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Abstract 
Generally speaking, the trim problem is that of finding an equilibrium solution corresponding to an assigned set 
of well-posed constraints defining the current flight condition of the aircraft. The trim problem appears in 
different instances in helicopter practice, both in simulation environment and in the field, and analyzing it is a 
twofold process. Firstly, it is necessary to find an equilibrium condition in terms of rotorcraft states and 
controls. Secondly, one needs to keep the helicopter in the trimmed condition, which can be accomplished by 
means of dedicated trim control laws. This paper explores the opportunity to exploit a linearized, airspeed-
scheduled high-fidelity model of a helicopter for this twofold task. An analytic linearized model has been 
defined for hover, feeding the linearized equations of the helicopter dynamics with data obtained from ad-hoc 
simulations on a detailed multi-body model of a specific testbed, considered also for the testing phase. For 
higher airspeeds, an approach through model identification has been envisaged for characterizing a suitable 
system accounting for changes in the dynamics due to forward flight. Subsequently, the models have been 
used to design control laws based on different strategies, capable of successfully keeping the machine in 
trimmed flight under various testing conditions. This in turn allows trimming the machine at even higher 
speeds, thus allowing to identify further models, capturing the dynamics of the system over larger portions of 
the operating envelope of the rotorcraft. The availability of the linearized model has been fully exploited 
implementing an automatic procedure for optimal gain tuning, with application to multiple control laws. 
 

1 INTRODUCTION 

The problem of trim is a recurring issue in the analysis 
of rotorcraft flight mechanics. The problem is faced in 
the existing literature with methods designed to cope 
both with virtual models of various level of detail, and 
with the real machine [1], [2]. 
When working with simple virtual models, capable of 
simulating only the rigid motion of a rotorcraft, it is 
possible to use a family of methods based on a direct 
numerical solution. Such methods attempt to solve 
iteratively the system of nonlinear equations used for 
modeling the translational and rotational dynamics of 
a rigid body, accounting for a forcing effect due to 
gravity and – for a typical rotorcraft configuration – to 
the aerodynamics of the main rotor, fuselage, 
empennages, and tail rotor [3]. The aerodynamics is 
typically modeled by means of prescribed functions of 
the kinematic state of the system and of the relative 
direction of the airspeed. 
Similar methods can be profitably used also in 
presence of the virtual system of equations for the 

flap and lag dynamics of the rotor, provided these are 
treated with a suitable harmonic expansion, usually 
truncated at the first rotor frequency, and hence 
written in a lumped form based on concentrated 
parameters, thus without engendering a significant 
increase in the complexity of the system [3], [4]. 
A potential issue of this approach is the inaccuracy of 
the so-obtained trimmed condition. The latter may 
turn out to be not a trimmed condition for the real 
helicopter, or not even for a virtual model of the 
machine built in a higher-fidelity environment, due to 
the intrinsic limitations of the adopted reduced 
model. 
On the other end, for the trim solution of systems 
modeled in greater detail, for which explicit equations 
are too many and impractical to manage, methods 
known as autopilot-based have been proposed in the 
past for finding the equilibrium condition. These are 
based on the idea of controlling the system by means 
of a suitably designed controller, with the aim of 
driving all states to a steady flight condition, for 



assigned values of the airspeed (in terms of both 
intensity and relative direction) and rotorcraft weight 
[1]. This approach is suitable for detailed multi-body 
models including flexible parts, where aerodynamic 
loads are computed by means of distributed models, 
such as lifting lines or panels, and it would be ideally 
suited also for a real helicopter. 
This family of methods is clearly more sophisticated 
to design, and may carry several issues, most notably 
an instability of the controlled system due to poor 
characteristics of the controller, and usually implies at 
least an approximate knowledge of the trim solution 
before running a trimming simulation.  Among the 
advantages of this technique, there are the greater 
fidelity of the trimmed condition with respect to the 
real plant, and the fact that a trimming controller, 
potentially capable of governing the machine also in 
presence of disturbances as may happen in flight, is 
obtained as a side-product of the trim analysis 
process. 
The present paper tries to envisage a common 
development framework encompassing both 
trimming techniques, by exploring the mutual 
connection between the two extreme approaches to 
the trim problem. In a first stage, a simplified model 
of a helicopter is recalled, theoretically suitable for 
approaching the trim problem by means of a 
numerical integration method [3]. Next, a complete 
model of the same helicopter is introduced, 
developed in a high-fidelity multi-body code with fully 
non-linear, distributed aerodynamics. The equilibrium 
condition is studied following an autopilot-based 
approach. The point of contact between the two 
approaches lies in the use of the reduced, lower-
order model to suitably design a controller capable of 
trimming the higher-order one, thus substantially 
reducing the difficulty in computing a control law for 
trimming, with some guarantees on control 
performance. The trimmed condition obtained by 
means of this approach, besides being relatively fast 
to find with respect to other autopilot-based 
approaches that do not take advantage of the 
knowledge of the dynamics of the system to be 
controlled, will be free from the inaccuracies that are 
potentially present in the trimmed solution obtained 
from direct integration of the reduced model. 

More in depth, in this work two possible ways of 
exploiting the reduced model for the synthesis of a 
trimming control law are presented. The first is based 
on the PID control paradigm, and for that case the 
reduced model is used to optimally tune the gains in 
order to satisfy some constraints on the performance 
of the controlled system. The second makes a more 
direct use of the knowledge of the dynamics of the 
system offered by the reduced model, and is based 
on the design of a model-based linear-quadratic 
regulator (LQR). Also in that case, an optimization of 
the weights is carried out making use of the reduced 
model. 
In an effort to cope with the changing dynamics of 
the system in forward flight at increasing airspeeds, 
the proposed control design approach can be applied 
based on a reduced linear model with coefficients 
scheduled as functions of the airspeed. In order to 
compute the coefficients of the reduced model at 
non-null speeds, an identification approach has been 
proposed where a controller designed for trimming 
the rotorcraft at a lower airspeed is used at a higher 
speed – hence in slightly off-design conditions – to 
find an equilibrium point. Ad-hoc identification 
analyses are carried out around the new trimmed 
condition, allowing to identify the dynamics of the 
system for the corresponding airspeed. This in turn 
unfolds the potentiality of the proposed approach for 
a trimming control not limited to the hover condition, 
but applicable to all airspeeds in the operating 
envelope of the rotorcraft. 
 

2 THE TRIM PROBLEM 

The solution of the trim problem, in mathematical 
terms, is that of finding the equilibrium point for the 
non-linear system of equations describing the 
dynamics of the rotorcraft. In this work, only the rigid 
motion of a helicopter has been accounted for, 
whereas the bending and twisting dynamics of the 
rotor blades has not been included, similarly to the 
higher-frequency deformation dynamics of more rigid 
parts of the machine like the fuselage and 
empennages [3]. The system of non-linear dynamic 
equations can be formally written as 
 

(1)  �̇� = 𝒇 (𝒙, 𝑭𝑎(𝒙, 𝒖), 𝑭𝑔(𝒙)), 



where 𝒙  is the state array, composed of the three 
linear rates 𝑢, 𝑣, 𝑤, three rotational rates 𝑝, 𝑞, 𝑟, and 
the attitude angles 𝜙, 𝜃, 𝜓, defined with respect to 
the longitudinal (roll), lateral (pitch), and vertical 
(yaw) body axis respectively. The control input array 
𝒖 is composed of the translational motion of the 
swashplate 𝛿𝑠𝑤, regulating the collective component 
of blade pitch, the lateral and longitudinal cyclic 
amplitudes 𝐴1 and 𝐵1 and the rotational speed of the 
tail rotor 𝛺𝑇. The choice of the latter is less typical 
with respect to tail rotor collective, and it was 
adopted to cope with a specific design feature of the 
testbed considered in this work, described in Section 
3. The terms 𝑭𝑎 and 𝑭𝑔 represent the aerodynamic 

and weight forces respectively. 
The arrays of state 𝒙 and input 𝒖 can be henceforth 
arranged in a compact form as 
 

(2)
            𝒙 = (𝑢, 𝑣, 𝑤, 𝑝, 𝑞, 𝑟, 𝜙, 𝜃, 𝜓)𝑇

𝒖 = (𝛿𝑠𝑤 , 𝐴1, 𝐵1, 𝛺𝑇)
𝑇 . 

It should be remarked that the forcing term 𝑭𝑔 is a 

function of the three state variables 𝜙, 𝜃, 𝜓 only, and 
not of the other components of the state array. 
 

2.1 Reduced Model for Trim 

As mentioned in the introduction, the trim solution of 
a system of equations such as Eq. (1), which is of 
relatively small scale, can be found with a direct 
approach, which usually implies an iterative process, 
starting from a guess of the solution that will be 
progressively refined. A typical such algorithm is 
based on a Newton-Raphson approach, which entails 
the computation of the sensitivities of the dynamic 
system to a change in the state and control variables, 

formally  
𝜕𝒇

𝜕𝒙
|
𝒙,𝒖
  and  

𝜕𝒇

𝜕𝒖
|
𝒙,𝒖

, where 𝒙 and 𝒖 represent 

the current value of the state and controls in an 
iteration of the solution algorithm. This process, in 
turn, allows introducing the linearized system in a 
natural way. When the values of 𝒙  and 𝒖  have 

reached convergence to the values 𝒙
∗
 and 𝒖

∗
, the 

latter represent both the equilibrium condition for 
the non-linear system and, from a strictly 
mathematical perspective, the reference point of the 
linearized system, which will be a representation in 

the vicinity of the equilibrium point of the complete 
dynamics in Eq. (1). 
It is possible to write the linearized system explicitly, 
starting from the usual form adopted in the literature 
for the non-linear dynamics of the helicopter. The 
resulting dynamic equation in matrix form yields 
 
(3) 𝑴𝛥�̇� + 𝑲𝛥𝒙 + 𝑳𝛥𝒖 = 𝟎, 

where the perturbations are defined as 𝛥𝒙 = 𝒙 − 𝒙
∗
 

and 𝛥𝒖 = 𝒖 − 𝒖
∗
. We introduce the terms of the 

aerodynamic force and CG-centered aerodynamic 
moments in the local body reference frame, 
 
(4)  𝑭𝒂 = (𝑋, 𝑌, 𝑍, 𝑅𝐺 ,𝑀𝐺 , 𝑁𝐺)

𝑇. 

Matrix 𝑴 in Eq. (3) can be written as 
 

(5)  𝑴 = [

𝑴𝟏 𝟎 𝟎
𝟎 𝑴𝟐 𝟎
𝟎 𝟎 𝑴𝟑

], 

with  
 

(6) 𝑴𝟏 = [
𝑚 0 0
0 𝑚 0
0 0 𝑚 − 𝑍�̇�

] , 

𝑴𝟐 = [

𝐼𝑥𝑥 −𝐼𝑥𝑦 −𝐼𝑥𝑧
−𝐼𝑥𝑦 𝐼𝑦𝑦 −𝑀�̇� −𝐼𝑦𝑧
−𝐼𝑥𝑧 −𝐼𝑦𝑧 𝐼𝑧𝑧

] , 

𝑴𝟑 = [

1 0 −𝑠𝑖𝑛𝜃
∗

0 𝑐𝑜𝑠𝜙
∗

𝑠𝑖𝑛𝜙
∗
𝑐𝑜𝑠𝜃

∗

0 −𝑠𝑖𝑛𝜙
∗

𝑐𝑜𝑠𝜙
∗
𝑐𝑜𝑠𝜃

∗

] . 

 
Here 𝑚 represents the mass of the helicopter and  𝐼𝑖𝑗 

its inertia moment components in the corresponding 
indexed plane. The state-sensitivity matrix 𝑲 in Eq. (3) 
can be written as 
 

(7) 𝑲 = −[
𝑲𝟏𝟏 𝑲𝟏𝟐
𝑲𝟐𝟏 𝑲𝟐𝟐

], 

wherein  
 
 



(8) 

𝑲𝟏𝟏 =

[
 
 
 
 
 
 
 𝑋𝑢 𝑋𝑣 𝑋𝑤 𝑋𝑝 𝑋𝑞 −𝑚 𝑉

∗
𝜃
∗

𝑋𝑟

𝑌𝑢 𝑌𝑣 𝑌𝑤 𝑌𝑝 +𝑚𝑉
∗
𝜃
∗
 𝑌𝑞 𝑌𝑟 −𝑚𝑉

∗

𝑍𝑢 𝑍𝑣 𝑍𝑤 𝑍𝑝 𝑍𝑞 +𝑚𝑉
∗

𝑍𝑟
𝑅𝑢 𝑅𝑣 𝑅𝑤 𝑅𝑝 𝑅𝑞 𝑅𝑟
𝑀𝑢 𝑀𝑣 𝑀𝑤 𝑀𝑝 𝑀𝑞 𝑀𝑟

𝑁𝑢 𝑁𝑣 𝑁𝑤 𝑁𝑝 𝑁𝑞 𝑁𝑟 ]
 
 
 
 
 
 
 

 , 

𝑲𝟏𝟐 = [

0 −𝑚𝑔 0
𝑚𝑔 0 0
0 0 0
 𝟎  

] ,  𝑲𝟐𝟏 = [𝟎 𝑰] ,  𝑲𝟐𝟐 = 𝟎, 

 
𝑔 being the intensity of the gravitational acceleration 

and 𝑉
∗
= √𝑢

∗2
+𝑣

∗2
+𝑤

∗2
. 

Finally, the control-sensitivity matrix 𝑳 has the form 
 

(9)  𝑳 = [
𝑳𝟏
𝟎
], 

where  
 

(10)   𝑳𝟏 =

[
 
 
 
 
 
 
𝑋𝛿𝑠𝑤 𝑋𝐴1 𝑋𝐵1 𝑋𝛺𝑇
𝑌𝛿𝑠𝑤 𝑌𝐴1 𝑌𝐵1 𝑌𝛺𝑇
𝑍𝛿𝑠𝑤 𝑍𝐴1 𝑍𝐵1 𝑍𝛺𝑇
𝑅𝐺,𝛿𝑠𝑤 𝑅𝐺,𝐴1 𝑅𝐺,𝐵1 𝑅𝐺,𝛺𝑇
𝑀𝐺,𝛿𝑠𝑤 𝑀𝐺,𝐴1 𝑀𝐺,𝐵1 𝑀𝐺,𝛺𝑇
𝑁𝐺,𝛿𝑠𝑤  𝑁𝐺,𝐴1 𝑁𝐺,𝐵1 𝑁𝐺,𝛺𝑇 ]

 
 
 
 
 
 

 . 

In order to solve the trim problem, it is necessary to 
know all coefficients in Eqs. (5), (7) and (9). Except for 
some of them, depending purely on inertial or 
kinematic quantities which can be found from the 
characteristics of the design and assembly of the 
helicopter of interest, all those expressing sensitivities 
of the aerodynamic forces and moments with respect 
to the states and controls need to be obtained 
someway else.  
There are several methods to tackle this problem. The 
first is trying to find an analytic expression for the 
sensitivities. To preserve linearity, this implies setting 
up an analytic aerodynamic model able to capture the 
dependency of each force component with respect to 
each state or input in a decoupled way [3], [5].  
The sophistication of the aerodynamics of the 
helicopter in a generic flight condition makes this task 

very demanding, and the resulting expressions can be 
difficult to treat and their evaluation error-prone, 
resulting in an inaccurate numerical description of the 
dynamics of the system. Nonetheless, for the special 
case of hover, when the contributions of the fuselage 
and empennages to the total aerodynamic force are 
null (neglecting their interaction with the rotor 
wakes), analytic expressions for the sensitivities in 
Eqs. (7) and (9) can be derived and are reported in the 
literature [3]. In hover, each sensitivity is obtained 
from the sum of two contributions from the main and 
tail rotor respectively. For many of the sensitivities, 
the value in hover can be safely assumed null for a 
helicopter with traditional configuration. This is true 
also for the two sensitivities 𝑍�̇�, 𝑀�̇� in Eq. (6). 
With respect to the existing literature, the model 
considered in Eqs. (1) and (2) shows a difference in 
the array of controls, where the tail rotor speed Ω𝑇 is 
used instead of the usual tail rotor collective. The 
non-null sensitivities which need to be emended are 
𝑌Ω𝑇, 𝑅Ω𝑇, 𝑀Ω𝑇 and 𝑁Ω𝑇 . The expressions for 𝑌Ω𝑇 and 

𝑀Ω𝑇 , from which the other two can be easily derived, 

read respectively 
 

𝑌𝛺𝑇 =
𝜕𝑇𝑇
𝜕𝛺𝑇

|
𝛺𝑇

∗
= 

𝜕

𝜕𝛺𝑇
(𝜌𝐴𝑏𝛺𝑇

2𝑅2
𝐶𝑇(𝛺𝑇)

𝜎
)|
𝛺𝑇

∗

= 𝜌𝐴𝑏𝛺𝑇
∗
𝑅2(2

𝐶𝑇(𝛺𝑇
∗
)

𝜎
+𝛺𝑇

∗𝜕(
𝐶𝑇
𝜎
)

𝜕𝛺𝑇
|

𝛺𝑇
∗

) 

(11)  

𝑀𝛺𝑇 = −
𝜕𝑄𝑇
𝜕𝛺𝑇

|
𝛺𝑇

∗
= −

𝜕

𝜕𝛺𝑇
(𝜌𝐴𝑏𝛺𝑇

2𝑅3
𝐶𝑄(𝛺𝑇)

𝜎
)|
𝛺𝑇

∗

= −𝜌𝐴𝑏𝛺𝑇
∗
𝑅3(2

𝐶𝑄(𝛺𝑇
∗
)

𝜎
+𝛺𝑇

∗
𝜕(
𝐶𝑄
𝜎
)

𝜕𝛺𝑇
|

𝛺𝑇
∗

) 

where, similarly to [3],  𝑇𝑇 and 𝑄𝑇 are the thrust and 
torque of the tail rotor, 𝜌 is the density of air, 𝐴𝑏 and 
𝑅 the area and radius of the rotor, 𝐶𝑇(Ω𝑇)/𝜎 and 
𝐶𝑄(Ω𝑇)/𝜎 the thrust and torque coefficients of the 

tail rotor normalized on its solidity.  
The expressions in Eq. (11) exemplify the structure of 
most sensitivities [3], and highlight their dependence 
on the derivatives of purely aerodynamic 



characteristics of the rotor, 𝐶𝑇(Ω𝑇)/𝜎 and 𝐶𝑄(Ω𝑇)/

𝜎, which in turn need to be known from a preliminary 
aerodynamic characterization of the rotor of interest. 
 

2.2 Solutions of the Trim Problem 

As pointed out in the introduction, if a reduced model 
is available, there are at least two possible ways to 
exploit it with the aim of finding a trimmed solution. 
The first is that of directly solving Eq. (1), which can 
be typically done iteratively.  It should be remarked 
that the problem of trim presented analytically in the 
previous subsection is formulated in an 
underdetermined way, the total number of unknowns 
– 9 trimmed states and 4 controls – being higher than 
the number of scalar dynamic and kinematic 
equations, which is 9. For this reason, 4 parameters 
should be set in order to correctly set up the problem 
for a direct solution.  
For the application considered in this paper – a 
trimmed condition in hover or in forward flight – it is 
possible to set the values of the lateral and vertical 
speeds, as well as the course angle, to zero – 

𝑣
∗
= 𝑤

∗
= 𝜓

∗
= 0 – and the value of the longitudinal 

speed 𝑢
∗
 to zero or to the desired value.  

In the direct approach, the reduced model is used to 
find a solution to the trim problem without the need 
for a controller. On the other hand, when deploying 
an autopilot, the system is integrated in closed loop 
towards an equilibrium point. In this paper we shall 
focus on this technique. In the proposed framework, 
the reduced model will be employed side by side with 
a more detailed, multi-body/FEM model of the 
helicopter of interest for computing the solution of 
the trim problem. In order to keep computational 
time low, the autopilot can be designed and tested 
first on the reduced model, before trying it on the 
more sophisticated multi-body/FEM model. 
In order to make the system more suited for control 
purposes, it is possible to write it in a state form 
starting from Eq. (3), yielding 
 

(12)                𝛥�̇� = −𝑴−𝟏𝑲𝛥𝒙−𝑴−𝟏𝑳𝛥𝒖
= 𝑨𝛥𝒙+𝑩𝛥𝒖

. 

An eigenvalue analysis can be carried out 
preliminarily on the state matrix 𝑨, in order to check 

the degree of stability of the free dynamic response 
of the system. This allows assessing the level of 
criticality of the design of the control system. In the 
following two subsections, two control architectures 
exploiting the reduced model in the design process 
will be presented. 
 

2.2.1 Optimized PID Control 

A first control law for trim has been designed based 
on multiple SISO loops [2], [6], [7]. In order to 
facilitate the design of the corresponding control 
laws, the dynamics of the system have been arranged 
in two layers, as highlighted in Figure. This control 
scheme is particularly suited for hover or low-speed 
forward flight. 
The internal layer, in red on Figure 1, is a stabilization 
layer for the faster dynamics of the system. These 
include the states 𝑤 and 𝑟, controlled with 𝛿𝑠𝑤 and 
𝛺𝑇 respectively by means of proportional-integral (PI) 
control laws. The other fast dynamics in the system 
are those of the attitude angles 𝜙 and 𝜃, governed by 
means of the two cyclic pitches 𝐴1 and 𝐵1. These are 
controlled through proportional-derivative (PD) 
control laws, where the derivative term is necessary 
to obtain a damping effect on the corresponding two 
states. The potential noise increase in the control 
input, bound to the feedback of a derivative term, is 
addressed with a suitable low-pass filter ahead of the 
derivative gain. The breakdown of the PD control 
block is shown in Figure 2 for the case of the 𝜙-to-𝐴1 
loop. 

 
Figure 1: Adopted scheme for the PID controller for trim 



 
Figure 2: Adopted scheme for PD controllers with filter. 

Example on -to-A1 loop. 

The reference for the internal layer is either set by 
the user – for 𝑤 and 𝑟 – or obtained from the external 
layer, in green on Figure 1. This implements two 
parallel PI loops, working on the longitudinal and 
lateral speeds 𝑢 and 𝑣, for which the set-point has 
been set by the user. The two control laws produce 
the reference values for the states 𝜙 and 𝜃 as control 
inputs. 
It can be noticed that the overall architecture of the 
system does not take explicitly into account the two 
rates 𝑝, 𝑞 and the 𝜓 angle. For a trimmed condition in 
hover or forward flight where all rates are null, 
sufficient information on those two rates is present in 
the control architecture through the derivative term 
in the PD control laws, applied to 𝜙 and 𝜃. Similarly, 
information on the yaw angle 𝜓 is accounted for by 
means of the integral term in the PI loop for the yaw 
rate 𝑟. 
In analytical terms, the implementation adopted for 
the generic PID law can be written in the Laplace 
domain as  
 

(13)  𝑃𝐼𝐷(𝑠) = 𝑘𝑐 (1 +
1

𝑠𝑇𝐼
+ 𝑠𝑇𝐷

1+𝑠𝑇𝑓
). 

The filtering effect on the derivative term can be 
obtained by tuning the term 𝑇𝑓  properly [6]. 

Considering all control loops in Figure, the array of  
parameters to be tuned is composed of  

(𝑘𝑐
𝑤, 𝑇𝐼

𝑤 , 𝑘𝑐
𝑟, 𝑇𝐼

𝑟, 𝑘𝑐
𝜙
, 𝑇𝐷

𝜙
, 𝑘𝑐
𝜃, 𝑇𝐷

𝜃, 𝑘𝑐
𝑢, 𝑇𝐼

𝑢, 𝑘𝑐
𝑣, 𝑇𝐼

𝑣 , 𝑇𝑓). 

For simplicity, a single value of 𝑇𝑓 has been assumed 

for both control loops with a derivative term.  
To tune the control system, an analysis of the 
performance by means of the root locus has been 
adopted first. To this aim, the following equations 
have been added to the system in state form, Eq. 

(12), defining the integral terms (subscript ‘I’) and the 

dynamics of the filtering action on the errors 𝑒𝑓
𝜙

 and 

𝑒𝑓
𝜃, yielding 

 

(14)   

{
 
 
 

 
 
 

𝛥�̇�𝐼 = 𝛥𝑟
𝛥�̇�𝐼 = 𝛥𝑢
𝛥�̇�𝐼 = 𝛥𝑣
𝛥�̇�𝐼 = 𝛥𝑤

�̇�𝑓
𝜙
= − 1

𝑇𝑓
(𝛥𝜙 + 𝑒𝑓

𝜙
) + 1

𝑇𝑓
𝛥𝜙𝑟𝑒𝑓

�̇�𝑓
𝜃 = − 1

𝑇𝑓
(𝛥𝜃 + 𝑒𝑓

𝜃) + 1

𝑇𝑓
𝛥𝜃𝑟𝑒𝑓

. 

Referring again to the system in Eq. (12), the so-
obtained augmented system is based on the 
augmented arrays of state and control input, defined 
as 

(15)
     𝛥𝒙𝑎𝑢𝑔 = (𝛥𝒙

𝑇 , 𝛥𝑟𝐼 , 𝛥𝑢𝐼 , 𝛥𝑣𝐼 , 𝛥𝑤𝐼 , 𝑒𝑓
𝜙
, 𝑒𝑓
𝜃)

𝑇

𝛥𝒖𝑎𝑢𝑔 = (𝛥𝒖
𝑇 , 𝛥𝜙𝑟𝑒𝑓 , 𝛥𝜃𝑟𝑒𝑓)

𝑇
. 

Based on these, the control law can be written as  
 
(16) 𝛥𝒖𝑎𝑢𝑔 = −𝐾𝑃𝐼𝐷𝛥𝒙𝑎𝑢𝑔,  

where matrix 𝑲𝑃𝐼𝐷 is a 6-by-15 sparse gain matrix, 
with the values of proportional, derivative and 
integral gains as specified by the adopted control 
scheme (Figure). Substituting Eq. (16) in Eq. (12), 
augmented with Eq. (14), it is easy to define the state 
matrix of the controlled system based on a reduced 
representation of the latter, and computing the 
eigenvalues for changing values in matrix 𝑲𝑃𝐼𝐷.  
Due to the high number of parameters to be tuned 
for this control law – totaling 13 –, manual tuning is 
impractical. For the testbed considered in this work, a 
first manual tuning based on the rules of Tyreus-
Luyben has allowed the setup of a stabilizing first 
guess gain matrix. The root loci associated to each 
non-null component of 𝑲𝑃𝐼𝐷 have been studied, and 
the values of the gains have been set 
correspondingly. Based on the analysis of the root 
loci, the desired performance of the controller has 
been negotiated to yield  

 a settling time (to within 1% of the set-point) of 
all dynamics 𝑇𝑎1< 4 s; 

 a minimum damping of all second order 
dynamics 𝜁𝑚𝑖𝑛 > 0.707; 



 for the vertical, lateral and longitudinal 
dynamics the maximum frequency 𝜔𝑚𝑎𝑥< 6 
rad/s, in order to avoid coalescence with rotor 
frequencies (not accounted for in the reduced 
model), whereas 𝜔𝑚𝑎𝑥< 20 rad/s for directional 
dynamics. 

To ease gain tuning, the availability of a linearized 
reduced system can be exploited further, by setting 
up an optimization algorithm for the gains. A merit 
function can be set up considering two key 
performance parameters which are obtained for an 
assigned control gain matrix, in the form of 𝜁�̅�𝑖𝑛, the 
minimum of all damping factors of the oscillatory 
modes of the system, and �̅�𝑚𝑎𝑥, the time constant of 
the slowest mode in the system. The distances of 
these two quantities from their respective desired 
values 𝜁∗ and 𝜏∗ define the merit function 

(17)   𝐽𝐺(𝜁�̅�𝑖𝑛, �̅�𝑚𝑎𝑥) = (
�̅�𝑚𝑖𝑛−𝜁

∗

𝜁∗
)
2
+ (�̅�𝑚𝑎𝑥−𝜏

∗

𝜏∗
)
2

.  

The optimization variables may be in principle all the 
13 tuning parameters introduced previously. Due to 
the limited effect of their change on the dynamics of 
the system, (𝑘𝑐

𝑤, 𝑇𝐼
𝑤, 𝑘𝑐

𝑟 , 𝑇𝐼
𝑟) can be excluded from 

the set of optimization variables. In order to compute 
the merit function, it is necessary to compute the 
eigenvalues of the controlled system – this is very 
practical thanks to the available reduced model. Due 
to the good regularity of the problem, an 
unconstrained gradient method can be profitably 
deployed to solve this optimization. 
 

2.2.2 Linear-Quadratic Regulator (LQR) 

The linearized reduced model constitutes a necessary 
asset to start with the synthesis of a model-based 
control. In this work an LQR optimal control law is 
considered [8]. The matrices of the linearized system 
in Eq. (12) can be fed to a numerical solver of the 
algebraic Riccati equation (ARE), producing in a first 
stage a purely proportional controller. From a 
theoretical standpoint, the so-obtained control 
solution minimizes the functional  
 

(18)  𝐽 = 1

2
∫ (𝛥𝒙𝑇𝑸𝛥𝒙 + 𝛥𝒖𝑇𝑹𝛥𝒖
∞

0
)𝑑𝑡.  

For the solution process of the ARE it is necessary to 
specify the diagonal weight matrices 𝑸  and 𝑹 

corresponding to the state and input arrays 
respectively. The control solution obtained through  
this design algorithm guarantees the asymptotic 
stability of the dynamics of the controlled system, 

provided the couple (𝑨,𝑩) is stabilizable and (√𝑸, 𝑨) 

is detectable, which is the case for the considered 
system (helicopter) and controls, for a wide range of 
coefficients in 𝑸. 
A relevant advantage of this algorithm for control 
design is the automatic and computationally light 
production of a stabilizing gain matrix 𝑲𝐿𝑄𝑅, which 

comes in a closed form from the solution of the 
associated ARE. Being fed with a detailed description 
of the dynamics of the controlled system, the so-
obtained gains will involve all states and controls, 
taking into account all couplings, fully exploiting the 
knowledge of the model physical behavior. 
Considering the application to the trim problem, the 
ability to compute the steady state control values to 
keep the helicopter in a trimmed condition is a 
fundamental requirement. This ability cannot be 
guaranteed by a purely proportional controller. For 
this reason, it is necessary to augment the array of 
measurements with integral states.  
The inclusion of integral states in the state equation 
can be easily done a posteriori with respect to the 
formulation of the dynamics of the system. The 
system with augmented state and control matrices is 
structured as follows: 
 

(19)   {
𝛥�̇�
𝛥�̇�𝐼

} = [
𝑨 𝟎
𝑯 𝟎

] {
𝛥𝒙
𝛥𝒙𝐼

} + [
𝑩
𝟎
]𝛥𝒖. 

Matrix 𝑯 in Eq. (19) is included to select which states 
in the original state array are integrated. It is a binary 
matrix, with as many rows as the number of 
integrated states and columns as the number of 
original states. 
For the trim problem, the quantities to be integrated 
are chosen as 𝑢, 𝑣, 𝑤 . Once integrated, from a 
physical standpoint, these provide to the controller a 
rough knowledge of the drift from its original 
position. As pointed out, the presence of these states 
is relevant for it guarantees a null steady state error 
on the speeds, thus returning the corresponding trim 
value of the control inputs at the end of the transient. 



Similarly to the PID control system, it is necessary to 
tune the LQR properly to obtain the desired response. 
Due to the high number of parameters to be tuned, 
an automatic optimal tuning procedure can be 
envisaged, based on the same merit function 
introduced in Eq. (17). Here the optimization is 
initialized by tuning the weights based on the values 
of maximum acceptable values for the states and 
controls 𝑥𝑖,𝑚𝑎𝑥 and 𝑢𝑖,𝑚𝑎𝑥 [8], yielding a definition of 

the weight matrices as 
 

(20)  𝑸 = 𝑑𝑖𝑎𝑔 { 1

𝑥𝑖,𝑚𝑎𝑥
2 } , 𝑹 = 𝑑𝑖𝑎𝑔 { 1

𝑢𝑖,𝑚𝑎𝑥 
2 }. 

The values of 𝑢𝑖,𝑚𝑎𝑥  can be assigned based on 
maximum allowed main rotor swashplate 
displacements and tail rotor speed, whereas the 
values of  𝑥𝑖,𝑚𝑎𝑥  can be guessed. The corresponding 

optimization problem will consider 𝑥𝑖,𝑚𝑎𝑥  as 
optimization variables. These can be reduced from 12 
to 8 by dropping the parameters corresponding to Δ𝑤 
and Δ𝑟  and their respective integrals, which have 
little effect on the value of the merit function.  
A comparison between the PID and LQR controllers 
will be provided in the results. 
 

2.3 Control Scheduling 

The use of a reduced model describing the linearized 
dynamics of the system enables an easier synthesis of 
controllers based on multiple design algorithms, as 
shown in the previous paragraphs. By constitution, a  
linearized system for a given airspeed condition is a 
good approximation of the real dynamics only in a 
limited range of speeds around the reference. In 
particular, the intensity of coupling effects changes 
substantially as a function of the airspeed, making the 
response of the helicopter very different over the 
speed envelope. For this reason, it is crucial to design 
the control system accounting for a correct 
representation of the dynamics for each assigned 
airspeed.  
In principle, this can be done in the proposed linear 
framework by introducing a scheduling of the 
parameters of the reduced model. In this work we 
consider two ways to cope with this necessity.  
The first, already mentioned in Section 2.1, is that of 
adopting definitions obtained from a simple 

characterization of the sensitivities of the system, 
yielding analytic expressions for the various 
coefficients in terms of basic quantities characterizing 
its aerodynamics and inertia. A relevant shortcoming 
of this approach is that the mentioned analytic 
dependencies are expressed in terms of several 
aerodynamic derivatives, not easy to obtain unless 
exploiting dedicated experiments in a virtual 
environment or in a wind tunnel, making the 
procedure prone to inaccuracies. Easier expressions 
can be obtained from the literature only for the 
specific case of hover [3], as already pointed out. 
A second approach is that of parameter identification. 
This is based on the idea of studying the response of a 
sophisticated simulator or a real system starting from 
a trimmed condition and subjecting it to an assigned 
history of controls. The time histories of all measured 
states of interest and of the assigned inputs can be 
fed to an identification routine, capable of returning 
the matrices of the linearized system matching the 
histories of the measured outputs. 
For the particular problem of interest here, given the 
availability of an analytic linearized model for hover, 
it is possible to envisage a procedure where: 

1. a PID or a LQ controller is synthesized for hover 
based on the analytical model, as explained 
previously; 

2. the controller is applied to the complete, i.e. 
not reduced, model of the system in slightly 
off-design conditions (for instance with an 
airspeed of 10 m/s, using the controller 
designed for hover) and the trimming controls 
and attitude are found; 

3. starting from the trimmed condition, the 
complete model is subjected to histories of 
controls suited for identification, and a 
corresponding linearized model is identified; 

4. a new controller is synthesized, based on the 
model obtained from step 3. 

Steps 2, 3 and 4 can then be repeated to cover the 
airspeed envelope of the helicopter, finding the 
trimming controls and attitude for increasing 
airspeeds. The choice of the airspeed increments 
depends on the intensity of the related non-linear 
effects on the dynamics of the system: a loose 
discretization will cause poor control performance in 



off-design conditions, corresponding to an increased 
airspeed. 
 

2.3.1 Identification of a Reduced Model 

The problem of model identification on helicopters is 
made complicated by the inherent instability of the 
dynamics of these systems, especially at low 
airspeeds. Several customized procedures have been 
proposed in the literature, dealing with the particular 
features of the respective testbeds, especially for 
hover [9], [10], [11]. After some preliminary 
investigations in a virtual environment, the helicopter 
considered in the present study has been deemed 
unsuitable for open-loop identification procedures, 
due to instability issues showing up very quickly, even 
for very small perturbations of a trimmed condition. 
An identification procedure based on closed-loop 
simulations has been adopted instead. Here the 
system is kept under control with an assigned gain 
matrix, and an additional prescribed perturbation 
input is introduced on all channels. 
In analytical terms, the linearized form of the system 
to be identified can be written starting from Eq. ((12) 
as 
 
(21)    �̇� = (𝑨 − 𝑩𝑲)𝒙 + 𝑩𝒖𝑖𝑑, 

where 𝒖𝑖𝑑 is the additional exogenous input 
introduced for identification. Thanks to the fact that 
the gain matrix 𝑲 is known, it is possible to set up a 
prediction-error method (PEM) algorithm aimed at 
the identification of 𝑨 and 𝑩 from simulations where 
all states are measured and the time histories of 𝒖𝑖𝑑 
are known. This algorithm has been preferred to 
subspace methods for it allows to specify a structure 
for the matrices to be identified, thus exploiting all 
available information and reducing the number of 
parameters to be computed. 
By analyzing the structure of the system matrices for 
the helicopter case, it is easy to find that the number 
of unknown parameters is 60. Of these, 36 come from 
the fully populated block of 𝑨  linking the states 
𝑢, 𝑣, 𝑤, 𝑝, 𝑞, 𝑟  to their derivatives, whereas 24 are 
from the top block of matrix 𝑩, regulating the input of 
all four controls into the equations for the 
components 𝑢, 𝑣, 𝑤, 𝑝, 𝑞, 𝑟 of the array of states. All 

other coefficients in the system matrices are either 
zero, known a priori, or they can be computed offline 
before identification. The presence of the integral 
states mentioned in Section 2.2.2 does not increase 
the number of unknown parameters, for matrix 𝑯 in 
Eq. (19) is assigned a priori. 
 

3 RESULTS 

A light helicopter featuring an innovative 2-bladed 
homokinetic main rotor designed by an industrial 
partner has been selected as a testbed for all analyses 
introduced in the previous sections [12], [13], [14], 
[15]. Another specific feature of this helicopter is the 
yaw control, which is obtained changing the speed of 
the fixed-pitch tail rotor, instead of the usual 
collective pitch at constant speed. A very detailed 
virtual multi-body/FEM model of the helicopter was 
assembled in the Cp-Lambda environment, based on 
[16], taking into account blade flexibility, detailed 
kinematics of both the hub and the swashplate, 10-
state Peters-He dynamic inflow of the main rotor and 
aerodynamic characteristics of all parts of the vehicle, 
including the fuselage. The model can be controlled 
via a control library, receiving control parameters 
such as reference values and gains as inputs.  
The control design framework, including the 
optimization of the gains, has been assembled in 
Matlab®, exploiting general-purpose built-in functions 
for the solution of optimal problems – with 
application to gain tuning and model identification –, 
and of the Riccati equation. A PEM identification 
routine specifically tailored to the form of the 
considered system was implemented anew in 
Matlab®. 
 

3.1 Control in Hover 

The first results are illustrated through an analysis of 
the eigenvalues of the system in hover. These results 
have been obtained after assembling the linearized 
model for hover, based on the literature [3]. The 
analytic model was emended considering the specific 
tail control, and complemented with gradients for 
𝐶𝑇/𝜎 and 𝐶𝑄/𝜎 of both rotors obtained from ad-hoc 

simulations run on the multi-body model as required 
by the formulation. 
 



3.1.1 Preliminary Control Check 

The plot in Figure shows the eigenvalues of the open 
loop system, compared to those of the controlled 
system, obtained using a PID and an LQR controller.  
The corresponding controllers have been tuned based 
on the linearized model for hover, applying the 
model-based optimal tuning of the control 
parameters described in Sections 2.2.1 and 2.2.2. 
The performance of both controllers is quite similar, 
and both prove capable of stabilizing the system.  
A further preliminary validation of the controllers 
comes from the analysis of the dynamic response on 
the linearized system used for control design. In 
Figure , the results of simulations performed on the 
reduced model for hover are shown for a non-
homogeneous initial condition. The results of the 
optimized PID and LQR are compared. 
The time response is similar for the two controllers, 
and, having a similar performance, it should be 
remarked that: 

1. The LQR law is easier to tune, as a result of the 
physical meaning of the tuning parameters. 

2. The numerous couplings in the system are 
effortlessly accounted for by the LQR approach. 
Differently from the PID, a physical knowledge 
of the dynamics of the system is not necessary 
to suitably tune the controller. 

3. Differently from the LQR, the PID law need to 
be carefully tuned to ensure closed-loop 
stability of the response. 

4. The control action can be effortlessly limited 
via dedicated tuning parameters in the LQR 
case – weights in matrix 𝑹 –, thus preventing 
unrealistic control demands and saturation of 
the actuators. 

 

3.1.2 Trimming the Complete Model 

The same cases considered for Figure  have been 
simulated on the complete multi-body/FEM model of 
the helicopter. Results are shown in Figure 5. In this 
case the control input tend to non-null values, 
representing the reference values typical of the new 
trimmed condition. Also the attitude angles reach an 

 
Figure 3: Poles of the linearized system in hover; 
comparison of open loop (blue) and closed loop (red, 
PID, and green, LQR) conditions. 

Figure 4: Response of the linearized system in hover to 
a non-homogeneous initial condition; comparison of 
PID (red) and LQR (blue) performance. 



equilibrium condition which is not null, whereas all 
rates are reduced to zero after a transient phase, as 
can be expected in a stable trimmed condition. 
It can be observed from Figure 5 that both controllers 
offer a fast settling time, the duration of the transient 
phase being slightly higher for the LQR controller. 
 
Table 1: Linear and angular speed residuals in a trimmed 
condition in hover for PID and LQR. 

 PID LQR 
|𝛥𝑽| 9.6E-6 6.0E-5 
|𝛥𝝎| 9.2E-3 6.6E-2 

 
The norm of the residual of the linear and angular 
speeds after the transient – |𝛥𝑽|  and |𝛥𝝎| , 
respectively – can be used to check the distance of 
the final condition in the simulations shown in Figure 
5 from an actual trim. The respective values obtained 
for the PID and LQR are reported in Table 1. 

Notwithstanding the control reactivity witnessed by a 
lower settling time, the LQR is slightly less precise 
than the PID on the trimmed condition, but the error 
is generally very small in all cases. 
 

3.2 Control in Forward Flight 

As previously pointed out, in order to fully exploit the 
potential of the proposed linear design framework, it 
is necessary to have a linearized model parameterized 
in terms of the airspeed over the operating envelope 
of the helicopter. Provided no analytic model can be 
practically used to this end, an approach to model 
synthesis via parameter identification can be adopted 
instead.  
The first step is that of finding a trimmed condition, in 
terms of inputs and attitude angles, to be used as a 
reference equilibrium condition for linearization. This 
can be done by using one of the control laws 
designed and tested in hover in an off-design 
condition, where the longitudinal speed will be not 
null. The intensity of the airspeed at which the 
controller designed for hover will still be capable of 
trimming the machine can be determined via a trial 
and error procedure considering a progressive 
longitudinal acceleration. 
The PID and LQR controllers designed for hover have 
been preliminarily tested at airspeeds of 10 m/s and 
20 m/s, yielding, as a side-product of the analysis, an 
assessment of the robustness of the respective 
control design approaches in off-design conditions. 
The values of the norms of the steady state errors are 
reported in Table 2. 
 
Table 2: Linear and angular speed residuals in a trimmed 
condition in advanced flight (10-20 m/s) for PID and LQR. 

 10 m/s 20 m/s 

PID LQR PID LQR 
|𝛥𝑽| 5.0E-4 2.0E-5 (unstable) 2.5E-5 
|𝛥𝝎| 2.6E-2 6.8E-2 (unstable) 3.7E-2 

 
It can be noted from Table 2 that the LQR is capable 
of reducing the steady-state error on the linear speed 
more effectively than the PID at 10 m/s, whereas they 
are similarly capable of reducing the angular rates. 

 
Figure 5: Response of the complete system in hover to 
a non-homogeneous initial condition; comparison of 
PID (red) and LQR (blue) performance. 



The PID shows a lower degree of robustness with 
respect to the LQR, as can be noticed by the 
appearance of an instability such to hamper holding  
the machine in a trimmed condition steadily. 
Figure 6 shows the result of a simulation where the 
longitudinal airspeed is increased from 10 m/s to 20 
m/s with a time-linear ramp. From the plot it is 
apparent that a substantial instability shows up in 
case the PID is used, whereas the LQR proves capable 
of trimming the helicopter at the higher airspeed, 
even if with a partly degraded performance, as can be 
seen from the duration of the transient, longer than 
for simulations at lower speeds. 
 

3.3 Model Identification 

In order to check the feasibility of the proposed 
approach to the solution of the trim problem at 
higher airspeeds, the virtual model controlled with 
the LQR designed for hover on the analytic model was 

trimmed at 10 m/s and subjected to an exogenous 
input while under control of the trimmer. The PID was 
not considered in this phase, for its very structure is 
bound to the dynamics typical of hover – a limitation 
of this control technique. Several input time histories 
were considered preliminarily, based on several 
combinations of positive and negative steps on all 
four controls. A specific sequence of steps has been 
finally selected as a result of multiple identification 
trials. 
The implemented PEM method for identification is 
based on an unconstrained minimization of the 
prediction error and a weight matrix computed on 
the covariance of the error obtained from the 
difference between the time histories of the output 
of the virtual plant and those of the analytic model 
for hover, integrated under the same conditions – i.e. 
controlled with the same gain matrix and subject to 
the same wind and exogenous input. 
The PEM method has been initialized with the 
analytic model for hover. The prediction error is 
reduced to about 63% of its initial value as a result of 
parameter fitting. A comparison of the time histories 
of the states for the multi-body model, the analytic 
model for hover – initial condition of the 
identification method – and the new identified model 
is shown in Figure 7. 
From Figure 8, the eigenvalues of the open loop 
system appear to have changed, especially roll, pitch 
and heave. In percentage, also the spiral mode has 
moved significantly towards stability. Nonetheless, 
the overall map of the eigenvalues has not been 
altered to a point such to result in a general behavior 
of the machine much different with respect to the 
hover condition. 
With a new model successfully identified for 10 m/s, a 
new LQR gain matrix could be computed again based 
on the procedure presented in Section 2.2.2 with an 
optimal selection of the weighting matrix 𝑸. 
In order to smooth transition between airspeeds, the 
optimal procedure was constrained in order to ensure 
reaching the same level of performance (specified in 
Section 2.2.1) on both the linearized model for hover 
and the new one for 10 m/s. The merit function was 
based only on the identified model. The resulting map 
of the eigenvalues is shown in Figure 9. 
  

 
Figure 6: Response of the complete system during a 
time-linear transition from 10 m/s to 20 m/s. 
Comparison of PID and LQR performance. 



 

 
Figure 7: Comparison of the response of the closed loop 
system to an assigned control input for identification, in 
forward flight at 10 m/s; comparison of multi-body 
(ground truth, red), analytic model for hover (magenta) 
and identified model for 10 m/s (black). 

 
Figure 8: Comparison of the eigenvalues of the open-
loop system, considering the analytic model for hover 
(blue) and the identified model for 10 m/s forward 
flight (black). 

 
Figure 9: Comparison of the eigenvalues of the closed-
loop systems, resulting from the application of an 
optimally tuned LQR to the analytic model for hover 
(red) and the identified model for 10 m/s forward flight 
(cyan). 

 

 
Figure 10: Testing the multi-body system in off-design 
conditions with an LQR controller designed on the 
model identified at 10 m/s. 



Integrating the multi-body model under the same 
conditions considered for Figure 6 with the control 
gain matrix obtained from the identified model at 10 
m/s leads to a time response extremely similar to that 
of Figure 6. Increasing the airspeed to 25 m/s, 
differently from the trimmer designed for hover, the 
new controller designed for 10 m/s succeeds in 
stabilizing the system, as shown in Figure 10. Further 
increasing the speed to 30 m/s the system is not yet 
unstable, but some significant oscillations show up. 
This suggests that, in this region of the operating 
envelope, between almost-hover to sustained 
forward flight, linearized models should be identified 
at airspeed intervals of 10-15 m/s at most. 
 

4 CONCLUSIONS 

The use of a linear model of a rotorcraft for trimming 
purposes has been investigated. For hover, an 
analytic model has been prepared first. Based on it, a 
PID and an LQR controller have been assembled. 
Tuning has been performed using the linearized 
system to setup an optimal analysis. The performance 
of the trimmers has been assessed, and the LQR 
appears to allow deployment in slightly off-design 
conditions more robustly. A model for a higher 
airspeed has been identified from closed-loop 
simulations. A controller designed on the identified 
model has proved capable of trimming the rotorcraft 
at an airspeed higher than the maximum for which 
the controller based on the model for hover does. 
This, in turn, suggests that the control design 
procedure based on linearized model identification 
and control synthesis at progressively higher 
airspeeds should allow trimming the rotorcraft over 
its full operating envelope. 
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