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1 • INTRODUCTION 

by 
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A calculation procedure has been prepared with the primary objective of 
providing a practical method for incorporating unsteady section aerodynamic 
effects in the theoretical analysis of rotor aerodynamics, Factors involved in 
the approach to the formulation include reasonable computation time and complex
ity, the ability to handle arbitrary forcing functions in addition to harmonic 
terms and the inclusion of both unseparated and separated flow regimes. In the 
normal operating regime of the rotor, unsteady aerodynamic terms are of low 
magnitude and have been largely neglected. Operation near the flight boundary, 
in hover or forward flight implies a proximity to local stall and in this 
situation there is an increased sensitivity to small perturbations via the 
onset of transient separated flow. 

The various sources of blade aerodynamic forcing are shown in Figure 1 
which includes order of magnitude values for amplitude and frequency (or 
duration). Most of the large amplitude terms occur at the 1 /rev. frequency. 
Those which involve blade response normally tend to cancel basic forcing terms. 
H01;ever, depending on the type of rotor, there may be some phase shift even in 
these terms and there remains a basic 1/rev. loading in forward flight. Higher 
harmonics are associated with bending and torsional response. The torsional 
amplitude at 5/rev. (nominal natural frequency) is omitted, under normal flight 
conditions there is very little response but at the flight boundary large 
transient excursions may be excited accompanied by low or negative damping. 
This source normally generates the control system and blade vibratory loads 
which impose the speed and load limitations of the rotor system as a whole. An 
exception to forcing of harmonic nature involves the encounter or proximity of 
discrete vortices embedded in the wake, these give rise to impulsive loadings 
which excite the higher natural frequencies. 

Manoeuvring conditions change the relative geometry of the wake in such 
a manner that direct vortex encounter is provoked. The combination of all the 
above contributions can result in angle of attack changes of significant 
magnitude and short duration. 1dhen this occurs in the proximity of the stall 
the resulting force and moment characteristics may be quite different from 
those generated under quasi-static conditions, in fact, both the lift ani 
pitching moment can be very much larger. 

2. ATTACHED FLOW MODEL 

vllien the higher frequencies are excited as by impulsive loadings the 
potential lift and, more particularly, the moment terms are no longer insig
n~ficant. These terms are normally derived as functions of the reduced frequency 
~which, in the rotor environment is subject to a basic 1/rev. variation in 
~Ke velocity term. 'lie are also faced with a combination of different frequencies, 
amplitudes, phase differences and discontinuous changes in rotor forcing. More
over, rotor loading calculations are performed commonly in a stepwise manner 
with the azimuth interval as an independent variable. These considerations 
lead to the logical choice of an indicial response (response to a stepwise 
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SOURCE AMPLITUDE PERIOD 
!DEGI (SEC) 

CYCLIC PITCH 10 0 0 2 

TORSIONAL OEFLECTIONS.l!REV 1 5 0 2 

TORSIONAL DEFLECTIONS.2/REV 0 5 0 1 

TORSIONAL DEFLECTIONS, 5/REV - 0 04 

FLAPWISE DEFLECT!ONS.1/REV 8 0 0 2 

F LAPWISE DE FLEC T!ONS. 2 !REV. 3 0 0·1 

FLAPWISE DEFLECT IONS. 3/REV 1 5 0·06 

GROSS WAKE (MIDSPAN) J 5 0 2 

VORTEX PASSAGE 5 0 0-04 

FIG.l. FORMS OF EXCITATION, POTENTIAL 
ANGLE OF ATTACK CHANGES. 
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FIG.2. APPLICATION OF THE INOICIAL LIFT 
FUNCTION, 

change in forcing) approach for the solution of time varying lift and moment. 
The classical solution is that of Wagner (see ref. 2) and the resulting indicial 
lift function ¢(s) can be approximated in terms of exponential functions as 
shown in Figure 2, For applkation to the rotor problem the solution can be 
re-formulated for a timewise sampled solution, X and Y may be viewed as lift 
decrements decaying l<ith time, For general motil?n, i.e~ non-uniform downwash 
across the chord, the instantaneous angle of attack is replaced by the value of 
downwash at the i chord, Thus, apart from this change, there is no distinction 
in the nature of the forcing. Additional lift and moment terms are derived 
(ref. 2) from apparent mass effects. 

The 1.vagner function was derived for incompressible flol<. In ref. 1 is 
shown the derivation of modified indicial lift functions for compressible flow. 
Ignoring the singularities near the origin which are associated with the 
apparent mass terms, Figure 3 shows both the compressible and incompressible 
indicial lift functions. It can be seen that it is possible to ~ene2alise the 
effects of compressibility for t~e range given by substituting s(1-M) in the 
1/agner function modified by j 1-M • This allows substitution of the modified 
indicial lift function in the simple sampled form of the analysis bearing in2 
mind that Mach number is varying with time. The idealisation of¢ (s). J1:M 
allows substitution of the experimental value of the compressibl2 lift curve 
slope when this is available and the equivalent in time of s( 1-M ) as the 
sampling interval. 
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FIG.3. GENERALISATION OF THE INDICIAL LIFT FUNCTION. 
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FIG.4. COMPARISON OF HARMONIC OSCILLATION TEST DATA WITH THEORY. 

Pitching moment is implemented via the apparent mass terms as outlined in 
reference 2. For the compressible case, these terms in the lift expression 
become inappropriate (see reference 1 ). To preserve the simpl~city of the model 
they 8.re retained in a modified fashion, i.e. factored by ( 1-11 ) • 

The model so far described is applicable only to attached flow conditions. 
To substantiate its validity it has been applied to the case of harmonically 
oscillating airfoils, using a stepwise solution, and the results comrared with 
test data from references 3 through 5. Figure 4 shows this comparison in terms 
of the resulting amplitude and phase relationships in which the effect of !1ach 
number is included for three different modes of motion, i.e. pitch for forward 
and reverse flow and pure plunge motion. Correlation is good with the exception 
of reverse flow at high reduced frequency. 

3. DYNA!1IC STALL HODEL 

Representation of the separated flow regime is accomplished via an 
hypothesis of a physical model. This has been developed from observation of the 
large amount of experimental data produced in recent years, the main body of 
11hich is comprised of references 3 through 5. The main features of this model 
are shown in Figure 5. It is basically dependent on static characteristics 
;~hich are of course in turn dependent, for a given profile, on Reynolds and !1ach 
numbers, model surface condition and interference effects inherent in the 
configuration of the test rig, when appropriate. The static characteristics are 
idealised in a se(Sllented fashion, the most critical feature is the break in the 
C vs o< curve ( o<,) ;~hich delimits the linear range. Beyond this point, under 
s~atic conditions, the boundary layer can no longer withstand the adverse 
pressure gradients generated by increasing lift, the ensuing growth of separa
tion subsequently limiting the maximum lift attainable. At some further, 
higher, angle of attack (o<,) the centre of pressure (c.;>.) of the sevarate.l flo1; 
reaches a more or less stabilised value. In the intermediate range the c.p. is 
assumed to vary linearly with"'. Lift characteristics from NACA test of an 
airfoil with forced separation at the leading edge are used to represent the 
condition at moderate angles of attack where the flow has failed to re-attach, 
for convenience a curve fit of CN = 1 • 1 sin 3 o<. is used. 
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•THE STATIC UFT AND MOMENT ARE 
IDEALISED, MOMENT IN TERMS OF CENTRE 
OF PRESSURE. 

•FINITE TIME DELAYS BEFORE ONSET OF 
PITCHING MOMENT AND LIFT DIVERGENCE 

•PROGRESSIVE MOVEMENT OF THE CENTRE 
OF PRESSURE TO THE FULLY SEPARATED 
VALUE. 
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' 

! •EXPONENTIAL DECA.Y OF LIFT AT STALL 

--.. •RE~ATTACHMENT AT MODERATE ANGLES 

2 
b 

FIG.S. FEATURES OF THE DYNAMIC STALL MODEL. 

NON DIMENSIONAL TIME= 0.~. V 

TIME DELAY: 

MEAN STANDARD SAMPLES 
DEVIATION 

MOMENT BREAK 2·!.4 
UFT BREAK 5·1.1 

RANGE OF TEST PARAMETERS: 

1L2 
, 23 

REDUCED FREQUENCY 04 0 67 

MEAN ANGLE-DEGREES 2·5- 20·0 
AMPLITUDE"" DEGREES 2 5- 1 0· 5 

~VC AT DIVERGENCE -0·1- +0·06 

MACH NUMBER 0·2- 0·6 
NUMBER OF AIRFOILS 4 

MODES OF MOTION 3 

FIG.6. STATISTICAL ANALYSIS 
OF TIME DELAYS. 

The most basic feature of the present model for dynamic stall are two 
essentially unique time delays for the onset of pitching moment and lift 
divergence. The consequence, in terms of angle of attack is shown in Figure 5. 
Point (a) illustrates the delay in the divergence of pitching moment. After a 
further delay (point b) the lift, which up to this time has been calculated on 
the basis of attached flow, decays according to a simple exponential function of 
time toward the fully separated value. As the angle of attack reduces below ~. , 
(point c) a process of re-attachment is initiated; using the separated value as 
an initial condition the lift change vs time is implemented using the same 
expression as for attached flow. 

As the delays are a function of time rather than angle of attack, then, 
dependent on such parameters as mean angle, amplitude, frequency and velocity, 
for harmonic forcing the sequence of events described above will shift through
out a cycle expressed in terms of angle of attack, This results in considerable 
variation in the phasing of the pitching moment and lift breaks and the maximum 
values, with consequent implication on excitation and damping in the torsional 
mode. 

From the sources noted above some 300 specific test cases have been 
examined and about 150 selected as demonstrating lift and/or moment divergence. 
From inspection of the time delays generated there appears, somewhat surprisingly, 
to be no significant dependence on the ~arameters of frequency, mean angle, 
amplitude, Mach number, mode of motion (pitch or plunge) or even the airfoil 
profile, The time delays do not appear to be sensitive to pitch rate, to a 
first order anyway, but it was observed that the sequence of events described 
appeared to speed up for decreasing values of angle of attack. For the model 
this has been accounted for simply by doubling the effective time interval 
whilst angle of attack is decreasing. The effect of this is included in the 
statistical analysis of the time delays presented in Figure 6. 

Centre of pressure (c.p.) travel has been assumed to be a function of 
both angle of attack and time, Prior to the expiry of the time delay no change 
in c.p. is permitted, Subsequently, the timewise variation in response to a 
step change in c,p, is shown in Figure 7. The basic function is analogous to a 
second order lag, expressed in terms of the Laplace operator s in the Figure, 
It is implemented in the same manner as the indicial lift function. The net 
effect is to simulate transition from the c.p·, corresponding to attached flow to 
the c.p. for separated or partially separated flow in the time period between 
the pitching moment and lift divergence, Additionally it introduces a lag in 
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FIG.S. SIMPLIFIED FLOW DIAGRAM 
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NORMAL FORCE AND 
PITCHING MOMENT. 

c.p. movement under separated conditions, During this time period an increase 
in C above the potential value has been observed, this can amount to as much 
as 1~%. It may be attributed to the expanding pressure wave associated with the 
chordwise travel of the shed vortex, the peak pressure being a function of the 
initial circulation. 

The above procedure has been programmed as a subroutine for inclusion in 
overall rotor airloads analysis. It has been kept as simple and efficient as 
possible and currently uses only about + millisec (IBM 370/155) per step, A 
simplified flow diagram is shown in Figure 8. Input parameters comprise the 
independent variables, data from the prior step and the idealised airfoil data 
at the appropriate Mach number. If the angle of attack is less than~., or the 
non-dimensional time ('t) is less than that for pitching moment divergence ( 1:.) 
then lift and moment are calculated as for attached flow. If ~ is greater than 
1:,then the c.p. for separated flow and the appropriate time dependent value are 
calculated. Depending on whether~ is less than or greater than the value for 
lift divergence the effective angle of attack is calculated for either attached 
or separated conditions with the appropriate time dependence. On the basis of 
the effective angle of attack and c.p. the resulting normal force and pitching 
moment are calculated and the parameter list updated for the next pass. 

4. EVALUATION AND COMPARISON Tt/ITH TEST 

By far the largest available body of test data comprise refs. 3 through 
5. These tests were performed by Vertol under contract to the U.S. Army. They 
cover several airfoils and modes of excitation, all of which, however, are 
harmonic. It has been stressed that the theoretical model has been formulated 
to handle forcing of an arbitrary sampled nature, thus the application to 
harmonic motion is a particular case. Correlation of the method has been 
performed with a number of cases from the above references and some examples are 
shown to illustrate features of the model. 

Figure 9 shows how the relation between pitching moment and lift diverg
ence time-delays influence the damping and maximum eM. Considering each cycle 
in turn, the mean angle of attack increases consecutlvely, The first shows only 
very limited separation, it is sufficient, however, to introduce a small loop of 
negative damping which partially offsets the basic potential value. The second 
cycle shows earlier CM divergence which increases the loop of negative damping 
reducing the overall value to close to zero, Further increase of mean angle 
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introduces an extra loop of positive damping, this is due to the c.p. having 
reached the fully separated value before the end of the cycle. Maximum pitching 
moment is now a function of c1ma which occurs earlier in the cycle and thus 
offsets the effect of the increa~ing mean angle. 

Figure 10 shows how increasing frequency can allow more of the cycle to 
be completed before the onset of separation effects. In this particular case, 
it has the effect of initially driving the damping to more negative values and 
then subsequently in the direction of positive damping. The maximum values of 
pitching moment still occur at the point of lift divergence which, at the higher 
frequencies, is delayed to lower angles in the return part of the cycle, thus 
maxiwum CM is no longer a function of the maximum lift. These data appear to 
show a delay in re-attachment at high frequency. 

The effect of !1ach number is sho'dn in Figure II. A constant value of 
reduced frequency is used to illustrate tr2t exceptionally large values of 
normal force may be achieved at high Mach number. If a ccnst~~t frequency were 
used for the comp9.Tison, the effect of tr..e decrease in reduced frequency as Mach 
number increased llould dominate the c:::;::;.paris:::~- ard s!:c·~r e. r:d.'.wtion in the 
maximum lift. The progressively earlier break i~ pitc~i~? =:::~ent is due to the 
influence of the static characteristics. 
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That the model is equally applicable in reverse flow is shown by Figure 
12. Large pitching moments are generated under attached flow conditions by the 
offset of the aerodynamic centre from the pitch and moment axis. Separation has 
the effect of reducing this offset as ;;ell as changing the shape of the loop. 
The high values of CN are noteworthy. These results are particularly encouraging 
if the condition of reverse flow is viewed as a rather extreme modification of 
the thickness distribution. 

Apart from the influence on do>mwash at the f chord point and on virtual 
mass terms, no distinction is made between pitch and plunge motion in the model. 
Figure 13 shows a comparison of results for plunge motion with increasing mean 
angle. Shift of the test values of pitching moment for unseparated flo;; occurs 
somewhat randomly in the data and is not considered significant. Pitching 
moments are negligible for this mode when the flow is attached, c

1 
is over

estimated for these cases which utilise the same section data as fo~8{he pitching 
mode, Modification to the rig in the form of end plates introduced some flow 
separation problems and may have resulted in some change to the section data. 
\lith the onset of separation effects, the maximum lift and moment values are 
achieved in a manneF corresponding to that for pitch motion. 

Following excitation of the torsional natural frequency, the damping of 
this mode is of prime concern. Figure 14 shows a comparison of both the maximum 
pitching moment and relative damping for harmonic pitch oscillation. Progression 
is shown from positive damping (potential solution) to negative values and back 
to positive at high mean angles, The mechanism of these changes is sho;;n in 
Figure 9. Zero damping is the result of the combination of positive and negative 
loops and consequently it is very sensitive to small deviations in pitching 
moment. The re-attachment and return part of the cycle sho;;s the most variation, 
an example, presented in reference 4, in four successive cycles shows a variation 
in damping ratio from zero to -0.8. Good matching of maximum pitching moment 
reinforces attribution of the discrepancy to this part of the cycle, Due to the 
non-linearity of the mechanism, the region of low and negative damping is a 
function of amplitude, 

To illustrate application of the model to non-harmonic forcing, Figure 15 
shows the response to a ramp input. The experimental data were taken from 
reference 6 and demonstrate the type of build up of angle of attack with time 
that might be associated with the proximity of a discrete vortex passage, 

17.8 



0012 BLADE MU: 0000 TC:0956 
2 0 

CN 
1 0 

FLT 1045. RUN 13. 
REV 5 PRO() 3 -
18 37 MAY 13. '75 

0~--4---~---+----+---------

9615 BLADE 'MU :0000 TC :-0956 
2 0 

CN 
1 0 

CT 

CM 

FLT 1045. RUN 13. 
REV 1 PROG 3-
18 37 MAY 13. "75 

a) HOVER • 

0012 BLADE MU :·3826 TC =·0870 
2 0 

CN 
1 0 

CT 
-0 2 

CMJ 
9615 BLADE MU =·3828 TC:-0870 

2 0 

CN 

CT 

CM 

FLT 1049. RUN 24. 
REV B PROG 3-
20 42 JUN 02 .. 75 

FL T 10l.9 RUN 24. 
REV 6 PROG 3-
20 l.2 JUN 02. '75 

-0 2 b) FORWARD FLIGHT. J." = 0 38 

FIG. 16. FLIGHT MEASUREMENTS OF THE TIME DELAY BETWEEN PITCHING MOMENT AND 
LIFT DIVERGENCE. 

Some flight research has been performed recently at R.A.E. Bedford to 
investigate section characteristics in the region of the flight boundary. 
Pressure plotted airfoil gloves provide time history data of normal and chord
;rise forces and pitching moment; a description of these experiments has been 
uresented in reference 7. Some preliminary data for two airfoil sections in 
hover and for;rard flight are sho;rn in Figure 16, All the cases sho;rn demonstrate 
large torsional moments and, in the case of hover, some instability. They are 
used to illustrate the non-dimensional time delay between pitching moment and 
lift divergence ;rhich, from the analysis of 'lind tunnel P~rmonic data, should be 
of the order of 3.0 t<ith a standard deviation of about 0.6, experimental values 
are sho;rn in the figclre. The hover case demonstrates excitation of a slightly 
divergent oscillation at the torsional natural frequency and involves cycles of 
separation and re-attachment. The forward flight case involves separation on the 
retreating blade at a l01;er local Mach number and consequently higher CN' this 
is followed by the passage of a tip vortex which triggers a repeated separation. 
The combination of these h-10 events creates a sizeable torsional impulse which 
is transmitted to the control system. It can be observed that for the for~<ard 
flight case, the azimuth interval involved is greater than for the hover. This 
is due to the local velocity term in the non-dimensional time delay and, in 
conjunction with the other demonstrated characteristics, would appear to 
substantiate application of the theoretical model to the full scale rotor 
environment. 
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5, CONCLUSIONS 

A relatively simple computational model has been constructed for the 
synthesis of unsteady aerodynamics, It is based on a physical model for 
dynamic stall which has sufficient generality to be applicable to all airfoils 
and modes of excitation, As a result, it may be used to predict behaviour under 
conditions that have not been simulated under test and, being based on static 
airfoil characteristics, it may be used to predict changes in dynamic behaviour 
resulting from design or operational modifications to the profile, It is 
intended for engineering application, in particular, the investigation of rotor 
airloads and flight boundaries. Consequently, computational requirements have 
been minimised, stepwise sampling has been used to conform to conventional 
methods of rotor analysis and encompass a combination of forcing terms. 
C:ontinui ty is maintained in the timewise variation of attached and separated 
flow conditions and the large normal force and pitching moments demor£trated in 
wind tunnel tests are reproduced together with their relative phasing. Correl
ation has been demonstrated with a range of wind tunnel and flight experiments. 
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NOTATION 

constants 

airfoil chord 

normal force coefficient 

pitching moment coefficient 

heave displacement, positive up 

reduced frequency,.~~ 

Mach number 

streamwise distance, semichords 

time, seconds 

local airstream relative velocity, ft/sec 

angle of attack 

non-dimensional time t.V 
c 

phase angle 
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¢(s) 

w 

indicial lift function 

frequency,radians/sec 


