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Abstract 

A General Model of Helicopter Blade Dynamics 

A. Rosen and 0. Rand 

Department of Aeronautical Engineering 
Technion- Israel Institute of Technology 

Haifa, Israel 

A general model which describes the helicopter blade dynamics is 
presented. The hub center may have any combination of linear or angular 
velocities and accelerations. In addition, the blade root can move relative 
to the shaft and this motion is general and does not include the assumption 
of small angles or small displacements. The root dynamics may be considered 
as an input to the model or is determined by applying equilibrium 
considerations. The structural model of the blade itself is that of a curved 
slender rod. Nonlinear effects are included in this structural model. The 
treatment of the inertia loads is also a very general one and includes all 
the nonlinear contributions due to the blade motions and deflections. The 
present paper concentrates on the modeling of the blade motions, structural 
behavior and inertia loads and therefore a relatively simple aerodynamics is 
used, but as a result of the flexibility of the complete model and its 
modular construction, any description of the aerodynamic loads can be adopted 
quite easily. Integration with respect to time of the complete system of 
equations of motion, yields the root motions and blade elastic deformations. 
In order to present the flexibility and capabilities of the model, a few 
numerical examples are presented. The results are discussed and _important 
conclusions are pointed out. 

1. Introduction 

During the years and as a result of the increasing computational 
capabilities, general models of helicopter blade dynamics 'have been 
developed. Descriptions of such models and the associated computer codes 
appear in [1-6] (these are representative examples while other similar models 
have also been described in the literature). Although such models are very 
general they always include different assumptions which restrict their use 
and cause increasing errors in certain cases. The purpose of the present 
paper is to present a new general model of the blade dynamics where an effort 
has been done to avoid unnecessary assumptions and to obtain a tool which is 
capable of dealing with cases which cannot be treated with other existing 
models. 

Some of the special features of the model are: 

a) The analysis is not restricted to straight blades and includes the case 
of planar curved blades. 

b) The structural model of the blade includes nonlinear effects. At the 
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moment the structural analysis is restricted to the case of small 
strains and moderate rotation, but if necessary, the structural model 
can be extended quite easily to include cases of higher nonlinearities. 

c) The inertia loads are accurate and the nonlinear influences of the 
deformdtions on these loads are included. 

d) A special model of the root dynamics enables the modelling of almost 
any kind of hub ·and any kind of attachment of the blade to the hub. 
This includes elastomeric bearings and any other flexible kinds of 
attachments. 

e) The resultant moment and resultant shearing forces along the blade are 
calculated by integration and include all the nonlinear effects. In 
addition, the resultant moments can also be obtained by differentiation 
of the displacements. 

The above mentioned features and others are explained in what follows. 
The present model is in fact the application of a recently developed [7] 
general model of the dynamics of moving and rotating curved rods, to the 
analysis of helicopter blades. The detailed equations and derivations are 
presented in [7]. Here only the details which are necessary in order to 
understand the model, are brought. The paper will concentrate on presenting 
the generality, accuracy and flexibility of the model. 

2. General Description of the Model 

2.1 The Systems of Coordinates 

The basic system of coordinates is the F system which is shown in 
Fig. 1. The origin of this system is placed at the hub center while ZF 

Fig. 1. The G, F and H systems of coordinates. 
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coincides with the shaft direction and Xf points towards the helicopter A 

front. This is a cartesian system which does not rotate with the hub. xF, 
yF and 1F are unit vectors in the direction of the coordinates lines 
XF, YF and ZF,.respectively. The F system moves due to the fuselage 
motions and motions of the shaft (not including the rotation) relative to the 
fuselage. T!1e dynamics of the origin of the F system is described by: a 
linear vel0city VFG' a linear acceleration aFG' an angular velocity QFG and an 

angular acceleration OFr,· All the velocities and accelerations are measured 
relative to the G system (see Fig. 1) which is an inertial system of 
coordinates, fixed with respect to the earth. ~G. PG and tG are unit 
vectors in the directions of the coordinate lines of the G system while the 
gravity acceleration, g, acts in the ~G direction. The transformation 
between the F system and G system at any moment is known and is a function of 
the fuselage motion and the shaft inclination relative to the fuselage. 

The velocities and accelerations of the F system are described as 
follows: 

IJFG 
A " = VxFXF + VyFYF + 1\ 

V zF 2F (1-a) 

A A ,.. 
(1-b) aFG = axFxF + ayFYF + azF 2F 

OFG " .. A. 
(1-c) = pxF + qyF + rzF 

. ... " " OFG = 5xFXF + SyFYF + 5zF 2 F (1-d) 

The third system of coordinates is the H (hub) system, which is 
rotating with the hub (see Fig. 1). The coordinate lines of this system are 

xH, YH and ZH while :H, YH and tH are unit vectors in these 
directions, respectively. The coordinate lines ZF and ZH coincide, while 
the H system is rotated about the ZF axis in an angu 1 ar ve lee i ty n, 
relative to the F system. In general >J is a function of time. As shown by 
Fig. 1, ~is the azimuth angle of the H system relative to the F system (~ is 
measured relative to the negative direction of XF)· When~ = n the two 
systems (F and H) coincide. 

The next system of coordinates is the blade system which is denoted the 
B system. The coordinate lines of this system are x8, y8 and z8 while 
:B, YB and :B are unit vectors in these direction, respectively. 

The transformation from the H system to the B system is described in 
Fig. 2 and is composed of linear displacements fx, fy, f

2 
in the 

directions Xf, YF• zF, respectively and rotations a (flapping),~; (lead 
lag), 9 (pitch) (see Fig. 2). fx, fy, f~, a, 1; and 9 are in general 
functions of time and there are no restr1ctions on their magnitude. Since a, 
1; and 9 are finite angles, their sequence is important in determining the 
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Fig. 2. The root motions. 

transformation between the H and B systems. In Fig. 2 the case where the 
flapping hinge is the inner one and the pitch bearing is the outer one, is 
presented. Any other sequence of the rotation angles can be treated. In 
such case one has only to recalculate the terms of the transformation matrix 
which are functions of these three angles, and the time derivatives of the 
transformation matrix (for details see [7]). 

The 8 system of coordinates is used in order to describe the elastic 
axis of blade (see Fig. 3). The present derivation is restricted to the case 
of a planar curved blade where the elastic axis lies in the plane which is 
defined by the coordinate 1 i nes xs and YB. x is a curved coordinate 1 i ne 
along the elastic axis of the blade which is equal to zero at the blade root 
and is equal to L at the blade tip. L is the length of the blade. As shown 
in Figs. 2, 3, the blade root is positioned at the origin of coordinates of 
the B system. The shape of the undeformed elastic axis is described by 
x8(x) and y8(x). At each point along the blade an orthogonal triad of 
unit vectors ~x' ~Y and Sz is defined. €i is tangent to the elastic 
axis at each point while ~Y is perpendicular to ~x and lies in the plane 
which is defined by the coordinate lines xs and YB· ~z is perpendicular 
to this plane (see Fig. 3). The local sweep angle of the blade (the angle 
between ~x and ~B) is denoted n. 

The blade deforms as a result of the loads which are distributed along 
_it. This deformation is described by the displacement of each point along 
the elastic axis. The components of this displacement are u, v, w in the 
directions :x, ~y and ~z, respectively (see Fig. 3). In addition, each 
cross section is also rotated by an angle~ about the elastic axis. Due to 
this deformation, the triad ~x• ~Y• ~z, at a certain point of the 
undeformed axis, is transformed into a new rotated orthogonal triad of unit 
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A AFTER THE DERFORMATION 
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/' • 1 

THE ELASTIC AXIS 

BEFORE THE DEFORMATION 

Fig. 3. The elastic axis before and after the deformation. 

vectors ~xl• ~yl and ~Zl• respectively (see Fig. 3). The rotation of 
the triad ex, ey, ez to the new triad exl• eyl• ezl• is not 
restricted to small angles and is therefore oescribed by Euler an9les. In 
[7] the general exact expression for the transformation matrix between the 
two triads of unit vectors, as function of u, v, w, ~. is given. From the 
exact expression the transformations for different stages of approximations 
are obtained. The first approximation is that of small extensions of the 
elastic axis (the relative extension is small compared to unity). This 
assumption is applicable, to all the practical cases of blades which are 
manufactured from regular engineering materials, that undergo only small 
strains. The second stage of assumptions is that of small strains and 
moderate rotations. The most severe assumption, which yields the simplest 
transformation matrix, is that of small strains and small rotations. 

2.2 The Structural Model of the Blade 

The detailed derivation of the structural model is presented in [7]. 
Here, only the details which are essential in order to understand the model 
and the assumptions behind it, are discussed. 

From a structural point of view the blade is considered as a curved 
slen-der rod. The basic assumption which is adopted here is the well known 
Bernoulli-Euler hypothesis. This hypothesis has been proved to give very 
good results in the case of slender rods. This hypothesis states that: 
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a) Plane cross sections which are normal to the elastic axis before the 
deformation remain plane after the deformation (except for very small 
deviations due to warping) and normal to the deformed elastic axis. 

b) Strains within the cross section can be neglected. 

Based on this hypothesis, it is possible now to describe the 
deformation of each point of the blade (points that are not on the elastic 
axis) by the deformations Of the elastic axis. Each material point of the 
blade before the deformation is defined by the three coordinates x, y, z. As 
already indicated before, xis a curvilinear coordinate along the undeformed 
elastic axis and it defines the cross section of the blade where the material 
point is located. y and z are cross sectional coordinates (in the ~ and 
~z directions, respectively) which determine the cross sectional location 
of the point. The position vector of any material point (x, y, z) after the 
deformation, relative to the origin of the B system, is given by (see Fig. 3}: 

) 
A A 1\ A .1\ 

R8(x,y,z = x6x8 + yBzB + uex + vey + we 2 

... .. " + yeyl + zezl + T(x)t(x,y,z)exl (2) 

t is the St. Venant warping function of the cross section while T is the 
elastic twist. Therefore, Tt is the warping displacement which can be 
considered as an extension of the classical St. Venant torsion. The 
derivation is restricted to the practical cases of small warping 
displacements where the displacements are negligible compared to typical 
cross sectional dimensions of the blade. 

After the position vectors before and after deformation, of each point 
of the blade, have been defined, it is possible to calculate the strain 
components along the blade using well known definitions of solid mechanics. 
Afterwards, the, stress components are obtained from the strain components by 
using the stress-strain relations for the case of slender rods. Integration 
of stresses over the blade's cross section implies the cross sectional 
resultant force F and resultant moment ~. which are described by their 
components as follows: 

{3) 

(4) 

The expressions for P, Mx, My and Mz include the cross sectional 
uctural properties, and the elastic twist and curvatures. The elastic 
;t and curvatures are fractions of the initial curvature of the blade, 
and the displacement components and their derivatives with respect to ; 
more details see [7)). 

The blade is acted upon by a distributed force p and a distributed 
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moment q, per unit length. These loads include aerodynamic and inertia 
contributions. p and q are described by their components as follows: 

(5) 

(6) 

If equilibrium of forces and moments on a small segment of the blade is • • • 
considered, four equations in the four unknowns: v, w, ¢ and P - are obtained. • • • 
v, w and P are nondimensional terms which are defined by the following 
relations: 

(7) 

E is a representative Young's Modulus of the blade material while b is a 
typical cross sectional dimension. the nondimensional axial component of the 

• 
resultant force (P) is replacing u as an unknown. This replacement is very 
common in blade analysis and it has a few advantages which will not be 
discussed here. As a result of this replacement the axial component of the 
displacement at each moment (u), becomes a function of the four unknowns. 
The four equilibrium equations are nonlinear while the present derivation is 
restricted to the case of small strains and moderate elastic rotations. 

The equilibrium equations are solved by using Galerkin method. 
According to this method the unknowns are described by the following series: 

• NV 
v = l: v. FVj . 1 J J= 

(8-a) 

• Nw 
w = L wk FWk 

k=l 
(8-b) 

N 
(J = l~ 61 F¢1 (8-c) 

• N 
p = l:p Pm FPm 

m=l 
(8-d) 

FVj, FWk, F61 and FPm are functions of x which are defined in the 
region O<x<L. The series should satisfy the boundary condition at the blade 
edges. Xt-the tip the conditions are those of a free edge, namely: the 
resultant force and moment are equal to zero. The conditions at the blade 
root depend on the nature of this root which is a function of the method by 
which the blade is attached to the hub and the control elements. More about 
these conditions appear in subsection 2.5. 
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The coefficients Vj, Wk, ¢1 and Pm are in general functions of 
time. The numbers of terms in the series (Nv, Nw, N¢ and Np) have a 
significant influence on the accuracy of the solution. In the present code 
there is not any restriction on the total number of terms, but a large number 
means a significant increase in the required computer memory and time of 
computations. The total number of unknowns, N, equals: 

N = N + N + N~ + ~ 
v w ~ 'p 

(9) 

The equations of equilibrium are divided into two groups. The first 
group is the equations which mainly describe the axial equilibrium of 
forces. These equations are: 

[A2]{Sp} = -[A1] {\} + {dp} (10) 

[A1] is an Npx(N-Np) matrix while [A2] is an NpxNp square 
matrix. These matrices present structural properties of the blade. {Sp} 
and {Sr} are vectors of unknowns defined as: 

The load vector {dp} is given by: 

where: 

1 L 
HP5(mn) = L f Px FPmn dx 

0 

Px is a generalized force defined as: 

( ll) 

(12) 

(13) 

(14) 

(15) 

. Pxe and qze are equivalent components which differ from Px and qz by 
the fact that they also include nonlinear structural contributions. The 
nonlinear structural contributions in this case are looked upon as 
"additional quasi loads" (for more details see [7]). 

50-8 



The second group of equations is described by the following matrix 
notation: 

[A3] is aP (N-Np)xN matrix which presents structural properties. 
the complete vector of unknowns which is defined as: 

f{Sr }}_ 
{S} = {SP}J 

{ds} is the loading vector, which is given by: 

{ds} = <HV6( 1), •••• ,HV6(jn)•····•HV6(Nv)'HW6(1), •••• ,HW6(kn)' 

.••• ,HW6(N ),Hi\4(1), •••• ,H(J4(ln)'""""'H(l4(N )> 
w (J 

where: 

1 L 
HV6(jn) =I b Py FVjn dx 

1 L 
HW6(kn) =I 6 Pz FWkn dx 

The generalized forces Py, Pz, P¢ are defined below: 

L3 
P =--.. (-p +aq /ax) 
y Eb" ye ze 

L3 
Pz = ::-4 (-p -aq /ax) Eb ze ye 

(16) 

{5} is 

(17) 

(18) 

(19-a) 

(19-b) 

(19-c) 

(20-a) 

(20-b) 

(20-c) 

The equilibrium equations and their derivation have been described only 
briefly. Detailed description can be found in [7]. 

As indicated before, expressions for the cross sectional resultant 
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forces and moments are obtained during the course of the derivation. These 
expressions include high derivatives of the displacements. It is well known 
from numerical analysis that differentiation of the approximate expression 
for the displacements yields increasing errors, as the order of the 
derivation is increased. Therefore it is expected that while the occuracy of 
the approximate solutions of the displacements may be satisfactory, the 
resultant moment and force components, which are obtained by differentiation, 
will exhibi~ increasing errors. 

In order to obtain better results, another method of calculating the 
resultant force and moment has been adopted. According to this method these 
resultants are obtained by integration of the loads from the blade tip to a 
specific cross section where the resultant force and moment are calculated. 
In these calculations the influences of the deformation are taken into 
account in an exact manner. In [7] detailed description of the integration 
procedure is given. In the numerical results which will be presented in this 
paper, comparisons between the results of both methods (differentiation and 
integration) will be presented. 

2.3 The Inertia Loads 

In order to calculate the inertia loads it is necessary at first to 
calculate aG which is the acceleration of each point of the blade relative to 
the G (inertial) system. In [7], the detailed derivation of aG is presented. 
At first it is assumed that the position vector of each point of the blade, 
relative to the origin of the B system or coordinates, is given by Eq. (2). 
Since the derivation is restricted to the practical cases where the warping 
displacements are very small, the warping displacements and their time 
derivatives are neglected in the acceleration calculations. Except from this 
assumption the derivation is exact and it is not assumed that any of the 
variables or its derivatives are small and negligible compared to other 

terms. Unlike the structural model, the transformation matrix between ~x' 
ey, ez and ex1• ey1• ez1 is exact and the assumption of moderate 
relations is not used. Because of this accuracy the derivation is very 
complicated and therefore matrix notation is used throughout the whole 
derivation. It should be emphasized that aG is a function of fx, fy, fz, ~. 

~. a and their time derivates. It is clear that it is also a function of V . 
aFG' OFG and OFG which are given by Eqs. (1-a-d). 

Accordinq to D'Alembert's principle, the inertia force fi which acts on 
each element of mass of the blade, equals: 

(21) 

Therefore the distributed inertia force per unit length of the blade becomes: 
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-Pr = - (22) 

The distributed moment about the elastic axis, due to inertia loads, is given 
by: 

(23) 

2.4 The Equations of Motion 

By substitution of the inertia loads into the equilibrium equations and 
after a few mathematical operations, the equations of motion are obtained: 

{Sp} = [A2r
1 {-[Al ]{Sr} + {dp}} 

{s; J = cor1{ [A3]{s J - {dr n 

{24-a) 

(24-b) 

an upper dot indicates a differentiation with respect to time. Equation {24-a) 
is obtained directly from Eq. {10). {dr} in Eq. {24-b) differs from {ds} 

•• 
of Eq. {16) by the fact that part of the inertia loads ([D]{Sr}) have been 
separated from the other loads and they have yielded the terms on the left 
side of the equation. [D] is a [(N-Np)x(N-Np)] matrix which presents the 
inertia (mass) properties of the blade. [Az]-1 and [o]-1 are 
calculated only once at the beginning of the solution procedure and stored. 
At the beginning of each time step {Sp} is calculated first by solving 
Eq. {24-a) and then the accelerations are calculated by using Eq. (24-b). 
Now an integration step is carried out and the procedure is repeated again. 

From Eqs; {24-a,b) it is clear that the pure axial dynamics, which 
include axial vibrations along the blade (waves), are not dealt with in the 
present analysis. These dynamics are not important in analysing blade 
behavior. On the other hand it should be clear that the ·inertia loads .. 
include the influences of u and u which are calculated at each moment, as has 
been described previously. 

2.5 The Root Dynamics 

As indicated before, the right side of Eqs. (24-a,b) includes 
expressions of fx, fy, fz, 6, ?;;, G and their first and second time 
derivatives. There are cases where these variables (or part of them), as 
functions of time, are known a priori. Such cases include hingeless rotors 
where fx, fy, fz, 6 and 1;; are known constants, or blades where the 
pitch angle is considered as a known command input (rotors whre the 
flexibility of the control system is neglected). The other cases are those 
where few of the variables are determined from equilibrium considerations at 
the blade root. Such a case is, for example, the conventional articulated 
rotor where 6 and ~;;are determined at each moment from the condition of 
equilibrium of moments at the blade root. 
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In general, the root dynamics is described by the following equation: 

(25) 

where 

(26) 

{Q} in general is a complicated nonlinear function of {qr}, {Sr}, {Sp} 
and their time derivatives. 

This general representation of the root dynamics enables one to model 
accurately any kind of rotor, like: hingeless, articulated, gimballed, 
teetering and others. In each case the vector {Q} is derived and implemented 
into the computer code. 

As an example, the case of a blade which is free to rotate about the 
flapping hinge is considered. fx, fy, fz and s are kept constant while 
9 is a known function of time. As explained previously, the resultant moment 
along the blade can be calculated at any time. The resultant moment at the 
blade root is described as follows: 

(27) 

The moment about the flapping hinge will therefore be (see Fig. 2): 

Mas = MxS(O) sins- MyS(O) coss cose + Mzs(O) coss sine (28) 

The flapping equation of motion becomes: 

(29) 

·-I is the blade moment of inertia about the flapping hinge._ Mas is similar to 
Mas and the only difference between both is the fact that Mas does not include 
the influence of linear terms in a~ (It is clear that these terms are 
included in Mas since they repr:sent important contributions of the inertia 
loads). They are neglected in Mas since their influence already appears in 
the term on the left side of Eq. (29). More details about this problem and 
the method of dealing with it appear in [7]. 

It is worth pointing out again that it has not been assumed that a, 
· or 9 are small angles, and they can obtain any finite value. 

The example which has been presented here is a relatively simple one. 
In a similar manner more complicated cases can be dealt with. Any spring at 
the blade root, linear or nonlinear, and any damping like those which can 
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result from elastomeric bearings can be modeled by adding appropriate root 
moments while assembling the vector{Q}. Example of such case appear in the 
next section. 

2.6 Integration of the Equations of Motion 

In orr.er to find the behavior of the blade, integration of Eqs. (24-a,b) 
and (25) is carried out. In the present analysis an implicit Adam's method 
[8] is used far the integratjan, while the relative error is not exceeding 
0.001. It has been found that this method is relatively efficient and yields 
very goad results. On the other hand it should be noted that because of the 
modular construction of the computer code it is possible to replace this 
integration scheme by any other scheme without any alterations of the ather 
parts of the code. During the integration, at certain azimutha 1 1 ocati ans 
which are specified by the operator of the code, the distributions of the 
deformations and loads along the blade are printed as tables or plotted. 
Examples of these will be presented in what follows. 

3. Numerical Results 

The purpose of this section is to present the capabilities and 
flexibility of the present model and associated computer code. There are a 
few examples which are outlined below. In all the cases straight blades are 
considered while cases of curved blades will be reported in the future. 

The aerodynamic model which will be used in all the examples is 
relatively simple. 

·Aerodynamic description of the blade cross section is presented in 
Fig. 4. Up and UT are the components of the velocities at the blade crass 

AERODYNAMIC 
CENTER 

ZERO 
LIFT LINE 

~ 

Fig. 4. Cross sectional aerodynamic description. 

secti-on which includes the influences of the rotor motions, root motions, 
elastic deformations and the induced velocity. The relatively simple blade 
element theory is used here in order to calculate the aerodynamic lift and 
drag. The lift coefficient is obtained by multiplying the lift coefficient 
curve slope by the effective angle of attack, aeff· Nonlinear aerodynamic 
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phenomena are not taken into account. The drag coefficient Co is given by: 

( 30) 

In all the cases which will be considered here the aerodynamic center will 
coincide with the elastic center. Therefore, since in all the cases the 
aerodynamic moment coeff~cient is equal to zero, the only aerodynamic moment 
is the well known pi~ch damping [9], which (in the present case) is 
approximately given by: 

(31) 

c is the chord, PA the air density and U the resultant velocity. Tip losses 
are not taken into account in the present analysis. 

3.1 Flapping Hinge- Solution Without Root Dynamics 

The properties of the blade are given in the Appendix. This is a 
uniform blade where the structural, mass and aerodynamic properties are 
constant along it. There is not any spanwise aerodynamic, mass or structural 
twist. It can be seen that the blade is relatively stiff. Therefore 
nonlinear structural effects have minor importance since (as it will be shown 
later in this section) the elastic deformations are relatively small compared 
to the rigid body displacement. On the other hand it should be noted that 
the transformation matrices and their time derivatives are accurate and 
include all the nonlinar terms which seem to have nonnegligible influence on 
certain variables. As indicated in the Appendix, there is not a primary 
structural coupling between the flapping and lead-lag deformations ((Eiyz) 
is equa 1 to zero). On the other hand there is a compound component of the 
cross sectional mass moment of inertia (Miyzl which has a significant 
influence on the torsional behavior of the blade. 

The conditions at the blade root are such that fx, fy and fz are 
constant and equal to zero. The blade is free to rotate aBout the flapping 
hinge but is clamped with respect to the lead-lag motions (~=0), and the 
angle G is also kept equal to zero. While G is equal to zero there is on the 
other hand a constant aerodynamic pitch angle aG (see Fig. 4) along the 
blade which is equal to eight degrees. 

As already mentioned in the beginning of the section, the aerodynamic 
model is very simple. On the other hand, since the main purpose of this 
paper is to present the dynamic model of the blade, a relatively extreme 
dynamic case is treated here. The severity of the case is indicated by the 
very high accelerations which appear .during the blade response. It is 
assumed that the motion of one of the blades of a hovering rotor has been 
suddenly disturbed and when this blade is at azimuthal location w=O the 
flapping angle and the flapping velocity are equal to zero. In addition, all 
the elastic displacements are also equal to zero at this moment (w=O). The 
purpose now is to find the blade response. In order to concentrate on the 
dynamic behavior and to simplify the aerodynamic analysis, it is assumed that 
during the whole dynamic response the inflow is equal to the inflow at the 
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steady state which is equal to 0.04 (This is the uniform induced velocity 
divided by the tip velocity.) 

• 
Two terms are used in the series which describes v (Nv = 2, see 

Eq. 8-a). Since the blade is clamped at the root with respect to the 
lead-lag motions, FVj are chosen as the first and second normajized modes of 
a uniform clamped free beam [10]. The series which describes w includes 
three terms. The first term describes the rigid body flapping and is simply 
x/L. The two other terms (rW2, FW3) are the first and second normalized 
elastic modes of vibration of a simply-supported/free beam [10]. F¢1 and 
F¢2 are the first and ~econd torsional modes of a fixed/free uniform circular 
beam. The series for P includes the following terms: 

(32) 

FPm = sin[tt(m-1.5)(1-x/L)] m>2 

• 
As one should recall, at any moment, P is obtained directly from the other 
unknowns and is not itself one of the unknowns which are integrated with 
respect to time. Therefore five terms (N = 5) are included in the series • p 
which describes P, without causing a significant increase in the magnitude of 
the prob 1 em. 

In Fig. 5 the different coefficients, as functions of the azimuthal 
location of the blade (nondimensional time), are presented. The most 
interesting coefficients are those which describe the flapping motions (w1, 
w2, w3). w1, as indicated before, presents the highly damped rigid 
body flapping. This rigid body flapping can also be calculated analytically 
by applying different assumptions which imply a second order ordinary 
differential equation of the flapping, that can be solved quite easily (see 
for example [11] section 2.6). The agreement between the analytical results 
and w1 has been checked and it was so good that both curves practically 
coincided. As can be seen w2 is much smaller than w1 while w3 is much 
smaller than w2 and therefore it can concluded that the convergence is very 
good. W2 approaches a steady state while it vibrates in its natural 
frequency which is approximately 7/rev. w3 exhibits a respons which is the 
combination of the frequency of w2 and its own frequency which is 
approximately three times higher. 

• 
In general, the lead-lag motions (v) are almost three orders of 

magnitude smaller than the flapwise motions. The behavior of v1 is 
composed of an initial response (from W=O up to W=130•) which is followed by 
lightly damped vibrations.· It is interesting to note that the frequency of 
v1 coincides with the frequency of w2. Since both, the vibrations of 
v1 and w2, are in phase it seems that they influence one another. v2 
is much smaller than v1 and its response is composed of low frequency 
vibrations above which the high frequency natural vibrations of v2 are 
superimposed. 
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Fig. 5. Case 3.1 - Time Response of the Coefficients. 
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As shown in Fig. 5, the damping of the two terms in the series of ~ is, 
quite good. It is clearly shown that the torsional vibrations are uncoupled 
to the other displacements and there is not any noticeable coupling between 
the vibrations of ¢1 and ¢2. As can be seen from the figure the blade is 
torsionally very stiff. 

It is worth pointing out that the frequencies of the natural vibrations 
of the different modes agrees very well with calculations which are based on 
available formulas from the literature (this is a case of uniform blade for 
which such formulas exist). 

In Fig. 6 the displacements distributions along the blade, forl/J =30•, 
are presented. It is clear from the previous figure that in all the series 
the first element is the most significant one. In the case of w it is shown 
very clearly that the rigid body flapping (wl) is indeed the most 
significant term, but there is also a noticeable elastic deflection. At 
later azimuthal positions, the shape of w becomes much closer to a straight 
line since the elastic deformations become very small compared to the rigid 
body flapping. 

In Fig. 7 the spanwise distributions of the resultant moment components 
are presented (for the azimuthal location l/1=30.). For each component, the 
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Fig. 6. Case 3.1- spanwise distribution of the displacements (~=30°), 

results of the differentiation method are compared with those of the 
integration method. Similar comparison have also been presented in [12]. In 
general, the agreement between these methods is very good. The largest 
discrepancies appear in the torsional moment, Mx, which is much smaller 
than the other two components. In Fig. 8 the distributions of the resultant 
moment components, for the azimuthal location~=l50o, are presented. In the 
case of My relatively large discrepancies (compared to ~30°) between the 
results of the two methods exist at the inner sections of the blade. There 
are also larger discrepancies in Mz, compared to the case of ~30°, while 
the agreement in Mx is better. Similar distributions have also been 
obtained for many other azimuthal locations and it can be concluded that 
there are cases where the agreement between both methods of calculations is 
excellent while in other cases there are discrepancies similar to those of 
Fig,8. 

The distribution of P is not presented here, but it is worth pointing 
out that in all the cases which have been checked the agreement between P 
which is obtained from Eq. (24-a) and P which is obtained by integration, is 
excellent. 
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3.2 Flapping Hinge - Solution by Root Dynamics 

This case is physically identical to the previous case and the only 
difference is the method of solution. Here, instead of describing the rigid • 
body flapping by the first term in the series which describes w, this 
flapping is described by the angle a which is calculated by introducing root 
dynamics (see subsection 2.5). As indicated before, the root dynamics method 
does not include any assumptions concerning the magnitude of the motions at 
the blade root. On the other hand, the cases where the rigid body flapping 
is modeled as a deflection mode include different approximations which have 
been introduced into the structural analysis of the blade. 

The different variables, as functions of time, are presented in Fig. 9 • 
. comparison of Figs. 5 and 9 implies that a agrees perfectly well with w1 of 
the previous case. FW1 and FW2 in the present case are identical to 
FW2 and FW3 of the previous case, respectively. Therefore, it is not 
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Fig. 9. Case 3.2 - time response of the coefficients. 

surpr1s1ng that the behavior of w1 and w2 in Fig. 9 is identical to the 
behavior of W2 and w3, respectively, in Fig. 5. All the other shape 
functions in the present subsection are identical to those of the previous 
one and therefore the behavior of v2, 61 and ¢2 in Fig. 9 agrees very 
well with the behavior of the same variables in Fig. 5. The only significant 
difference appears in the case of v1. While the initial response is very 
similar in both cases {the initial response is the region 0<1/J < 130•), the 
lightly damped vibrations which appear after the initial response of Fig. 5, 
are highly damped and almost disappear in Fig. 9. It is interesting to note 
that unlike Fig. 5, in Fig. 9 v1 and w2 are in anti-phase during all the 
time. The explanation to the different behavior of v1 is probably the more 
accurate approach of using s instead of W1 of the previous case. 

In Fig. 10 the distributions of the resultant moment components, for 
l/!=150•, are presented. Unlike the same case which has been presented in 
Fig. 8, in Fig. 10 the agreement between the two methods of calculations is 
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Fig. 10. Case 3.2- spanwise distribution of the resultant moment (w=l50'). 

very good and even surprising. Such a good agreement has also been obtained 
in all the other azimuthal locations which has been checked and is again 
probably the result of using the more accurate approach of root dynamics. 
While numerically Mx and My of Figs. 8 and 10 are very similar, Mz is 
similar in shape but completely different in magnitude. This difference 
results from the differences in the behavior of v1 which have been 
discussed previously. 

3.3 Flapping Constraint 

In this case (as in the previous one) root dynamics is used in order to 
present the rigid body rotations about the flapping hinge. The present case 
is identical to the previous case (subsection 3.2) except from the fact that 
the blade is not completely free to rotate about the flapping hinge. Instead 
there is a flapping restraint which is represented by a linear torsional 
spring having a stiffness of 6 kN m{rad. When e~o the spring does not exert 

·any moment on the blade root. Another minor difference between the present 
case and the one of subsection 3.2 is the fact that at W=O (as shown in 
Fig. 11) v1, v2, w2 and w3 have finite values and they are not equal 
to zero as in the previous subsection. 

50-20 



In Fig. 11 the time response of the different coefficients is 
presented. The behavior of a is similar to its behavior as has been 
presented in Fig. 9. As a result of the flapping restraint, the magnitude of 
a is significantly smaller. In addition, since the natural frequency of the 
rigid body flapping has been increased, a (in Fig. 11) obtains its maximum 
value earlier than in Fig. 9. FW1 is the first mode of vibration of a 
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Fig. 11. Case 3.3 - time response of the coefficients. 

uniform clamped/free beam. This shape function is responsible for the 
resultant flapping moment at the blade root which is linearily proportional 
to the blade flapping angle. Therefore, the behavior of Wl follows that of 
a. FW2, FW3, FV1, FV2, Ft\1 and Ft>2 are identical to the same 
shape functions in the case of subsection 3.1. The behavior of w2 and w3 
shows that if they begin (at *=0) from appropriate values, which are not 
zero-, their behavior is more "calm" and the transient which was shown in 
Figs. 5,9, has almost disappeared. The behavior of Vl, v2, ill and ¢2 
in Fig. 11 is similar to their behavior in Fig. 9. 
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While the distributions of Mx and Mz in the present case are 
similar to their distributions in the previous cases and therefore are not 
presented, the spanwise distribution of M is basically different and 
therefore it will be discussed in what foi'lows. In Fig. 12 the distribution 
of My in two azimuthal locations is presented. At ljl=12• the flapping angle 
at tne bla~e root is still very small and therefore the flapping moment there 
(which is proportional to this angle) is also very small and so the 
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Fig. 12. Case 3.3 - spanwise distribution of the flapwise component of the 
resultant moment (ljl=12•, 95·). 

distribution of My is similar to its distribution in the previous cases. 
At W=95• the flapping angle has reached a significant value and therefore 
there is a significant flapwise moment at the blade root. This moment 
results in a distribution of My which is typical for a clamped/free blade 
like in the case of hingeless rotors. 

4. Conclusions 

A general model of blade dynamics has been described. This model is 
very flexible and can accommodate with any motion of the rotor, any kind of 
rotor (articulated, teetering, hingeless etc.) and any attachment of the 
blade to the hub. In addition the model can deal with curved blades having 
any spanwise distribution of the structural, geometric, mass and aerodynamic 
properties. Only very few assumptions have been adopted and therefore the 
model is applicable to almost all the practical cases, without any 
restrictions. 

Special attention has been devoted to the root dynamics. The root 
dynamics analysis is very accurate and there is not any restriction 
concerning the magnitude of the displacements or rotations at the blade 
root. Such an approach is very important if one is interested in avoiding 

. unpredictable errors. 

Galerkin method, as similarily pointed out in other researches in the 
past, is a very efficient way of solving problems of blades' dynamics. The 
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convergence of this method is relatively fast and the number of unknowns 
associated with this method is relatively small compared with other methods 
which are used for the same kind of problems. 

The resultant forces and moments along the blade can be calculated by 
using two methods. The first method is based on differentiation of the 
displacemer.ts while the second method includes integration of the loads along 
the blade. In the present examples of relatively stiff blades, the agreement 
between th~ results of t~e.two methods ran between excellent and good 
agreement. From numerical analysis theory it is expected that the results of 
the integration will be more accurate. Anyway, comparison of both methods is 
always a good mean of checking the results. 

The implicit Adam's method is a very accurate, convenient and 
relatively efficient method for the integration of the equations of motion. 

The main purpose of this paper was to present the possibility of 
obtaining a relatively accurate model of the blade dynamics which is yet very 
general and is able to solve many different practical cases of blades under 
different modes of operation. This model will be used in the future in order 
to investigate the dynamics of different blades at different operation 
conditions. In the future the possibility of combining this shophisticated 
dynamic model with much more complicated aerodynamic models (compared to the 
aerodynamic model of the present paper) will also be investigated. 
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Appendix - The Properties of the Blade 

Length (L) 
Chord (c) 

(Eizzl 
(EI yy) 
(Eiyz) 

Flapwise bending stiffness 
Edgewise bending stiffness 
Compound bending stiffness 
Torsional stiffness (GJ) 
Components of the cross sectional 

moments of inertia Mizz 
Miyy 
Miyz 

Mass per unit length (m) 
Lift coefficient curve slope 

mass 

Drag coefficient properties (see Eq. 30) 

Aerodynamic moment coefficient (cMACl 
Rotational Speed (n) 
Air density (pA) 

1.52(m) 
0.122(m) 

11 ,500(N m2) 
258,000(N m2) 
0 

8,000(N m2) 

0.1 10-4(kg m) 
0.46 10-3(kg m) 
o.63 ro-4(kg m) 
0.535{kg/m) 
5.9(1/rad) 
~0 = 0.01 
~1 = 0 
~2 = 0.015 
0 
150 (rad/sec) 
1.23{kgtm3) 

The cross sectional elastic center, aerodynamic center and center of mass 
coincide. 
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