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Abstract 

The current limitations of the Morillo-Peters 
model for mass-source rotors is that the mass and 
damping matrices are ill conditioned at low 
frequencies.  The ill conditioning, in turn, causes the 
solution to converge slowly.  The ill conditioning and 
slow convergence may be attributed to the truncated 
mass and damping matrices which do not incorporate 
the logarithmic potential function due to a 
singularity.  In order to try to improve the 
conditioning and convergence issue, we included the 
m = n terms to the mass and damping matrices.  In 
previous work, this term was not included in the mass 
matrix because we did not have a closed form 
representation for it. Presently we have derived the 
closed-form velocity potential for these lowest-order 
terms for all harmonics.  For the zero harmonic, we 
have developed a way to deal with an infinite integral 
for each harmonic.  By adding this term, we add an 
extra row and column to the mass and damping 
matrix, thus adding an extra mode into the system 
when we perform the eigenvalue analysis.  We used 
this approximate solution and compared the mode 
shapes to the solutions without the infinite term to 
verify that the solution retains its original shape with 
the added row and column.  Then we compare the 
frequency response of the system with the added row 
and column to Morillo-Peters model and the 
convolution integral.   
 
Introduction 

In 1980 Dale Pitt and David Peters (Ref. 1) 
developed a linear, unsteady theory that relates the 
transient rotor loads to the overall transient response 
of the rotor induced flow flied.  The assumption of 
the Pitt-Peters model is based on unsteady potential 
flow theory with superposition of pressure, in which 
the velocity field is derived from superimposing the 
unsteady pressure and static pressure of the flow.  
Even though the Pitt-Peters model allows up to eight 
states using associated Legendre functions, only 3-
state and 5-state modes for forward flight were 
investigated.  Today, virtually every stability and 
handling quality application utilizes the Pitt-Peters 
model.  However, the model is limited to the crudest 
wake description of uniform flow due to the 
limitation of the low-order approximation of the flow 
field.  This model is not capable of providing a 

detailed description of the flow field, needed for 
thrust and moment analysis. 

Due to the limitations of the Pitt-Peters 
model, David Peters and Chengjian He (Ref. 2) 
turned to a higher harmonic theory for the dynamic 
inflow in 1987.  The pressure distribution for the 
Peters-He model was extended to include an arbitrary 
number of harmonics and radial functions for each 
harmonic, thus giving better correlation on the rotor 
disk plane than did the Pitt-Peters model.  However, 
the limitation of the Peters-He model is that it can 
only analyze the normal component of the flow at the 
rotor disk, thus not being able to analyze all three 
components of the flow on and above the rotor plane.  

Then in 2001, Jorge Morillo and David 
Peters (Ref. 3 and 4) addressed these issues by 
including an additional set of functions, which can, in 
turn, address the limitations of the Pitt-Peters and 
Peters-He model.  Morillo expanded the pressure and 
velocity distribution (which uses Fourier series) to 
include both n + m = even and n + m = odd terms in 
the dynamic wake model.  With the Morillo-Peters 
model, it was possible to obtain a good correlation 
with the exact solution from the convolution integral.  
Another advantage of the model is the ability to 
predict all three components of the flow field 
anywhere on or above the rotor disk plane.  The only 
limitation to the Morillo-Peters model is that the fact 
that it could not treat non-zero flux mass sources.  A 
disadvantage of the model is that the matrices are ill-
conditioned, which causes the solution to converge 
slowly. 

The latest addition to the dynamic wake 
model was to include the mass source terms.  Ke Yu 
and David Peters (Ref. 5) developed an improved 
state-space representation to include non-zero flux 
mass source terms.  The Yu-Peters model is derived 
using closed-form representations for the state-space 
representation, which can reduce the amount of 
computing time by eliminating the need to perform 
massive numerical inversions in dynamic simulation.  
However, the model still does not correct the ill-
conditioning and exhibits slow convergence due to 
the omission of the infinite kinetic energy terms in 
the matrices.  
 In this present work, we intend to address 
the issue of ill-conditioning and slow convergence.  
Since previous work has been unsuccessful in 
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attempts to include the infinite kinetic energy term in 
the mass matrix, we address the issue by deriving an 
approximate solution.  With the extra term, we add an 
extra row and column to the mass and damping 
matrix including the n = m terms, hoping that this 
would help with the conditioning and convergence.  
Also, Morillo intended to examine the validity of 
using an On-Off formulation instead of the traditional 
Odd-Even formulation for further analysis.  
However, he did not delve further into this topic. 
Therefore, we would attempt to further derive the 
On-Off formulation with the added infinite term and 
determine whether this new formulation further 
improve the ill-conditioning of the matrices.  Once 
we decide which formulation to adopt, we perform 
frequency response for non-zero frequencies and 
critical frequencies and compare this new model with 
the Morillo-Peters model.  Since m = 0 is the most 
ill-conditioned case, we will concentrate on m = 0. 
 
Nomenclature 
ˆm

na  Cosine induced flow expansion coefficient 
m

na  Complex modulus of the induced flow 
expansion coefficient 

[ ]D  Damping matrix 
rm

jnD  Element of [D] 
m

nH  Combination of double factorials, 

( ) ( )
( ) ( )

1 !! 1 !

!! !!

n m n m

n m n m

+ − − −

+ −

!
 

i  Imaginary value 
j  Degree of Legendre function (polynomial 

number) 
m

nK  Legendre Constant, see Eqs. (24) and (25)  

[ ]M  Mass matrix 
rm

jnM  Element of [M] 
m  Order of Legendre function (harmonic 

number) 
N  Highest subscript 
n  Degree of Legendre function (polynomial 

number) 
m

nP  Associated Legendre functions of the first 
kind 

m

nP  Normalized associated Legendre functions 
m

nQ  Associated Legendre functions of the second 
kind 

m

nQ  Normalized associated Legendre functions 
r  Order of Legendre function (harmonic 

number) 

m

nqU  Integral, see Eq. (14) 
v Induced velocity 

m

nα  Modes for Odd-Even formulation 
,γ δ  On-Off modes for On-Off formulation 

,m m

n nγ δ  Induced inflow expansion coefficients for 
On-Off formulation 

υ  Induced flow 
mc

nΦ  Pressure potential function 
, ,ν η ψ  Ellipsoidal coordinates 

, oξ ξ  Stream wise variable 
m
nρ  Normalized factor of associated Legendre 

function of the first kind 
τ  Reduced time 

m

nτ  Pressure expansion coefficient 
m

nτ  Complex modulus of the pressure expansion 
coefficient 

ω Frequency 
 
Superscripts and Subscripts 

( )m  Harmonic number 

( )
n
 Polynomial number 

( )
z
 Axial component 

( )
o
 n + m = odd terms 

( )
e
 n + m = even terms 

( )!!  Double factorial, ( )( )2 4 ...2n n n− −  for n =  

even and ( )( )2 4 ...1n n n− −  for n = odd 

( )
*

 Derivative with respect to reduced time, i.e., 
/ τ∂ ∂  

 
Infinite Solution (Hsieh-Peters Model) Analysis 
 As mentioned previously, the current 
disadvantage of the Morillo-Peters is that the 
matrices are ill conditioned.  This may be due to  the 
truncated mass and damping matrices.  Yu and Peters 
studied the effect of including forcing terms that 
would yield the zero-order modes but with no zero-
order terms in the basis functions.  They found a very 
slow convergence in that case.  For the purpose of 
this research, we derived an approximate value for 
the infinite integral in the mass matrix.  This 
approximation approaches infinity in the proper way 
as the highest subscript N approaches infinity: 

 00

00 2
1

4 1

2

N

n

M
nπ =

1
= +⎛ ⎞

⎜ ⎟
⎝ ⎠

∑  (1) 
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There is no singularity for the damping matrix for 
these terms.  Therefore, we can utilize the original 
formulation for the m = n = 0 term.  By adding these 
extra terms, we add an extra row and column to the 
mass and stiffness matrix that includes the n = m 
terms, as shown in the mass matrix in Eq. (2) 
indicated in bold and italicized. 
 

 

00 00 00 00 00

11 13 15 12 16

00 00 00 00 00

31 33 35 32 34

00 00 00 00 00

51 53 55 52 54

00 00 00 00 00

21 23 25 22 24

00 00 00

41 43 45

M M M M M

M M M M M

M M M M M

M M M M M

M M M

⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

00

10

00

30

00

50

00 00 00 00 00 00

01 03 05 00 02 04

00

20

00

40

M

M

M

M M M M M M

M

M
00 00

42 44M M

⎡ ⎤
⎥
⎥
⎥⎦

⎢
⎢
⎢ ⎥
⎢ ⎥

⎤
⎥
⎥

⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎣ ⎦⎦

 (2) 

 
The conditioning number of the matrices is 

the ratio of the highest eigenvalue to the lowest 
eigenvalue.  Initial analysis of the conditioning of the 
mass and the damping matrix (shown in Figs. 1 and 
2) indicates that the conditioning for both matrices 
did not improve significantly.  Thus, contrary to our 
initial assumption, the new terms did not improve 
conditioning.  However, it still could be that the new 
basis functions would improve convergence. 

The next step is to determine how the new 
added row and column would affect the eigenvalue 
analysis of the system.  In order to do so, we perform 
an eigenvalue analysis (Table 1) and compare the 
eigenvalues against the Morillo-Peters model.  Since 
we added an extra row and column, we introduce an 
extra mode into the system.  This extra mode 
represents the infinite kinetic energy solution, thus it 
has a very small eigenvalue.   The remaining values 
remain within the same magnitude from the Morillo-
Peters model.  Based on this, one can conjecture that 
new eigenvalues could change the dynamic response, 
hopefully for the better. 
 

Table 1.  Comparison of Eigenvalues using Odd-
Even Formulation 

Mode Morillo-
Peters 

Hsieh-
Peters 

% 
Difference 

1 - 0.1718 - 
2 1.0693 1.2817 19.9% 
3 3.0633 3.2573 6.3% 
4 5.4685 5.6414 3.2% 
5 8.5160 8.7298 2.5% 
6 11.5073 11.7648 2.2% 
7 34.8999 36.0740 3.4% 
8 51.0382 52.5394 2.9% 

 

Following the eigenvalue analysis, we 
compare the mode shapes for each mode against the 
Morillo-Peters model.  In order to calculate the mode 
shapes, we utilize the mode shape function: 
 ( ) ( ) (

,

cosm m m

n n n
m n

P v Q i m )υ α η= ψ∑  (3) 

m

nαwhere  represents the modes, ( )m

nP ν  and 

( )m

nQ iη  represents normalized associated Legendre 
functions of the first and second kind (Eqs. (4) and 
(5)) and ψ  is the azimuth angle. 

 ( ) ( )
1

m
mm n

n m

n

P
P

ν

ρ
= −  (4) 

 ( )
( )0

m
m n

n m

n

Q i
Q

Q i

η
=  (5) 

where m

nρ  is defined as: 

 ( ) ( ) ( )
( )

12 2

0

!1

2 1 !
m m

n n

n m
P d

n n m
ρ ν ν

+
= =

+ −
⎡ ⎤⎣ ⎦∫  (6) 

and ( )0m

nQ i  is defined as: 

 ( )
( ) ( ) ( )

( )

( ) ( ) ( )
( )

1 1

1 1

1 !!
1  

2 !!
0

1 !!
1     

!!

m n n

m

n
m n n

n m
i n m even

n m
Q i

n m
i n

n m

π + + +

+ + +

+ −
− +

−
=

+ −
− +

−

⎧
⎪⎪
⎨
⎪
⎪⎩

m odd

=

=

(7) 

Since we are only looking at axial flow, the azimuth 
angle is equal to zero.  In order to obtain a better 
correlation between the two models, we normalized 
the mode shapes.  The modes show that the low-
damping (slow) mode is dominated by the new basis 
function.  Figs. 3 to 6 show that the higher modes are 
not changed by the new basis function. 
 
On-Off Formulation 
 The On-Off formulation was briefly 
introduced in Jorge Morillo’s doctoral thesis.  The 
On-Off formulation is a change of variable that 
separates the odd and even terms in the Morillo-
Peters model into on-disk and off-disk modes.  The 
change in variable for the equation of motion is 
defined as: 

 
{ }
{ }

[ ] [ ]
[ ] [ ]

{ }
{ }

ˆ

0ˆ

m m
n no

mm
nn e

a I U

Ia

γ

δ

−
=

⎧ ⎫ ⎧ ⎫⎡ ⎤⎪ ⎪
⎨ ⎬ ⎨⎢ ⎥⎣ ⎦⎪ ⎪ ⎩ ⎭⎩ ⎭

⎬  (8) 

Substituting this relationship into the original 
equation of motion, and we obtain the equation using 
the On-Off formulation. 
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[ ]
[ ]

{ }

{ }

[ ] [ ]
[ ] [ ]

[ ] [ ]
[ ] [ ]

{ }
{ }

*

, ,

*
, , ,

, ,

, ,

0

0

m m
on on on on on offn n

m
off off off on off offm n

n

m

on on on off n o

m
off on off off n e

M D D

M D D

F F

F F

γ γ

δ
δ

τ

τ

+

⎧ ⎫
⎡ ⎤ ⎡ ⎤,

=
⎧ ⎫⎪ ⎪

⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥
⎩ ⎭⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

⎧ ⎫⎡ ⎤ ⎪ ⎪
⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦ ⎩ ⎭

 (9) 

 
The advantage for the On-Off formulation is that the 
mass matrix uncouples into “On” modes and “Off” 
modes.  Theoretically, this method should simplify 
the analysis.   However Morillo and Peters did not 
further investigate the advantage of the On-Off 
formulation. 

Similarly to the Odd-Even formulation, the 
original On-Off formulation did not include the zero-
zero term in the mass matrix.  We used the same 
logic for the Odd-Even formulation and derived an 
approximate solution for the zero-zero term in the on-
off mass matrix.  The resulting equation for the zero-
zero term as N approaches infinity for the On-Off 
formulation is: 

 00

00 2,
1

4 1N

off off
n

M
nπ =

=⎡ ⎤⎣ ⎦ ∑  (10) 

Similar to the Odd-Even formulation, we 
compare the eigenvalues of the On-Off formulation 
to the values obtained using the Morillo-Peters and 
Hsieh-Peters model.  The results are tabulated in 
Table 2.  The initial result from the eigenvalue 
analysis shows that the On-Off values are not 
matching accordingly to the Odd-Even formulations.  
For the On-Off formulation, we introduce a zero 
mode to the system.  This zero mode is not the low 
frequency mode already seen in the odd-even due to 
the infinite kinetic energy.  This new zero-frequency 
mode appears to be a spurious mode introduced by 
the change of variable.  Because of the zero mode, 
the eigenvalues are shifted up, thus we also end up 
losing the last mode.  Some of the eigenvalues do not 
correspond accordingly to the eigenvalues from the 
Odd-Even formulation.  In order to obtain a better 
understanding on the validity of the On-Off 
formulation, it is necessary to compare the mode 
shapes of such model to the Odd-Even model. 

 
 
 
 
 
 
 
 
 

 

Table 2.  Comparison of Eigenvalues for Morillo-
Peters, Hsieh-Peters and On-Off model  

Mode Morillo-
Peters 

Hsieh-
Peters 

On-Off 

0 - - 0.0304 
1 - 0.1718 0.2204 
2 1.0693 1.2817 1.1994 
3 3.0633 3.2573 2.5229 
4 5.4685 5.6414 5.2540 
5 8.5160 8.7298 8.4786 
6 11.5073 11.7648 13.4100 
7 34.8999 36.0740 45.0754 
8 51.0382 52.5394 - 

 
Following the eigenvalue analysis, we 

compare the mode shapes for each mode against the 
Morillo-Peters model.  In order to calculate the mode 
shapes, we utilize the mode shape function defined in 
terms of the Odd (αo) and Even (αe) modes. 

 ( ) ( )( ) ( ) ( )( )T T o

o o e e

e

P Q i P Q i
α

υ ν η ν η
α

=
⎧ ⎫⎡ ⎤ ⎨ ⎬⎣ ⎦ ⎩ ⎭

(11) 

Since we used a coordinate transformation matrix to 
obtain the On-Off formulation, we can use the 
transformation matrix to obtain a mode shape 
function in terms of On and Off modes by making the 
substitution from Eq. (12) into Eq. (11), and we 
obtain the mode shape function defined in terms of 
On (γ) and Off (δ) modes. 

 
0

o

e

I U

I

αγ

αδ
=

⎧ ⎫⎧ ⎫ ⎡ ⎤
⎨ ⎬ ⎨⎢ ⎥⎩ ⎭ ⎣ ⎦ ⎩ ⎭

⎬  (12) 

The resulting mode shape function in terms of On 
and Off modes is defined as:  

 
( ) ( )( ) ( )

( ) ( )( )

T

o o

T

e e

P Q i U

P Q i

υ ν η γ

ν η δ

= −

+

δ
 (13) 

where U is defined as: 

 
( )( )

( )( )
( )

2 1

2
2 1 2 1

1
1

m j n m
m n
jn m

j

j nH
U

H j n j n

+ − −+ +
= −

+ + −
 (14) 

for only j + m = odd and n + m = even terms 
including the n = m case. 

From Figs. 3 to 6, we concluded that the On-
Off formulation is not an effective formulation that 
captures all the details of the flow field.  At the lower 
modes, the correlation between the On-Off 
formulation and the Hsieh-Peters model result in a 
significant amount of error.  Also, since the On-Off 
formulation shifts the eigenvalues, we have an extra 
mode with an eigenvalue almost equal to zero.  Also, 
for modes one and two, shown in Figs 4 and 5, it 
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seems that the “On” mode from mode one is 
interchanging with the “On” mode from mode two.  
However, as we go to a higher mode, the mode 
shapes do tend to correlate nicely, as shown in Fig. 6. 

 
Frequency Response 
 Following the mode shape analysis, the next 
step is to look at the frequency response of the Hsieh-
Peters model and how it correlates to the Morillo-
Peters model.  However, in order to have an exact 
baseline, we also compare both solutions to the 
convolution integral.  This preliminary analysis 
explores the zero frequency and critical frequency 
response for axial flow.  The critical frequencies 
chosen for n > m are taken from the work of Morillo, 
and are the frequencies for which Morillo and He 
models have the largest discrepancies.  Critical 
frequencies for m = n are chosen so as to roughly 
extrapolate from the n > m values. 
 
Table 3.  Critical Frequencies for Individual Pressure 

Distribution 
m 

n 
0 1 2 3 

0 1.2 2.3 5.0 10.1 
1  4.0 7.3 12.0 
2   8.0 14.0 
3    16.0 

 
 For the frequency response for the dynamic 
wake model, the momentum equation for axial flow 
is defined as: 

 [ ] [ ]{ } [ ]{ }
*

ˆ ˆm m

n nM a D a D m

nτ+ =
⎧ ⎫
⎨ ⎬
⎩ ⎭

 (15) 

In order to solve for the frequency response, we 
assume a simple harmonic solution for the induced 
flow coefficient ( ) and the pressure expansion 

coefficient (

ˆm

na
m

nτ ), and substitute this form into Eq. 
(15) to obtain a general solution with respect to the 
forcing frequency.   
 { } [ ] [ ][ ] [ ]m

na i M D D m

nω τ+ =  (16) 
Solving for the complex modulus of the induced flow 
coefficient, we obtain: 
 { } [ ] [ ][ ] [ ]1m

n na i M D D mω τ−
= +  (17) 

Now using the relationship from Eq. (17), we obtain 
the solution for the frequency response. 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

Re cos cos

Im cos sin

m m m

z n n n
n m

m m m

n n n
n m

v a P Q i m

a P Q i m t

tν η ψ ω

ν η ψ ω

∞

=

∞

=

=

−

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

∑

∑
(18)  

We utilize the convolution integral for 
comparison for the Hsieh-Peters model.  The 
convolution integral is expressed as the following for 
the real and imaginary component of axial flow with 
respect to the stream-wise direction ξ. 

 ( )[ ] ( )( )( )
,

Re coso mc

z o o n z
v d

ξ
ξ ω ξ ξ ξ

+∞
= − −Φ∫  (19) 

 ( )[ ] ( )( )( )
,

Im sino mc

z o o n z
v d

ξ
ξ ω ξ ξ ξ

+∞
= − −Φ∫  (20) 

For axial flow, we integrate from infinity down to the 
rotor disk, which is ξo = 0.  The pressure potential 
function is defined as: 

 

( )

( ) ( )

,

2 2

2 2

1
1 1

mc

n z

mc mc

n nη ν ν η
ν η ν

Φ =

∂Φ ∂Φ
− − + +

+ ∂

⎛ ⎞
⎜ ⎟
⎝ ⎠η∂

 (21) 

The partial derivatives for the pressure potential 
function with respect to ν and η are expressed as 
functions of Legendre functions of the first and 
second kind. 

 

( )

( )( )
( )

( ) ( ) ( )

2

2 2

1

1

2 1

2 1

mc

n

m m m

n n n

n n m
P n P Q i

n

ν
ν

ν ν ν η−

∂Φ
− =

∂

+ −
−

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

(22) 

 

( )

( ) ( ) ( ) ( )

2

1

1

1
1

mc

n

m m m

n n nm

n

P Q i n Q
K

η
η

iν η η
+

∂Φ
+ =

∂

− − +
⎛ ⎞
⎜ ⎟
⎝ ⎠

η

 (23) 

where the Legendre constant,  is defined as: m

nK

 2m m

n nK H
π

=⎛ ⎞
⎜ ⎟
⎝ ⎠

 (24) 

for n + m = odd and 

 
2

m m

n nK H
π

=⎛ ⎞
⎜ ⎟
⎝ ⎠

 (25) 

for n + m = even.  However, Eqs. (22) and (23) do 
not hold true when  m = n = 0.  Therefore, for this 
special case, the pressure potential function is 
described as: 

 ( )0

0 2,

2
z

ν
2π ν η

Φ = −
+

 (26) 

 The resulting plots for the Hsieh-Peters 
model, shown in Figs. 7 to 16, correlate almost 
exactly to the solution of the Morillo-Peters model 
(when n > m) and the convolution integral for all m, 
n.  In order to obtain a good correlation for the zero 
frequency response, we used the same number of odd 
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and even terms for the comparison to the Morillo-
Peters model, and we used for the critical frequency 
response one more even term due to the extra row 
and column.  The convolution integral correlation is 
actually not exact, due to the stream-wise step used in 
the integration.  Further analysis and computing 
power will be needed to prove a better correlation 
between the Hsieh-Peters and convolution solutions.  
However, for ω = 0 there is a closed-form exact 
solution; and that agrees exactly with our new model. 
 
Conclusions 
 From the preliminary analysis of the newly 
formulated Hsieh-Peters model, the results are very 
promising.  The basis for this research is to improve 
the conditioning of the matrices and the slow 
convergence from the Morillo-Peters model by 
including the infinite (zero-zero) term in the mass 
and damping matrix.  For the Odd-Even formulation, 
we obtained excellent correlation with the Morillo-
Peters model, both with the eigenvalue analysis and 
the mode shape plots.  Because we add an extra row 
and column, we introduced a new mode to the system 
that represents the infinite kinetic energy term.  
However for the On-Off formulation, we could not 
obtain an acceptable correlation.  This error could be 
attributed to the derivation of the equation for the 
“off-off” modes, or it may mean that it is not possible 
to fully separate the “on” mode from the “off” mode.  
At this point, we are abandoning the On-Off 
approach. 
 Following the mode shape analysis, we 
performed frequency response analysis to compare 
the new solution to the current solution obtained by 
Morillo and the convolution integral.  We obtained 
excellent correlation with the Morillo-Peters model, 
however our correlation with the convolution did not 
match at the blade tip.  This is due to the stream-wise 
step size selected for the preliminary analysis. 
 So far, we have only looked at one 
component of the frequency response in axial flow.  
The next step is to look at the two other components, 
radial and azimuthal, and perform zero frequency and 
critical frequency responses.  Also, when we 
correlate our solution to the solution obtained from 
the convolution integral, we will need to use a 
smaller stream-wise step size in order to correct the 
discrepancy at the blade tip.   
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Figure 1.  Comparison of the conditioning number for 

the mass matrix 
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Figure 2.  Comparison of the condition number for 

the damping matrix 
 
Mode shapes Plots 
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Figure 3.  Mode 0 plot using On-Off Formulation 
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Figure 4.  Mode 1 plot correlation between Hsieh-

Peters model (solid line) and the On-Off formulation 
(dotted) 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.5

0

0.5

1

1.5

2

2.5

R (Radial Position)

Mode 2

Hsieh-Peters
Morillo-Peters
On-Off

 
Figure 5.  Mode 2 plot correlation between Hsieh-

Peters model (solid line), Morillo-Peters model (dash 
line) and On-Off formulation (dotted) 
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Figure 6.  Mode 7 plot correlation between Hsieh-

Peters model (solid line), Morillo-Peters model (dash 
line) and On-Off formulation (dotted) 
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Figure 7.  Zero frequency response plot for 

0

00, , 0, 0 ,180  and 0o oP zω χ ψ= = Φ = = = for 4 
odd terms and 4 even terms compared to the solution 

from the convolution integral 
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Figure 8.  Zero frequency response plot for 

for 4 
odd terms and 4 even terms 

0

10, , 0, 0 ,180  and 0o oP zω χ ψ= = Φ = = =
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Figure 9.  Zero frequency response plot for 

for 4 
odd terms and 4 even terms compared to the solution 

from the convolution integral 
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Figure 10.  Zero frequency response plot for 

for 4 
odd terms and 4 even terms compared to the solution 

Morillo-Peters model 

1

20, , 0, 0 ,180  and 0o oPω χ ψ= = Φ = = =z
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Figure 11.  Zero frequency response plot for 

2

20, , 0, 0 ,180  and 0o oP zω χ ψ= = Φ = = = for 4 
odd terms and 4 even terms compared to the solution 

from the convolution integral 
 

Critical Frequency Response Plots 
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Figure 12.  Critical frequency response plot for 

0

01.2, , 0, 0 ,180  and 0o oP zω χ ψ= = Φ = = = for 4 
odd terms and 4 even terms compared to the solution 

from the convolution integral 
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Figure 13.  Critical frequency response plot for 

0

12.3, , 0, 0 ,180  and 0o oP zω χ ψ= = Φ = = = for 5 
odd terms and 6 even terms compared to the solution 
from Morillo-Peters for 5 odd terms and 5 even terms 
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 Figure 14.  Critical frequency response plot for 

for 5 
odd terms and 6 even terms compared to the solution 

from the convolution integral 
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Figure 15.  Critical frequency response plot for 
for 5 

odd terms and 6 even terms compared to the solution 
from Morillo-Peters for 5 odd terms and 5 even terms 
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 Figure 16.  Critical frequency response plot for 

for 5 
odd terms and 6 even terms compared to the solution 

from the convolution integral 
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