bladed
NACA0012 rotor [11,12] and the UH-60 four-bladed
rotor [13], which have been accompanied by some
computational analyses, for example (but not limited
to) Refs. 14, 15. These comprehensive analyses in-
deed indicate that there are discrepancies in the per-
formance predictions as the advance ratio increases.

Based on these recent experimental and numerical
experiments, a numerical dataset [3,16] that was pre-
viously used to examine the NACA0012 and SC1095
airfoils in reverse and crossflow has been revisited.
Present studies were structured to analyze the fun-
damental physics and corrections needed for airfoil
tables (C81 tables) when large regions of reverse
and crossflow are present, such as in high-advance-
ratio flight. In this work, airfoil table interpolation er-
rors, as well as the accuracy of reverse and crossflow
performance methods at low angles of attack across
the range of subsonic and transonic flows has been
examined. Behavior of these prediction models at
large angles of attack (stall and post stall) is under-
way and will be presented in another paper. Both the
NACA0012 and SC1095 airfoils have been examined,
but the NACA0012 results are presented for brevity.
However, all differences in the physical or modeled
behavior of the SC1095 airfoil are noted.

2 COMPUTATIONAL MODEL

A large numerical database was generated for an
infinite NACA0012 wing in crossflow [3,16]. The
NACA0012 airfoil is a seminal test configuration, for
which an extensive experimental database exists [17].
The numerical simulations were conducted for a sin-
gle Reynolds number at both incompressible and
compressible speeds up to a Mach number of 1.0.
The present study concentrates on the behavior a
low angles of attack between 0◦–8◦, with yaw angles
ranging from 0◦ to 80◦. The exact simulation condi-
tions are summarized in Table 1. The angles of attack
of 172◦ and 176◦ are comparable low angles of attack
under reverse flow conditions.

2.1 Numerical Methods

The numerical simulations were conducted using
OVERFLOW (2.0y and 2.1z), a structured solver
with Chimera overset grid capabilities [18]. The spa-
tial terms were discretized using a fourth-order cen-
tral difference algorithm incorporating a diagonal-
ized Beam-Warming scalar pentadiagonal scheme.
Second-order temporal integration was achieved by



applying Newton subiterations to a first-order implicit
Euler scheme. Artificial dissipation was included
using the spectral-based dissipation scheme. The
fourth- and second-order smoothing parameters were
respectively 0.04 and 0.0 for subsonic flow, while
the second-order smoothing was increased to 0.2 for
transonic flows with shocks.

Table 1: Summary of the simulation database.

Mach Number M 0.2, 0.3, 0.6, 0.7, 0.8
Reynolds Number Re 5.106

Sweep Angle Λ 0◦ to 80◦ (10◦ steps)
Angle of Attack α 0◦, 4◦, 8◦, 172◦, 176◦

A hybrid unsteady Reynolds-averaged Navier-
Stokes (URANS) and large eddy simulation (LES) tur-
bulence model [19] was applied to ensure accurate un-
steady predictions. The URANS approach is based
on the two-equation k − ω shear stress transport
(SST) model of Menter, which incorporates statisti-
cal methods to model the entire turbulent length and
time scale spectrum. RANS/URANS turbulence mod-
els have been widely utilized for aerospace applica-
tions due to their low computational cost and reason-
able predictions of attached flows. For some three-
dimensional applications such as a wing in cross flow,
URANS turbulence models have been shown [3] to fail
at capturing flow features essential to accurately pre-
dict the flow physics and aerodynamic characteris-
tics. An alternative for computing the flow solution is
called large eddy simulation (LES). The large scales
of turbulence are resolved, while the smaller scales
are modeled. The sub-grid scale (SGS) model em-
ployed in the present study is the model of Kim &
Menon, which governs the transport of SGS turbu-
lent kinetic energy. Because of its high computational
cost, LES should only be used when URANS models
are inadequate. The simple regions of the flow (at-
tached boundary layers, etc) are therefore modeled
using URANS methods, while the more complex flow
features (separation, etc) are captured using LES.
The two approaches are combined using a blending
function that ensures a smooth transition from one
model to the other. This URANS/LES hybridization
has recently been validated over a wide range of ap-
plications involving massive separation and unsteady
effects [20,21].

2.2 Computational Grids

A structured grid modeled the wings under considera-
tion. This mesh was generated by Smith et al. [3,22] for
analyzing the behavior of wings at high and reverse
angles of attack. This previous article includes grid
refinement studies for angles of attack ranging from
0◦ to 180◦. The mesh was generated with an O-grid
topology, for the purpose of capturing the finite trail-
ing edge. It is important to maintain a high fidelity at

the trailing edge in order to study the effect of yaw in
reverse flow, as demonstrated in Smith et al. [3,22].

The NACA0012 grid consists of 120 points normal
to the airfoil and 825 circumferential points, with 20
of those being located along the blunt trailing edge.
The streamwise points were distributed equally over
the upper and lower surfaces of the airfoil. The ini-
tial cell spacing at the wall was chosen to ensure
that y+ < 1 at the Reynolds number considered in this
study (see Table 1) and that 35-50 normal cells re-
solve the boundary layer [22,23]. The grid extent from
the airfoil to the outer boundary was progressively
increased until convergence of the integrated forces
and moments was obtained. This corresponded to an
outer boundary distance of 18c. The SC1095 grid was
developed using the NACA0012 grid as a guide.

To model crossflows, it is critical to determine
the span dimension required to accurately capture
the three-dimensional nature of the semi-infinite flow
without interference from the period spanwise bound-
ary conditions. Three different grids with spans 2c,
4c and 8c were evaluated. An analysis of the vorticity
fields revealed that a spanwise extent of 2c with 61
span stations was sufficient for angles of attack below
stall for both forward and reverse flows.

3 EXPERIMENTAL VALIDATION

There are few data sets available to correlate high
Mach numbers yawed wing results. Much of the
experimental data are specific to certain planforms
and are thus difficult to generalize for the present
study. Purser and Spearman [4] conducted an ex-
tensive experimental investigation on finite wings in
crossflow, including a NACA0012 profile of aspect
ratio six. However, this study was limited to in-
compressible Mach numbers. The present numer-
ical results [3,16,22] were therefore validated in two
steps. First, the incompressible NACA0012 yawed
results were correlated to the extensive experimental
database of Purser and Spearman [4]. Then, the com-
pressible NACA0012 and SC1095 at zero yaw angle
(Λ = 0◦) results were correlated to the experimental
data of McCroskey [17] and Bousman [24]. In addition
to the prior grid independence assessment, best prac-
tices in the literature indicate that CFD predictions are
reliable if the computational results correlate well with
these two data sets.

3.1 Incompressible Yawed Wing

The incompressible NACA0012 yawed results were
compared to the extensive database of Purser and
Spearman [4]. The experiments were conducted over
a range of Reynolds number from Re = 0.992×106 to
1.25× 106 with an aspect ratio of six. The impact of
Reynolds number on the lift curve slope was observed



to be negligible at low angles of attack before the on-
set of stall [4]. The following correction was applied to
account for the influence of the wing finite tip.

(1) a =
a0 cosΛ√

1+[(a0 cosΛ)/(πAR)]2 +(a0 cosΛ/(πAR))

where a is the corrected lift curve slope and a0 is the
uncorrected slope. AR and Λ are respectively the as-
pect ratio and the sweep angle of the wing. This cor-
rection was developed by Kuchemann [25] specifically
for swept wings. Figure 2 shows the computationally-
predicted normalized lift curve slope a/a(Λ=0) of the
NACA0012 yawed section at M = 0.2 correlated with
the experimental data. The CFD solver predicts the
experimental lift curve slope within 2% for yaw an-
gles up to 50◦. Beyond this angle, the error slightly
increases and reaches 9% when Λ = 80◦. The results
are also in very good agreement with the indepen-
dence principle, which predicts that a = a(Λ=0) cos2 Λ.

Fig. 2: Correlation of the normalized lift curve slope
(NACA0012 yawed section) of computational (CFD)
results at M = 0.2 [3] with the M=0.1 experimental data
of Purser and Spearman [4]

Unfortunately, the quality of the drag polar pub-
lished by Purser and Spearman was poor, preventing
direct drag comparisons. According to the indepen-
dence principle, the drag is only slightly affected by
the crossflow [5]. Hence, only the at zero yaw valida-
tion for the drag coefficients will be sufficient for the
present study.

3.2 Compressible Wing at Zero Yaw Angle

The lift curve slope and drag coefficient (at α = 0◦)
for the NACA0012 at zero yaw wing were correlated
to the experimental data gathered by McCroskey [17].
McCroskey examined a large body of experimental
results, collected in more than 40 wind tunnels on

NACA0012 wings. The comparison with the present
computational simulations are shown in Fig. 3. The
experimental data shown in this plot were obtained at
Reynolds numbers on the order of 106. The compu-
tational predictions fall within the experimental error
bounds for both the lift curve slope and drag coef-
ficient. Similar results were observed for the pitch-
ing moment and the aerodynamic coefficients for the
SC1095 airfoil [22].

(a) Lift curve slope vs. Mach number

(b) Drag coefficient at α = 0◦ vs. Mach number

Fig. 3: Correlation of the computational results (zero
yaw NACA0012 airfoil) with the experimental data of
McCroskey [17].

4 CROSSFLOW AND YAW INDEPEN-
DENCE MODELS

The vast majority of comprehensive rotorcraft codes
rely on the independence principle to account for
crossflow effects. This approach assumes that the
aerodynamics of the blade is solely affected by the
velocity component in the plane normal to the span,



Fig. 4: Independence principle applied to an infinite
yawed wing.

and that the properties at each radial station are not
affected by the crossflow [26]. The independence prin-
ciple can be derived from the boundary layer equa-
tions. Considering a cylindrical wing of infinite aspect
ratio swept at an angle Λ, all derivatives along the ra-
dial direction must vanish. Although there may exist
a radial flow v, all properties cannot be functions of
the radial direction y. It directly follows that pressure
gradients can only act in the direction normal to the
span axis, as illustrated in Fig. 4. The compressible
steady boundary layer equations for laminar flow in
Cartesian coordinates can be written as

(2)
∂

∂x
(ρu)+

∂

∂ z
(ρw) = 0

(3) ρ

(
u

∂u
∂x

+w
∂u
∂ z

)
=−d p

dx
+

∂

∂ z

(
µ

∂u
∂ z

)

(4) ρ

(
u

∂v
∂x

+w
∂v
∂ z

)
=

∂

∂ z

(
µ

∂v
∂ z

)

(5) ρ

(
u

∂H
∂x

+w
∂H
∂ z

)
=

∂

∂ z

[
µ

∂

∂ z

(
H +

Pr−1
Pr

CpT
)]

where Pr is the Prandtl number and H is the stagna-
tion enthalpy. The z-momentum equation reduces to
∂ p/∂ z' 0 because of the boundary layer approxima-
tion. If the flow is incompressible, the above system
of equations is decoupled. Eqs. (2) and (3) can be
solved for u and w, without regard to the crossflow v.
The independence principle does not hold for com-
pressible flow, where density becomes a function of
both u and v [27]. There has also been much debate
regarding the applicability of the independence princi-
ple to turbulent flow. Recent results by Wygnanski [28]

suggest that the independence principle applies to
laminar and (Reynolds-averaged) turbulent boundary
layers alike.

Mathematically, the independence principle can be
used to relate the lift and drag coefficients of the
yawed wing to the two-dimensional at zero yaw air-
foil characteristics. The forces acting on the wing can

be seen either in terms of sections aligned with the
freestream (yawed section, denoted by the subscript
y), or sections normal to the leading edge (normal
sections, no subscript). As illustrated in Fig. 4, the
characteristics of the yawed and normal sections can
be related using simple geometry:

(6) q = qy cos2
Λ c = cy cosΛ α =

αy

cosΛ
,

where q is the dynamic pressure, c is the chord and α

is the angle of attack. It is generally assumed that the
drag on the wing is aligned with the freestream [29].
The lift and drag coefficient for the yawed and normal
sections can therefore be related as follows:

(7) cl(α) =
L
qS

=
Ly

(qy cos2 Λ)S
=

cly(αy)
cos2 Λ

(8) cd(α) =
D
qS

=
Dy cosΛ

(qy cos2 Λ)S
=

cdy(αy)
cosΛ

.

The reference area does not change for the yawed
and normal sections, since an increase in span is
compensated by a corresponding reduction in chord
length. Up to this point, the independence principle
has not been applied as Eqs. (7) and (8) arise from
geometric considerations, as well as a few assump-
tions (drag aligned with the freestream, etc). Accord-
ing to the independence principle [5], the pressure dis-
tribution in the direction normal to the span is not in-
fluenced by the crossflow:

(9) cl(α) = cl2D(α).

Also, the boundary layer grows in the freestream di-
rection without being influenced by the crossflow:

(10) cdy(αy) = cd2D(αy).

Equations (9) and (10) define the independence prin-
ciple. When Eqs. (9) and Eq. (10) are introduced into
Eq. (7) and Eq. (8), the normal aerodynamic coeffi-
cients can be directly related to the two-dimensional
at zero yaw airfoil characteristics, and the crossflow
model is obtained:

(11) cl (α) =
cl2D

(
α cos2 Λ

)
cos2 Λ

(12) cd (α) =
cd2D (α cosΛ)

cosΛ
.

It is important to notice that Eqs. (11) and (12) differ
from the independence principle. Crossflow models
are typically written in this form [29] in order to capture
the lift loss delay observed experimentally on yawed
wings [30]. When interpolating in airfoil tables, the co-
efficients are evaluated at the normal Mach number
M = M∞ cosΛ. The change in thickness between the
yawed and normal sections could also be considered
(ty = t cosΛ), but is generally neglected in comprehen-
sive rotorcraft codes [29].



4.1 Airfoil Table Interpolation

The crossflow model described in the previous sec-
tion relies on two-dimensional airfoil characteristics.
These parameters are typically stored in airfoil ta-
bles, which contain the aerodynamic coefficients for
a given set of Mach numbers and angles of attack
obtained through experiments, computations, aero-
dynamic theory, or a combination of these. Com-
prehensive codes typically utilize linear interpolation
schemes to rapidly estimate the coefficients at the
local rotor conditions. This approach is fast and ro-
bust but lacks accuracy in highly non-linear regions,
as illustrated in Fig. 5 for the areas M ∈ [0.7,0.8]
and M ∈ [0.9,1.0]. Third-order interpolations can also
be used, but sometime lead to oscillations or over-
shoots in the surrogate model [31], as can be seen in
Fig. 5. Radial Basis Functions (RBF) do not have the
issues identified in these polynomial basis functions,
and are widely used to construct the surrogate mod-
els of functions given a set of discrete data points. A
multiquadric radial basis function was chosen to in-
terpolate the coefficients, based on prior results with
aerodynamic data [32]. Once the RBF model has been
trained, it becomes possible to interpolate the function
at any point in the domain. As illustrated in Fig. 5, the
RBF captures the non-linear region without generat-
ing oscillations resulting from higher-order polynomial
interpolations. Linear polynomial methods are accu-
rate below M = 0.7 in this example, but cannot cap-
ture the sharp rise in drag coefficient that occurs at
higher Mach numbers. The relative error between the
RBF and linear polynomial interpolations is relatively
small at most Mach numbers, but it becomes signif-
icant (50% error) when the critical Mach number is
reached.

Fig. 5: Interpolation of the drag coefficient of an at
zero yaw NACA0012 wing at α = 0◦ using different
schemes.

The implementation of interpolation algorithms
in comprehensive rotorcraft codes requires special
treatment in order to maintain a low computational
cost. During the design phase of a new concept,
thousands of configurations are evaluated and com-
pared. It is therefore of the utmost importance to keep
the interpolation time as low as possible. Linear and
third-order polynomial schemes are typically simple
enough so that their weights wi can be computed an-
alytically. The additional training step does not repre-
sent a major issue for RBF methods, since this train-
ing only needs to be completed once for any partic-
ular airfoil table. Without regard to the training time,
the interpolation time is directly related to the num-
ber of basis functions (n) retained in the model [31].
The polynomial basis of linear schemes consists of
only three elements in two dimensions, so that the
computational cost is very low. However, RBF meth-
ods require one basis function per sample point in the
model. The interpolation cost therefore increases dra-
matically with the extent of the surrogate model. For
the present simulation, it was found that a RBF model
trained with 55 points (11 Mach numbers and 5 an-
gles of attack) required twice as much time as a linear
polynomial scheme to interpolate a data point. This
factor increased to 10 for a model sampled with 220
points. However, the RBF methods can be used in a
different way. Because experimental or computational
methods tend to be relatively sparse, the RBF method
can be utilized to generate airfoil tables with a finer
resolution so that interpolations using linear polyno-
mial schemes are nominally error free in regions of
rapid change.

5 RESULTS AND DISCUSSION

A sweep of Mach numbers (M = 0.2 - 0.8) and an-
gles of attack (α = 0◦ - 8◦) for yawed flow from Λ = 0◦

- 80◦ for the NACA0012 and SC1095 was compared
with the crossflow model in Eq. (11) and Eq. (12).
The lift, drag and pitching moment coefficients are
successively analyzed in this angle of attack region
for infinite uniform wings comprised of the two airfoils.
The analysis has then been extended to reverse flow
conditions, where the blade operates with the trailing
edge forward in the relative wind. As noted previously,
the results are shown for the NACA0012 airfoil, with
commentary included for differences in the SC1095
airfoil results where applicable.

5.1 Lift Coefficient

Figure 6 illustrates a typical comparison between the
computational results and the crossflow model. As
the independence principle states that the pressure
distribution normal to the span axis is not influenced
by the cross flow, the sectional lift coefficient for a
normal section should therefore be constant for the
range of yaw angles considered. This assumption is



largely verified by the present numerical experiments
at α = 4◦, as illustrated in Fig. 6(a). The simple
crossflow model provides excellent results, with rela-
tive errors consistently within 5% of the computational
data. The lift of the at zero yaw wing increases with
Mach number due to compressibility effects, until it
reaches the divergence Mach number and drops sud-
denly. The loss in lift from shock-induced boundary
layer separation can also be observed in Fig. 3 by the
change in slope at M = 0.8. As the sweep angle in-
creases, the normal Mach number decreases and the
wing progressively leaves the transonic regime. Fig-
ure 6(b) illustrates the same comparison at an higher
angle of attack α = 8◦. The independence principle
provides results within 9% of the computational data
in the incompressible regime. However, the crossflow
model constantly overpredicts the lift coefficients up
to 45% at higher Mach numbers.

The source of these discrepancies has been inves-
tigated. At this point, it is important to distinguish the
differences between the crossflow model and the ac-
tual independence principle. The latter states that the
lift coefficient of the normal section is unaffected by
yaw angle. On the other hand, the crossflow model
described in Eq. (11) was developed to account for
the delay in boundary layer separation. The reduction
of the effective angle of attack by cos2 Λ in Eq. (11)
artificially increases the maximum stalling angle and
lift coefficient, as observed in early experiments [33].
These features are desirable at low Mach numbers,
but appeared to generate signifant errors in the tran-
sonic regime, where the flow is highly non-linear. In
order to verify this hypothesis, the lift coefficients pre-
dicted by both the independence principle (Eq. (9))
and the crossflow model (Eq. (11)) were correlated
against the numerical experiments. Figure 7 demon-
strates that the independence principle still holds in
the transonic regime. The coefficient at M = 0.8 is
predicted within 7% of the CFD data over the en-
tire range of yaw angles, where errors greater than
45% were observed with the crossflow model. Both
the independence principle and crossflow model have
strengths and weaknesses. The independence prin-
ciple holds in the transonic regime, but it will not pre-
dict the delay in lift loss observed experimentally at
subcritical Mach numbers [30]. The crossflow model
should only be used when the Mach number normal
to the span axis is below the critical Mach number.

As noted previously, Jones [26] and other authors
derived the three-dimensional laminar boundary layer
equations with crossflow. They concluded that the
independence principle would fail at compressible
speed, because of the effect of the radial velocity v
on density. However, the present results clearly show
that the independence principle holds in the com-
pressible regime. This conclusion is not surprising,
as there are several concepts that justify this obser-

(a) α = 4◦

(b) α = 8◦

Fig. 6: Correlation of the CFD lift coefficient (symbols)
with the crossflow model (solid lines) at different Mach
numbers and yaw angles.

vation. The approach consisting of deriving the full
boundary layer equations is the most rigorous one.

However, a second justification is often presented
in the rotorcraft literature [29]. Consider an infinite uni-
form wing at zero yaw (see Fig. 4) with an incoming
freestream V∞ cosΛ normal to the leading edge. If the
uniform wing was moving at a velocity V∞ sinΛ parallel
to the leading edge, the normal pressure distribution
at any span station would remain unaffected. This is
again the independence principle.

5.2 Drag Coefficient

The drag coefficients predicted by the crossflow
model are correlated with the numerical experiments
at several Mach numbers and yaw angles. The be-
havior is similar at both angles of attack shown in Fig.



Fig. 7: Correlation between the crossflow model
(dash lines), the independence principle (solid lines)
and the numerical experiments (symbols).

8. The crossflow model performs very well below a
yaw angle of approximately Λ = 40◦, with predictions
typically within 10% of the computational data. Above
this angle, the drag coefficient becomes almost in-
dependent of Mach number. As the yaw angle in-
creases, the normal Mach number reduces, the wing
eventually leaves the transonic regime and the wave
drag disappears.

At angles of attack where the flow remains at-
tached and in the subcritical Mach range, drag is pri-
marily due to skin friction at the wall. The drag is
essentially independent of the angle of attack, which
explains the reason why the curves coalesce in Fig.
8. The crossflow model predicts that the skin friction
drag of the yawed section will remain constant and in-
dependent of the sweep angle. As a result, the drag
coefficient for the normal section should increase as
cos−1 Λ, since cdy (αy) = cd (α)cosΛ and the drag co-
efficient is not influenced by the angle of attack. This
leads to large normal drag coefficients when Λ ap-
proaches 90◦. This singular point does not arise from
unphysical behavior, but from the actual definition of
the drag coefficient for the normal section. As the yaw
angle approaches Λ = 90◦, the normal component of
the velocity vector progressively goes to zero. How-
ever, the skin friction drag on the wing remains finite.
The drag coefficient for the normal section is now sin-
gular due to the definition of an inappropriate refer-
ence scale.

This behavior was also noted previously by Smith
et al. [3]. The drag coefficient was plotted for the nor-
mal sections rather than the yawed sections. The
reason behind this choice is that comprehensive ro-
torcraft codes are based on the drag coefficients for
the normal sections when computing the rotor perfor-
mance. In order to investigate the error introduced by

the crossflow model, it is therefore required to remain
within this frame of reference.

There has been much debate regarding the ap-
plicability of the independence principle for predict-
ing skin friction drag in turbulent boundary layers.
Altman and Hayter [34] measured and compared the
boundary layer growth for wings with (45◦) and with-
out (0◦) yaw. They observed a more rapid growth
rate for the swept wing, but attributed this result to
the differences in the surface conditions of their two
models. Hence, Altman and Hayter concluded that
the independence principle was valid at moderate lift
coefficients. Ashkenas and Riddell [35] also investi-
gated this phenomenon both theoretically and exper-
imentally: “The conclusion at this point is unmistak-
able: The independence principle cannot be applied
to the case of turbulent boundary layers on yawed
flat plates. The measured growth curve, for the case
Λ = 30◦ and 45◦ is thicker than that for the at zero
yaw-plate case.”

The present results bring a new perspective to this
debate. As illustrated in Fig. 8, the independence
principle remains within 10% of the numerical experi-
ments up to approximately Λ = 40◦. Beyond that point,
the crossflow model fails to predict the drag coefficient
accurately. At Λ = 80◦ and α = 4◦, the model over
predicts the skin friction by approximately 60%. This
error is largely amplified by the projection of the drag
coefficient on the normal section, as explained previ-
ously and as illustrated in Fig. 4. These results sug-
gest that the crossflow does indeed affect the bound-
ary layer and reduce the skin friction at the wall, as
suggested by Ashkenas and Riddell [35]. However,
a detailed analysis of the data offered another al-
ternative: the independence principle still holds, but
Reynolds number effects need to be considered.

It was assumed that the boundary layer was grow-
ing only in the freestream direction, independent of
crossflow effects. However, the chords of the yawed
and normal sections are different (c = cy cosΛ), lead-
ing to different Reynolds numbers per section. A sim-
ple correction based on Prandtl’s theory for turbulent
boundary layers can be developed to account for this
assumption. Assuming a 1/7 power law for the veloc-
ity profile, the classical result for the drag coefficient
on a flat plate of length x is:

(13) Cd =
0.074

R1/5
e

with Re =
U∞c

ν
,

where U∞ is the freestream velocity and ν is the kine-
matic viscosity of the flow. In this case, the Reynolds
number is based on the normal section chord length.
In the swept wing case, the boundary layer will grow in
the direction of the freestream, so that the Reynolds
number becomes

(14) Rey =
U∞cy

ν
=

1
cosΛ

U∞c
ν

=
Re

cosΛ
.



(a) α = 4◦ (b) α = 8◦

Fig. 8: Correlation of the CFD drag coefficient (symbols) with the crossflow model (solid lines) at different Mach
numbers and yaw angles.

Introducing the yawed Reynolds number in the for-
mula for the skin friction drag, the following relation
can be obtained:

(15) Cdy =
0.074

R1/5
ey

=
0.074

(Re/cosΛ)1/5 = Cd2D cos1/5
Λ.

This simple analysis suggests that the drag coeffi-
cient of the yawed section will decrease with increas-
ing sweep angle. This conclusion is a direct conse-
quence of the larger Reynolds number due to the pro-
jection length. In order to verify this assumption, the
crossflow model described in Eq. (12) was modified:

(16) cd (α) =
cdy (α cosΛ)

cosΛ
=

cd2D (α cosΛ)
cos4/5 Λ

.

This very simple correction significantly improved the
drag predictions at high yaw angles, as illustrated in
Fig. 9. At Λ = 80◦ and α = 4◦, the relative error be-
tween the crossflow model and the numerical exper-
iment was reduced from 60% to 12%. Further anal-
ysis is warranted on different airfoil shapes beyond
these two (NACA0012 and SC1095), and what tur-
bulent power law most appropriately holds for rotor
operational conditions.

5.3 Pitching Moment Coefficient

The pitching moment coefficient can also be com-
puted from the independence principle. The coeffi-
cient at the quarter chord for the normal section can
be related to the two-dimensional airfoil characteris-
tics as follows [36]:

(17) cm(α) = cm2D(α cos2
Λ).

Figure 10 shows the correlation between the numeri-
cal experiments and the crossflow model described in

Fig. 9: Normal Drag Coefficient at zero angle of attack
and M = 0.2 with and without correction term for the
boundary layer growth.

Eq. (17). The model exhibits significant discrepancies
at high Mach numbers, with relative errors regularly
above 50% at M = 0.8. The discrepancies are con-
centrated in the transonic yawed regime. This result
is not surprising since the pitching moment is charac-
terized by the pressure distribution about the airfoil.
As noted previously, the crossflow model assump-
tions break down in the transonic regime, introducing
large discrepancies in the lift predictions. If the pres-
sure distribution is obtained using the independence
principle (Eq. (9)), the errors immediately drop over
the whole range of Mach numbers and sweep angles
considered, as illustrated in Fig. 10.

The conclusions for the pitching moment are thus
similar to the conclusions for the lift coefficient: the
independence principle can predict the pitching mo-
ment typically within 10% of the numerical experi-



(a) α = 4◦ (b) α = 8◦

Fig. 10: Correlation of the CFD pitching moment coefficient about the quarter chord (symbols) with the cross-
flow model (dash lines) and independence principle (solid lines) at different Mach numbers and yaw angles.

ments, whereas the crossflow model fails in the tran-
sonic regime. This failure is due to the large non-
linearities beyond the critical Mach number, and ap-
ply to both the symmetric and cambered airfoils eval-
uated in this study.

5.4 Reverse Flow Aerodynamics

As illustrated in Fig. 1, a considerable amount of re-
verse flow exists on the retreating side of the rotor
disk. In this region, the blades operate with the trail-
ing edge forward in the relative wind. The lift and drag
coefficients of infinite wings were investigated at var-
ious Mach numbers and yaw angles at α = 176◦ and
172◦. These two angles of attack correspond respec-
tively to 4◦ and 8◦ in reverse flow. Both angles of at-
tack exhibited similar features, so that only the results
at α = 172◦ will be presented in Fig. 11.

The incompressible lift coefficient only changes by
approximately 10% over the entire range of sweep
angles evaluated in this study (0◦ to 80◦). This re-
sult is not surprising, since the independence princi-
ple should theoretically hold for any cylinder. How-
ever, the independence principle assumptions are vi-
olated if the boundary layer separates, since the invis-
cid hypothesis breaks down. The infinite yawed wing
in reverse flow was found to behave similarly to a flat
plate, as illustrated in Fig. 12. The boundary layer is
already separated at the leading edge at only 8◦ due
to the shape of the blunt trailing edge. Significant vor-
ticity is shed from the leading edge separation. As the
yaw angle increases, the stall delaying phenomenon
observed by Sweet [30] clearly reduces the amount of
separation at the trailing edge. Interestingly, this stall
delaying effect does not influence the lift coefficient of

the wing, as shown in Fig. 11. Hence, it can be rea-
sonably assumed that most of the lift produced by the
airfoil in reverse flow comes from the high pressure
region on its lower surface. The upper surface is rela-
tively flat, so that there is no significant acceleration of
the flow as observed on classical airfoil shapes, both
for symmetric and mildly cambered configurations.

Fig. 11: Lift (solid lines) and drag (dash lines) coef-
ficients of an infinite NACA0012 wing in reverse flow
(α = 172◦) at various Mach numbers and yaw angles
from computational simulations.

On the other hand, the drag coefficient is dramati-
cally influenced by the crossflow, reducing from 0.06
at Λ = 0◦ to 0.0003 at Λ = 80◦ (at M = 0.3). The inde-
pendence principle predicts that the boundary layer
should grow in the direction of the free stream, without



being influenced by the crossflow. The present results
suggest that this assumption does not hold in reverse
flow. The reason for this failure can be understood by
decomposing the drag into viscous and pressure ef-
fects. Pressure drag represents 97% of the total drag
force at α = 172◦, M = 0.6 and Λ = 0◦. This contribu-
tion reduces to 10% as the yaw angle is increased to
Λ = 80◦. As illustrated in Fig. 12, the crossflow signif-
icantly reduces the boundary layer separation at the
trailing edge of the wing.

(a) Yaw angle Λ = 0◦

(b) Yaw angle Λ = 80◦

Fig. 12: Spanwise vorticity iso-surface (ωy = 5). Stall
delaying effect of cross flow on a NACA0012 infinite
wing in reverse flow (M = 0.6, α = 172◦).

Recalling the theory of infinite uniform wings, there
can be no pressure gradient in the radial direction.
The pressure drag will necessarily act in the direction
normal to the span axis, which is in direct contradic-
tion with the crossflow model assumptions. Following
the approach proposed by Harris [5], one can derive
an approximation for the pressure drag below stall.
The drag force normal to the span axis is given by

(18) Dp =
1
2

ρ (V∞ cosΛ)2 Scd p(Λ=0) ,

where Cd p(Λ=0) is the pressure drag coefficient for the
at zero yaw wing. As shown in Fig. 4, the pressure
drag will act in the direction normal to the span axis.
It follows that the component of the drag force parallel
to the freestream is

(19) Dpy = Dp cosΛ =
1
2

ρV 2
∞ cos3

ΛScd p(Λ=0) .

Combining Eq. (18) and Eq. (19), the pressure drag
coefficient for the yawed section becomes

(20) cd py =
Dpy

1
2 ρ∞V 2

∞S
= cd p(Λ=0) cos3

Λ.

As noted previously (see Fig. 11), the pressure drag
dominates in reverse flow (97% of the total drag at
α = 172◦, M = 0.6 and Λ = 0◦). It can reasonably be
assumed that cd p ' cd and cd p(Λ=0) ' cd2D , so that the
yawed pressure drag coefficient can be written as

(21) cdy = cd2D cos3
Λ.

Fig. 13: Correlation of the drag coefficient of an infi-
nite NACA0012 wing in reverse flow (α = 172◦) pre-
dicted using the crossflow model with (solid line) and
without (dash lines) pressure drag correction, and
CFD data (symbols).

The drag coefficients predicted by the crossflow
model (Eq. (12)) and pressure correction (Eq. (21))
are correlated with the numerical experiments in Fig.
13. In reverse flow (|α|> 90◦), the angle of attack cor-
rection for the crossflow model becomes

(22) αy =
[
(|α|−180◦)cos2

Λ+180◦
]
sign(α)

for the lift and pitching moment coefficient and

(23) αy = [(|α|−180◦)cosΛ+180◦]sign(α)

for the drag coefficient [36]. The pressure drag cor-
rection provides very good results, consistently within
10% of the CFD data. However, the correction pre-
dicts zero drag when Λ = 90◦, because the skin fric-
tion has been neglected in Eq. (21). The crossflow
model fails significantly at high yaw angles, overpre-
dicting the drag coefficient by 100% at Λ = 80◦. The
explanation for this error is simple. As the yaw angle
increases, the effective angle of attack αy converges
to 180◦. The drag coefficient at α = 180◦ is signifi-
cantly higher than the drag coefficient at 0◦ due to
the boundary layer separation at the trailing edge (see
Fig. 12). However, the drag coefficients at 180◦ and 0◦

should theoretically be equivalent when Λ = 90◦. This
is an inconsistency of the crossflow model that results
in the large discrepancies observed in Fig. 13.

5.5 Impact on Rotor Aerodynamics

The impact of the new corrections for the crossflow
model on the rotor performance was investigated us-
ing the H-34 test data [37]. The NACA0012 untapered,
untwisted rotor was modeled using Dymore, a finite
element based multibody dynamics code [38]. The
present analysis established the impact of the C-81



table discrepancies on a rotor blade during forward
flight. This study was conducted at an advance ra-
tio µ = 0.4, for which large yaw angles are expected
over the disk. The tip Mach number was chosen to
be Mtip = 0.9. The control positions and shaft angle
of attack were obtained from Harris [2], correspond-
ing to the case CT /σ = 0.077. The analysis was per-
formed wth an open loop between the C-81 tables and
the aeroelastic response to quantify the aerodynamic
effects only. The results from the corrected model
were compared with the crossflow model described
in Eq. (11) and (12). The lift and drag coefficients are
weighed by the Mach number squared, as has be-
come a standard approach of comparing these data.
The relative percentage errors between the models
are shown in Fig. 14. While some regions have large
relative errors, the consequences of the error can re-
main negligible if the dynamic pressure is locally small
(e.g., near the blade root).

The results in Fig. 14 indicate that the corrections
have a significant impact on both the lift and drag co-
efficients. It is readily observed that the error between
the two models is at a maximum in regions where the
Mach number, sweep angle and angle of attack are
highest on the aft side of the rotor disk, close to the
tip (Fig 14a). In this region, the lift coefficient (non-
weighted) varies by 20% and the drag coefficient by
25% between the standard and the corrected cross-
flow models. The differences are also significant in
the reverse flow region, but their impact is significantly
damped by the low local dynamic pressure. The re-
sults presented in the section are for a single moder-
ate flight condition. As the aircraft weight increases,
so should the blade loading and local angles of at-
tack. Higher advance ratios will result in large regions
of crossflow, as depicted in Fig. 1. It is therefore ex-
pected that the observed failure of the standard cross-
flow model will become aggravated as future rotorcraft
concepts grow larger and faster.

6 CONCLUSION

In the present study, high fidelity computations with
a computational fluid dynamics (CFD) solver on an
infinite yawed NACA0012 wing for a wide range of
Mach numbers, angles of attack and yaw angles were
evaluated for low angles of attack (below 8◦) for the
range of Mach numbers from incompressible to sonic.
These numerical experiments were then used to eval-
uate the performance of a standard crossflow model
at high-advance-ratio flight. Primary conclusions in-
clude:

1. A radial basis function can be used to interpolate
the airfoil tables to much finer resolution so that
fast linear polynomial interpolations can be re-
tained in the present comprehensive codes with-

(a) Contours of yaw angle superimposed with lines
of Mach number (black) and angle of attack (red).
The angles are displayed in degrees.

(b) Percent error in lift coefficient

(c) Percent error in drag coefficient

Fig. 14: Relative percentage error between the cor-
rected model and the original crossflow model predic-
tions. The freestream comes from the top and the ro-
tor turns in the counterclockwise direction. Test con-
ditions: Mtip = 0.9, µ = 0.4, CT /σ = 0.077 (H34 rotor)



out the large errors (up to 50%) obtained when
significant nonlinear changes are encountered.

2. The independence principle holds for lift coeffi-
cient predictions in the linear range of angles of
attack for all the Mach numbers and yaw angles
investigated in the present study (M = 0.2− 0.8,
Λ = 0◦ − 80◦). However, the crossflow formula-
tion results in significant errors when applied to
airfoils in the transonic yawed regime, over pre-
dicting the lift coefficient by more than 50%. It
is recommended that the model switch from a
crossflow to independence principle formulation
when transonic flow is encountered. The equa-
tion for the critical pressure coefficient or other
similar equations can be applied to determine
when transonic flow is locally encountered.

3. The assumption that the boundary layer grows in
the freestream direction, unaffected by the cross-
flow was verified with the present numerical ex-
periments. However, it was found that Reynolds
number effects due to changes in the reference
chord length should be included above Λ ' 40◦

in order to obtain accurate predictions. A sim-
ple correction Cdy = Cd2D cos1/5 Λ based on phys-
ical arguments is proposed to account for this
change.

4. The conclusions obtained for the lift coeffi-
cient also apply to the pitching moment coeffi-
cient. The independence principle can predict
the pitching moment within 10% of the numer-
ical experiments, whereas the crossflow model
fails in the transonic regime. This failure is due to
the large non-linearities beyond the critical Mach
number.

5. For reverse flow at angles of attack with 8◦ of the
relative free stream velocity, independence prin-
ciple accurately predicts within 10% of the nu-
merical experiments the lift and pitching moment
coefficient over the whole range of angles of at-
tack and Mach numbers that were evaluated.

6. The crossflow model fails to accurately predict
the drag coefficient in reverse flow, primarily due
to the large amount of boundary layer separa-
tion. A drag correction, based on physical be-
havior, was developed to accurately predict the
change in pressure drag coefficient with yaw an-
gle: cdy = cd2D cos3 Λ.

7. Comparison at a moderate advance ratio of 0.4
indicates that errors due to crossflow and reverse
flow in both subcritical and transonic Mach re-
gions are significant (up to 25% in lift and drag
coefficients). Based on the literature, higher ad-
vance ratios of 1.0 – 2.0 will encounter even
larger errors if corrections are not applied.
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