
Edge-based Approach to Estimate the Drift of a Helicopter During Flight

Alexander Gatter

Institute of Flight Systems
German Aerospace Center, DLR, Lilienthalplatz 7

38108 Braunschweig, Germany

ABSTRACT

The Institute of Flight Systems at the German Aerospace Center (DLR) site in Braunschweig Germany
has set its goal into making helicopter flying as safe as possible. The new DLR research project “Rettungs-
hubschrauber 2030” addresses the topic of aiding helicopter rescue missions. Research will be conducted to
increase the safety of these missions as well as to enable the conduct of missions in circumstances where
nowadays a helicopter would not be allowed to operate. One aspect of this research is to increase or maintain
the situational awareness of the pilot by processing data from camera images. The presented paper will focus
on the field of visual odometry. Most of the publications on this topic use techniques that are only working
with satisfying reliability in a very restricted environment, i.e. in good weather conditions. It shall be surveyed,
if an edge-based approach for extracting features is a possible alternative or addition to established feature
extractors. In the following paper, two algorithms for edge-extraction will be compared: An algorithm that is
based on Hough transform and an algorithm that is based on the Douglas-Peucker-Method. They will be tested
on their ability to detect a sufficient amount of features in camera images as well as on their computational
complexity. Then, their ability to detect the drift of a helicopter will be surveyed on recorded data from flight
tests with the Advanced Control Technology/Flying Helicopter Simulator (ACT/FHS) of the DLR. Their
performance will be tested on the base of reference data from the ACT/FHS which have been recorded by
the use of a highly accurate INS/DGPS system. Finally, a short outlook in form of a first comparison of well
established feature extractors and the presented algorithms will be shown on a recorded scene with raindrops
covering the lens of the camera.

Keywords: Computer Vision; Visual Odometry; Drift Estimation; Degraded Visual Environment; Helicopter
Landing; IR

1. Introduction

The Advanced Control Technology/Flying Heli-
copter Simulator (ACT/FHS) is a highly modified
EC135 that is operated by the German Aerospace
Center (DLR) in Braunschweig. It is equipped with
a large set of sensors in order to enable the research of
new technologies that improve the safety of helicopter
flying. Some of these sensors are

• a commercial off-the-shelf visible light camera
that operates at a rate of 25Hz and has a res-
olution of 640×480 px,

• a thermal infrared bolometer camera from the
company MaxViz Inc. that operates at a rate of
30Hz,

• the H-74 ACE INS from Honeywell which is a
highly precise coupled GPS/INS system, and

• a radar altimeter.

Figure 1 shows an image of the ACT/FHS. The com-
bination of these sensors enables the research of new
methods for visual odometry. The Institute of Flight

Figure 1: DLR’s modified EC135: The ACT/FHS

Systems of the DLR currently pursues the research
project “Rettungshubschrauber 2030” (Rescue Heli-
copter 2030). One goal of this project is to improve
the safety of helicopters in rescue missions, especially
in adverse operating situations. To this purpose, a
vision-based approach shall be developed that enables
the compensation of possible GPS failures. Many pub-
lications exist that substitute GPS data with visual
data like for example in [1] and [2]. These approaches
focus mainly on the localization of the helicopter. The
presented algorithm is designed to detect high lateral
velocities in landing approaches of helicopters. Many
accidents occur because a helicopter has an exceed-
ing (often lateral) movement speed when touching the
surface [3]. This can cause the landing gear of the heli-
copter to get stuck on an obstacle on the surface. This
changes its lateral movement to an angular movement
with the obstacle being its angle point. A so-called
“dynamic rollover” results from that if the pilot does
not manage to counter-react in time. In many cases
the pilot can estimate the speed of the helicopter by
observing the landing zone and the relative movement
of the helicopter to it. In degraded visual environ-
ment (DVE) situations, this task gets more difficult
to perform. From that, the need arises to provide an
alternative way of estimating the speed of the heli-
copter. Most feature extractors that are nowadays n
use are designed to operate in a non-disturbed envi-
ronment. The edge-based approach that will be pre-
sented in this paper tries to give an alternative to com-
monly used feature extractors which is more robust in
certain types of DVE scenarios. Two different edge
extractors have been implemented and tested. Their
working principles as well as their performances will
be presented in this paper.

2. Pre-processing

This section gives an outline of the two processing
steps that are conducted in order to enable the later
extraction of the edges. These steps consist of the
elimination of distortion effects and the projection of
images into an orthographic view of the scene.

2.1. Distortion

Distortion effects would cause edges to have a bent
appearance. This would lead to the loss of many possi-
ble edge segments for further processing. The camera
that is used by the ACT/FHS shows strong barrel dis-
tortion effects. Because of that, the camera images
are rectified by using functionalities of the OpenCV
library [4] which base on the algorithm of Zhang [5].
Figure 2 shows the difference between an unmodified
camera image with the horizon and the helipad ap-
pearing bent and an image that has been undistorted.

(a) Unmodified image

(b) Undistorted image

Figure 2: Visualization of the effect of distortion

2.2. Image Transformation

The camera is mounted forward-looking and is tilted
by approximately 20 degrees. Due to this setup, the
appearance of the edges is dependent on their position
in the image. This means, that an edge, which would
appear vertical in the middle of the image, would ap-
pear tilted when being located near the right or left
border of the image. In case of a lateral movement
of the camera, this would lead to a rotation of the
edge over time. Algorithmically subtracting out this
effect is possible. However, it is more convenient to
transform the camera image in a fashion that prevents
this behavior. This is done by taking a plane earth
assumption and by then calculating a homography of
the image over the tilt angle of the camera. A plane
earth assumption presumes that the ground that is
observed by the camera is flat. With this assumption
and the knowledge of the orientation and the altitude
of the camera, it is possible to assign a depth value
to every pixel in the camera image. This is needed to
be able to measure the absolute speed of the camera.

Now, all pixels of the image are projected into camera
coordinate system with

X = Z
x− cx

fx
and(1)

Y = Z
y − cy

fy

where X and Y are the coordinates of a pixel in
helicopter-space. Z is the estimated distance of this
point to the camera, based on the plane earth as-
sumption and the knowledge of the altitude of the he-
licopter. x and y are the coordinates of a pixel in
camera-space. cx and cy represent the center of the
image. fx and fy are the focal lengths of the camera.
To achieve an orthogonal representation of the cam-
era image, a rotation of the projected points is then
carried out via

R1 =(2)(cos2 φ cos θ′ + cos θ cosφ sin θ cos θ′ sinφ sin θ
cosφ sinφ cos θ′ sin2 cos θ′ + cos θ − cosφ sin θ

− sinφ sin θ cosφ sin θ cos θ

)
.

In this formula, φ stands for the roll angle of the heli-
copter. θ stands for the pitch angle. cos θ′ represents
cos (1− θ). The estimation of the movement of the
edges can be simplified even further by regarding ori-
entation changes in the roll axis of the helicopter. This
is done by applying a rotation

R2 =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

(3)

to the result of the earlier transformation. Next, a
rotation is applied to correct the mounting angle of
the camera and additionally adapt the pixels to camera
coordinate system:

R3 =

1 0 0
0 cos ∆θ − sin ∆θ
0 sin ∆θ cos ∆θ

 .(4)

Here, ∆θ stands for the angle between the orientation
of the camera and the longitudinal axis of the heli-
copter. The application of all of these transformationsX ′Y ′

Z ′

 =

XY
Z

 ·R1 ·R2 ·R3(5)

results in the transformed points X ′, Y ′, and Z ′ in he-
licopter coordinate system. Finally, these transformed
points are projected back into the image coordinate
system by calculating

x′ = fx
X ′

Z ′
+ cx and(6)

y′ = fy
Y ′

Z ′
+ cy(7)

where x′ and y′ are the projections of x and y in cam-
era space. The application of all these transformations
ensures that only changes in heading and movement
of the helicopter cause shifts in the image. To provide
that the projection results in a coherent image with-
out holes, occurring gaps are filled by use of bi-linear
interpolation. A comparison of a non-modified image
and an image that has been transformed by the appli-
cation of the above mentioned formulas is presented in
Figure 3.

(a) Original camera image

(b) Transformed image

Figure 3: Image of a helipad before and after its trans-
formation

3. Edge Extraction

Two different edge extractors have been tested on
their applicability on detecting the drift of the heli-
copter: The Hough transform [6] and the Douglas-

Peucker-Algorithm [7]. In the current section, all pro-
cessing steps will be treated, that are necessary to re-
ceive a set of lines that is suitable for estimating the
drift of the helicopter. Both algorithms return the
lines via their starting points xa, xb and end points
ya, yb. In addition, the central point (x, y), the angle
according to the x-axis Φ, and the length l of the lines
is stored for further processing. It is

x = xa + xb

2 ,(8)

y = ya + yb

2 ,

Φ = arctan yb − ya

xb − xa
,

l =
√

(xb − xa)2 + (yb − ya)2.

3.1. Hough Transform

Tests on camera images that have been recorded
during flight tests have shown that the unmodified
Hough transform tends to produce a large number of
falsely detected edges. Since the Hough transform is
computationally expensive, these false positives sig-
nificantly increased the amount of computation time.
In addition, the drift estimation of the helicopter was
often heavily disturbed by the false positives. This
resulted in strong aberrations of the estimated drift
from the reference drift that has been provided by the
GPS/INS of the helicopter. Because of that, several
modifications have been applied to the native Hough
transform.
In order to maintain a large amount of extracted edges
while reducing miss-classifications, an orientation map
is created that contains the dominant orientation of
the gradient of each pixel. Based on [8], these orien-
tations are calculated by applying Gabor filters which
detect contrast orientations of a set amount of orien-
tations. By use of this orientation map, an anisotropic
filter is applied to the original image [9]. This is done
in order to reduce noise and maintain the sharpness of
potential edges. A gradient image of the anisotropic
filtered image is then created via convolution with a
Sobel filter. Then, a Canny algorithm [10] is applied
in order to improve the robustness of the following fea-
ture extraction. This algorithm determines the most
promising edge estimations which resulted from the
Sobel filtering. The Hough transform is now con-
ducted on the computed set of edges. Every poten-
tial line that was detected by the Hough transform is
crosschecked pixel-wise with its corresponding entries
in the orientation map. If the orientations of the gra-
dients of these pixels differ more than a set value, the
potential line is discarded. If the orientation difference
is below that threshold and its length is above a set
minimum, the line is stored for further processing.

3.2. Douglas-Peucker-Method

The second tested algorithm is the Douglas-
Peucker-Method which approximates a given line seg-
ment with a reduced set of line segments. This algo-
rithm tends to work considerably faster than the pre-
viously presented algorithm, but it turned out that it
produces a smaller amount of potential lines than the
Hough transform. In order to increase the set of po-
tential lines, an unsharp masking has been conducted.
For this purpose, the original image is convolved with
a low pass filter. The resulting smoothed image is then
weighted and subtracted from the original image. This
is done with

I ′(x, y) = 1.5 · I(x, y)− 0.5 · U(x, y)(9)

where I and U denote the original image and its low-
pass filtered unsharp mask, I ′ denotes the resulting im-
age, and (x, y) denotes the image coordinates. Equiva-
lent to section 3.1, a Sobel filter is then applied to cal-
culate the gradients of the image. The result is thinned
out with use of the Canny algorithm. Unlike the
Hough transform, the Douglas-Peucker-Method needs
a set of coherent potential lines to work with. The
coherence information is computed with an modified
version of [11]. Unlike the original implementation,
the used method does not try to compute a contour
which starts and ends with the same pixel by running
adjacent to the contour. It rather directly searches on
top of a line until it reaches an end and then stores
the result as a coherent segment. In line crossings, the
method prefers a straight oriented continuation of a
line to a continuation that would produce a sharp an-
gle. Without this, a line crossing would produce “x”-
like structures instead of the desired two intersecting
lines. Another alteration to the original principle is,
that pixels which already have been used for creating
a coherent line segment cannot be used for starting a
new line segment, yet they can be used for continuing
a line. The final change to the original principle is,
that a pixel can only be the starting point of a line ex-
traction, if it has only adjacent pixels that are located
in one vicinity to the pixel (i.e. top, left, right, and
bottom). This constraint prevents that the line find-
ing algorithm can start in the middle of a potential line
instead at its ends. A visualization of the differences
to [11] is presented in Figure 4.

An exemplary image of a scene, with all found lines of
a time step being visualized, is presented in Figure 5.

Figure 4: Difference between the algorithm of Pavlidis
and its modification on the example of two intersecting
lines

Figure 5: Orthographic view of a helipad. Lines that
have been found by edge extraction are visualized

4. Edge Tracking

In order to be able to estimate the drift of the heli-
copter, the found lines have to be tracked reliably over
time. The tracking algorithm uses a prediction of the
position of a line in the current time step t by esti-
mating the position change in t − 1 → t by using the
current velocity estimation as well as the changing of
the heading angle ∆Ψ and the changing of the height
of the helicopter ∆h. Velocity data of the INS is used,

if no velocity information is available yet (i.e. at the
beginning of the algorithm).
The displacement of the helicopter position is calcu-
lated by computing the intersections of the found lines
and comparing the changes in position of the result-
ing intersection points over time. All the formulas that
are used in this chapter are working in the image space
that is introduced in section 2. This means that the
image coordinate system is set up in a way so that
it lies on a plane which is parallel to the helicopter
fuselage with the camera looking downwards onto that
plane. That way, the position of the helicopter (ne-
glecting altitude) can be regarded as a point in this
coordinate system. The intersection (xs, ys) of lines
m1 and m2,

m1 = yb1 − ya1

xb1 − xa1
,(10)

m2 = yb2 − ya2

xb2 − xa2
,(11)

is calculated with

xs = ya1 − ya1 −m1xa1 +m2xa2

m2 −m1
and(12)

ys = ya1 +m1(xs − xa1)(13)

where xa1,b1, ya1,b1, xa2,b2, and ya2,b2 denote the start-
ing and the ending points of two line segments in the
image coordinate system. The next step is to convey
the linear speed vx,y of the helicopter into pixel-space:

vx = vx

h/fx
,(14)

vy = vy

h/fy
.(15)

The altitude of the helicopter is h. The focal length
of the camera is given by fx,y. Additionally, the im-
age point (xm, ym) that represents the point that is
directly beneath the camera in the world coordinate
system has to be moved to the image center (cx, cy).
This is done by subtracting (xm, ym) from every point
of the image.
The next step is to calculate the movement of the seg-
ments that is caused by changes of the altitude of the
camera:

xt = xt−1
ht−1

ht
,(16)

yt = yt−1
ht−1

ht
.(17)

These formulas however, only cover linear movement.
Most of the times, movement consists of a mixture of
translational and rotational movements. Changes in
the orientation Ψ result in displacements of the inter-
section points of the lines that have to be subtracted
out. The separation of both kinds of movement and
the final extraction of the aspired translational move-
ment will be treated in the following formulas. The

radius r of a curve on which the camera is moving can
be calculated with

r =
∆t
√
v2

x + v2
y

∆Ψ .(18)

Since the orientation of the camera does not necessar-
ily have to be identical with its movement direction,
the angular difference between these two orientations
has to be regarded with

β = atan2vx

vy
.(19)

In this formula, β is the angle between the orientation
of the camera and its movement direction. Also, the
displacement between helicopter orientation and cam-
era orientation has to be regarded. However, the cam-
era was mounted with the same orientation as the heli-
copter’s longitudinal axis in the current setup. There-
fore, this calculation is neglected. Finally, the dis-
placement (mx,my) that results from angular move-
ment can be calculated by the following formula:

mx = r · cosβ,(20)
my = r · sin β.(21)

Summing it all up, the prediction for the displacement
(xt, yt) of the lines can be calculated via

xt = (xt −mx) · cos ∆ψ + (yt −my) · sin ∆ψ +mx

(22)

and

yt = (xt −mx) · sin ∆ψ + (yt −my) · cos ∆ψ +my.
(23)

For the actual tracking of the line segments, their dif-
ference dΦ in terms of orientation is first computed
with

dΦ = |(Φt−1 − Φt)|.(24)

In this formula, Φ stands for the angle of a line in ref-
erence to the x-axis of an image. The distance (dx, dy)
of both segments is then calculated, if dΦ is sufficiently
small with

dx = |(xt − xt−1)− (yt − yt−1) · tan(π2 − Φt−1)| and
(25)

dy = |(xt − xt−1) · tan Φt−1 − (yt − yt−1)|.
(26)

The coordinate of the center of a line at time step t
is represented with (xt, yt). Accordingly, (xt−1, yt−1)
is the coordinate of the center of a line at time step
t− 1. If all the computed distances are below the set
limits, the parameters of the line are stored (see (9)).

Together with any lines that have been found in previ-
ous time-steps, these lines are the basis for the further
movement estimation.
In the next step, the errors have to be eliminated
which result from movements of the image that are not
caused by a translational movement of the camera. In-
fluences from rotary movement and camera setting are
already eliminated by the image transformation in 2.2.
Altitude changes of the camera have no negative influ-
ence because the found segments are projected back
onto the object space, which lies parallel to the trans-
formed image space. The distance between these two
spaces is given by

x = h

fx
(x− xm) and(27)

y = h

fy
(y − ym).(28)

Due to the parallel setup of both planes, changes in
the height of the camera do not cause a displacement
of the segments. Next, the error has to be estimated
that is caused by changes of the orientations of the
segments. Therefore, two error values e1 and e2 are
calculated. For better understanding, a sketch of these
two errors is given in Figure 6. x and y represent the
image coordinates. Both depicted triangles consist of
two intersecting segments a and b. The third element
of these triangles is the horizontal distance dx between
the angular point of the segment which changes and
the constant segment. Since the angular point of this
segment is not known, an approximation is taken by
using the midpoint of the changing segment. This as-
sumption can be taken due to the fact that the seg-
ment has obviously been tracked, the angular point
must be close to the midpoint. The error e1 results
from a change of the first segment b by the angle ∆α,
with the second segment a being constant. The error
e2 results from an angular movement ∆β of the seg-
ment a with b being constant. The angles α and β
can be calculated by use of the stored angles of the
segments. With this knowledge, both error values can
then be calculated with simple mathematical formu-
las. To compensate for the found error e = e1 + e2, e
is subtracted from the measured displacement of the
segments.

5. Movement Estimation

For the final estimation of the movement speed,
first the length of the flown arc has to be determined.
This length is computed by the length of the displace-
ment of the intersections ∆l as well as the intersec-
tions of the circles on which the intersections rotate.
Figure 7 (a) depicts how to get to the angular point
(mx,my), around which the helicopter is turning and

Figure 6: Visualization of the error elimination of an-
gular movement

the length rs of the arc that is spanned by the dis-
placement of the intersection (xs, ys) at the time steps
1 and 2 and the angular point. The coordinate system
is centered at the position of the helicopter with x and
y being the axes which go through the longitudinal
and the lateral axis of the helicopter. The altitude of
the helicopter is neglected. rs can be calculated by

rs =

√
∆l2

2 · (1− cos ∆ψ) .(29)

The radius of the arc that the helicopter is flying can
be calculated by

r =
√
m2

x +m2
y.(30)

With this radius, the absolute value of the speed of
the helicopter can be calculated by

v = r ·∆ψ
dt

.(31)

vx and vy can be calculated by

vx = v · sin β and(32)
vy = v · cosβ(33)

with vx representing the lateral speed of the helicopter
and vy representing the directional speed of the heli-
copter. Figure 7 (b) depicts the process of calculating
vx and vy with the coordinate system being identical
to the coordinate system in Figure 7 (a). This calcula-
tion is repeated for all intersections in a scene. Those
are then inserted into a coordinate system with the
flight course on the x-axis and v on the y-axis. The
final movement estimation is then calculated with a
RANSAC approach. This prevents strong outliers that
can result from violations of the plane earth assump-
tion to have an influence on the estimation.

(a) Calculation of (mx, my) (b) Calculation of (vx, vy)

Figure 7: Movement speed estimation

6. Tests

The aim of the conducted tests was to evaluate if
the presented feature extraction and feature tracking
algorithms are able to measure the ground speed of a
helicopter with sufficient precision. A formulation of
the maximal tolerable error in the estimation of the
movement speed is a nontrivial task. The maximal er-
ror depends on the maximal drift speed, with which a
helicopter can land without being endangered of caus-
ing a dynamic rollover. And this speed depends on the
surface on which the helicopter wants to land. Pilot
surveys have yielded a maximal tolerable drift speed
of 1m/s when landing on mostly plane landing places,
like meadows. On rocky surfaces, pilots tend to tol-
erate a drift speed up to only 0.5m/s. Consequently,
these two values present the demand on the needed
precision of the tested algorithms. To be able to pro-
vide a landing aid on arbitrary surfaces, a maximal
error of 0.5m/s is aspired. The drift speed that is cal-
culated by the presented feature tracking algorithms
is averaged over a time of 3 s to account for a noisy
short-time behavior of the features. This is accept-
able, since only the slowly increasing error of the INS
has to be detected. High frequency changes in the
helicopter speed can still be detected by an INS. Ad-
ditionally, discretization effects are lessened with this
procedure.
The algorithms have been tested on a synthetic scene
as well as on real flight data. In the following, the
test results on the synthetic scene, as well as test re-
sults of several flight tests, are presented. Results will
be shown for the lateral drift only. The magnitude of
error for directional drift speed is similar to the magni-
tude of error in lateral drift speed. All tests have been
conducted on a Windows PC with a quad-core i5-2500
processor that has a clock speed of 3.30 GHz (without
utilization of multiprocessing) and 8 gigabyte working
memory.

6.1. Scenario 1: Synthetic Data

A synthetic scene has been created to evaluate
which results can be achieved in ideal environments.
The surface in this scene is completely plain and con-
sists of an endless grid. An image of this test scene is
shown in Figure 8. The results of both algorithms are
shown in Figure 9.

Figure 8: Recorded image of the setting in scenario 1:
Synthetic data

(a) Computed difference with Hough

(b) Computed difference with Douglas-Peucker

Figure 9: Evaluation of test scenario 1: Synthetic data

The parameters of the synthetic camera are known.
In the evaluated test, the camera performs a constant
curved motion with a known height over this grid.
During this motion, the altitude of the camera de-
creases linearly from a height of 40m over the grid
down to a height of 10m. The test has a duration
of 10 s. In figure 9, the estimated difference between
reference data on the x-axis and measured data from
the Hough-based algorithm and from the Douglas-
Peucker-based algorithm is presented. It can be ob-
served, that on these synthetic data, the results are sig-
nificantly below the set limit of 0.5m/s. This implies,
that both algorithms are able to estimate the drift of a
helicopter with sufficient accuracy to be used for pre-
venting dynamic rollovers. A difference of more than
0.2m/s between reference data and measured data is
trespassed only occasionally and then just for a short
time. The drift speed estimation of the Hough-based
algorithm shows a very calm behavior which seems
to jitter around an offset of approximately 1m/s to
the reference data. The average computing time for a
frame with the Douglas-Peucker-based algorithm was
87ms. The Hough-based algorithm needed 501ms.

6.2. Flight Test Data

The algorithms have been tested on several flights
with a set of different undergrounds. Also, one test will
be shown that has been conducted on infrared data.
The tests have been conducted with the ACT/FHS.
Precise GPS/INS data have been used as reference
data.

6.2.1. Scenario 2: Low-Level Lateral Flight

In the first presented flight test, the helicopter per-
forms small translational movements over a landing
zone that is marked with an “H” that is surrounded
with a white rectangular border. At least one bor-
der of the rectangle is always visible during the whole
test. The evaluated part of the flight has a duration
of approximately 25 s and the helicopter is flying at an
altitude of 3m. According to the reference data, the
directional speed is around zero and the lateral speed
ranges from 0m/s to ±0.7m/s. An image of this test
scene is shown in Figure 10. The results of both algo-
rithms are shown in Figure 11. In this figure, the esti-
mated difference between reference data on the x-axis
and measured data from the Hough-based algorithm
and from the Douglas-Peucker-based algorithm is pre-
sented. As it can be seen, the errors in both algorithms
stay below the 0.5m/s demand. The Hough-based al-
gorithm shows better results in this test. Over the
complete test, this approach yields an error of more
than 0.4m/s only once, while the Douglas-Peucker-
based approach breached that limit several times. The

Figure 10: Recorded image of the setting in scenario
2: Low-level lateral flight

(a) Computed difference with Hough

(b) Computed difference with Douglas-Peucker

Figure 11: Evaluation of test scenario 2: Low-level
lateral flight

average computing time for a frame with the Douglas-
Peucker-based algorithm was 87ms. The Hough-based
algorithm needed 469ms.

6.2.2. Scenario 3a: Urban Setting - Visible
Light Camera

The next scenario is placed in an urban setting.
Man-made objects build an ideal basis for the pre-
sented algorithms because they mainly consist of
straight edges. Therefore, the amount of found edges
is to be expected very high and the tracking of these
edges should be easy. On the other side it is possible
that the altimeter of the helicopter returns erroneous
altitude measurements when flying over buildings. In
the current scenario, the helicopter flies over the city
of Wolfsburg at an altitude between 130m and 160m
with a directional speed of approximately 26m/s and a
lateral speed of around zero. The evaluated test scene
has a duration of approximately 9 s. After that time
period, the helicopter flies over a cloud of smoke emit-
ted by a large factory chimney where further speed
estimations cannot be conducted anymore. An image
of this test scene is shown in Figure 12.

Figure 12: Recorded image of the setting in scenario
3a: Urban setting - Visible light camera

The results of both algorithms are shown in Figure 13.
In this figure, the estimated difference between ref-
erence data on the x-axis and measured data from
the Hough-based algorithm and from the Douglas-
Peucker-based algorithm is presented. As it can be
seen, the set limit of 0.5m/s is slightly trespassed sev-
eral times with both algorithms. However, there are
several reasons why this result can still be regarded
as satisfying. First, the helicopter flies at an altitude
of around 150m which increases the problem of dis-
cretization by a large amount. Second, the plane earth
assumption is violated significantly due to the fact,
that the setting consists of many houses, some of them
several floors high. The main goal of the presented
approach is to detect the drift speed in low altitudes
and mostly plain surfaces. This test in an urban set-
ting was performed in order to draw conclusions about
the ability of the presented algorithms to work in sce-
narios other than close to the ground directly before

the touchdown. The presented test shows that, even
when these two demands on the settings are breached,
a nearly satisfying estimation can still be achieved.

(a) Computed difference with Hough

(b) Computed difference with Douglas-Peucker

Figure 13: Evaluation of test scenario 3a: Urban set-
ting - Visible light camera

6.2.3. Scenario 3b: Urban Setting - Infrared
Camera

Scenario 3b is basically the same setting as sce-
nario 3a. This time however, the images are recorded
with the infrared camera of the helicopter. This aggra-
vates the extraction of features considerably, since in-
frared images show weaker contrasts than images that
have been recorded by visible light cameras. However,
the use of an infrared camera potentially extends the
applicability of the vision based drift estimation to op-
erations in the night. The infrared pendant to the pre-
sented figure in scenario 3a is shown in Figure 14. The
results of both algorithms are shown in Figure 15.
In this figure, the estimated difference between ref-
erence data on the x-axis and measured data from

Figure 14: Recorded image of the setting in scenario
3b: Urban setting - Infrared camera

(a) Computed difference with Hough

(b) Computed difference with Douglas-Peucker

Figure 15: Evaluation of test scenario 3b: Urban set-
ting - Infrared camera

the Hough-based algorithm and from the Douglas-
Peucker-based algorithm is presented. The results
are very similar to the results of scenario 3a. Con-

sequently, it can be assumed, that the algorithms are
able to work with IR images of sufficient quality. How-
ever, it must be stated that the algorithms have been
applied on several scenarios that have been recorded
with IR camera. On most of these, no sufficient
amount of lines could be extracted. Two potential rea-
sons for this have been identified. First, because the
used IR camera cannot compete with nowadays high-
end IR cameras. Second, in most if the test settings
the helicopter was flying very close to the ground. Of-
ten, there were not enough differences in the heat of
the surface to be able to extract features (e.g. when
hovering over a landing pad).

6.2.4. Scenario 4: Flight over Low-Contrasted
Landscape

The last test shows a scenario where the algorithms
reach their limits. The helicopter flies at an altitude of
50m with a longitudinal speed of 36m/s, approaching
the landing field of the airport of Braunschweig. The
surface below the helicopter consists of several fields
and a road. The contrasts in the scene are relatively
smooth and most of the contrasts are curved. The test
has a duration of approximately 10 s. An image of this
test scene is shown in Figure 16.

Figure 16: Recorded image of the setting in scenario 4

The results of both algorithms are shown in Figure 17.
In this figure, the estimated difference between ref-
erence data on the x-axis and measured data from
the Hough-based algorithm and from the Douglas-
Peucker-based algorithm is presented. Near the end of
the evaluated time-span, the Douglas-Peucker-based
algorithm reaches a critical error of up to 0.8m/s.
Only then it finally stops giving an estimation of the
drift speed. The Hough-based algorithm shows a bet-
ter behavior. Here, the limit of 0.5m/s is slightly
breached in only a few consecutive time steps. Un-
like the other method, it stops to give drift estima-
tions nearly two seconds earlier, potentially prevent-
ing a bad estimation of nearly 1m/s. Both algorithms

however are not able to reestablish their drift estima-
tion until the landing field with its sharp contours
fills out a considerable amount of the image (which
is not included in the presented scenario). The av-
erage computing time for a frame with the Douglas-
Peucker-based algorithm was 88ms. The Hough-based
algorithm needed 529ms.

(a) Computed difference with Hough

(b) Computed difference with Douglas-Peucker

Figure 17: Evaluation of test scenario 4

7. Conclusion

In this paper, two alternative feature extraction al-
gorithms have been presented and compared. Addi-
tionally, a method to estimate the drift of a helicopter
has been presented. The developed algorithms are in-
tended to aid popular feature extraction algorithms.
Also, they can be used to increase the amount of fea-
tures of any visual odometry in general and to cal-
culate redundant movement estimations. Tests have
shown that both algorithms are able to extract and

track lines in an image. Also, the advantages and dis-
advantages of the presented algorithm to estimate the
movement speed of a helicopter have been discussed.
It has been shown, that the maximal velocity errors of
the algorithms are below the set limits when flying over
flat ground with a sufficient amount of edge features.
Also, it has been shown, that both algorithms can work
on infrared images up to a certain extent. In general,
the algorithms can be of use in any setting that shows a
certain amount of man-made environment, which can
often be found in populous regions. The algorithms
are stretched to their limits, when flying over a low-
structured surface which contains only few and low-
contrasted edges. Of the both algorithms, the Hough-
based algorithm did show slightly better performance
at the cost of a more than five times higher computing
time. With nowadays computing power, a real-time
operation of this algorithm is not realizable with hard-
ware that can be used in flight tests. So it has to be
concluded, that at the moment the Douglas-Peucker-
based algorithm is the better choice for a utilization
as a redundant feature tracker.

In the future, a fusion of the Douglas-Peucker-Method
with another feature tracker is planned. Hence, dif-
ferent DVE scenarios shall be surveyed to verify the
anticipated benefit from adding a line-extracting al-
gorithm to a conventional approach. Scenarios with
raindrops covering the lens of the camera are of spe-
cial interest in this context.

8. Acknowledgment

The author wants to thank Airbus Defence and
Space which has partially funded the research that was
conducted in this paper. Also, thanks to Mr. Rico
Dötsch who did help with creating the presented al-
gorithms in the course of writing his Bachelor thesis
and to Mr. Michael Zimmermann who did provide the
synthetic test scenario.

References

[1] F. Andert, N. Ammann, J. Pueschel, and J. Dit-
trich, “On the Safe Navigation Problem for Un-
manned Aircraft: Visual Odometry and Align-
ment Optimizations for UAV Positioning,” Pro-
ceedings of the 2014 International Conference on
Unmanned Aircraft Systems, pp. 734–743, 2014.

[2] R. Madison, G. Andrews, P. DeBitetto, S. Ras-
mussen, and M. Bottkol, “Vision-Aided Naviga-
tion for Small UAVs in GPS-Challenged Environ-
ments,” AIAA Infotech@Aerospace 2007 Confer-
ence and Exhibit, May 2007.

[3] M. Couch and D. Lindell, “Study on rotorcraft
safety and survivability,” in Proceedings of the
66th American Helicopter Society Forum, 2010.

[4] G. Bradsky and A. Kaehler, Learning OpenCV
- Computer Vision with the OpenCV Library.
O’Reilly, 2011.

[5] Z. Zhang, “A flexible new technique for cam-
era calibration,” in Proc. of IEEE Transaction
on Pattern Analysis and Machine Intelligence 22,
pp. 1330–1334, 2000.

[6] P. Hough, “Method and means for recognizing
complex patterns,” in U.S. Patent, p. 3.069.654,
1962.

[7] D. Douglas and T. Peucker, “Algorithms for
the reduction of the number of points re-
quired to represent a digitized line or its carica-
ture,” in Cartographica, The International Jour-
nal for Geographic Information and Geovisualiza-
tion, pp. 10:112–122, 1973.

[8] J. Zhou, W. Bischof, and A. Sanchez-Azofeifa,
“Extracting lines in noisy image using directional
information,” in Pattern Recognition, 18th Inter-
national Conference on, pp. 215–218, 2006.

[9] J.-M. Geusebroek, A. Smeulders, and J. van de
Weijer, “Fast anisotropic gauss filtering,” in Im-
age Processing, IEEE Transactions on 12 (8),
pp. 938–943, 2003.

[10] J. Canny, “A computational approach to edge de-
tection,” in Pattern Analysis and Machine Intel-
ligence 8, pp. 679–698, 1986.

[11] T. Pavlidis, Algorithms for Graphics and Image
Processing. Computer Science Press, 1982.

	Introduction
	Pre-processing
	Distortion
	Image Transformation

	Edge Extraction
	Hough Transform
	Douglas-Peucker-Method

	Edge Tracking
	Movement Estimation
	Tests
	Scenario 1: Synthetic Data
	Flight Test Data
	Scenario 2: Low-Level Lateral Flight
	Scenario 3a: Urban Setting - Visible Light Camera
	Scenario 3b: Urban Setting - Infrared Camera
	Scenario 4: Flight over Low-Contrasted Landscape

	Conclusion
	Acknowledgment

