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Abstract

This paper discusses the time-periodicity of the
helicopter rotor in forward flight and its effects on
the design of control laws for vibration reduction
and damping enhancement using individual blade
control. The extent to which the achievable vibra-
tion reduction depends on the number of degrees
of freedom is analyzed. Therefore, a simple analyti-
cal model of an -blade helicopter rotor is devel-
oped. In order to assess the influence of the
number of blades on the vibration reduction poten-
tial, various controllers are designed for rotors with
different numbers of blades. The capability of an
observer-based control law to increase lag damp-
ing without using dedicated blade sensors is dem-
onstrated via simulation with a comprehensive
aeromechanical model of a four-blade BO 105 heli-
copter rotor derived with Camrad II.

Nomenclature

Blade section lift-curve slope

State-space matrices

Blade chord

Damping coefficient (with subscript)

Disturbance vector

Hinge offset

Force (with subscript)

Generalized mass (with subscript) 
Moment of inertia (with subscript)

Gain matrix
Spring constant (with subscript)

Blade index

Moment (with subscript)

Harmonic index

Blade root moment (with subscript)
Number of rotor blades

Reference vector

Rotor radius

Shear force (with subscript)

Control deviation vector

State, output, input vectors

Blade flap angle

Blade lock number

Blade lag angle

Blade pitch angle

Rotating natural frequency (with sub-
script)

Air density

Azimuth angle
Dimensionless time variable

Rotor rotational frequency

Degrees of freedom of the Fourier 
coordinate transformation

Blade degrees of freedom

Frequency unit: per rotor revolution

Introduction

Helicopter suffer from high vibration. This vibration
is mostly caused by the main rotor, which operates
in a complex aerodynamic flow field. Changing
aerodynamic effects, pilot inputs via the swash-
plate, and interactions of blades and vortices of
preceding blades are causes of oscillations in the
flexible rotor blades which are transmitted through
the rotor hub and cause vibration in the fuselage.
Fuselage vibration leads to human discomfort and
fatigue damage of structural components which
both give reason to the aim of helicopter vibration
reduction.

Concepts for active vibration control are higher har-
monic control (HHC) and individual blade control
(IBC). Both methods aim at inducing additional
forces and moments at the rotor which are opposite
in phase and equal in amplitude with the original
forces and moments, leading to destructive interfer-
ence. The original vibration is consequently
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reduced and ideally canceled out. By IBC, the
blades are individually controlled in the rotating
frame above the swashplate. In the concept of indi-
vidual blade root control, the lift of the blade is var-
ied by changing the pitch of the blade at its root.
Therefore the pitch link rods are substituted by
hydraulic actuators allowing a blade pitch control
superimposed to the swashplate commands. A
four-blade BO 105 helicopter equipped with an indi-
vidual blade root control system is considered here
(Ref. 15).

One advantage of individual blade root control over
other individual blade control concepts via flaps,
twist, etc., is that no changes to the blade are nec-
essary. Thus, the blades do not need to be recerti-
fied. However, if the original blades are used, no
blade sensors are available and, consequently, no
measurements are available in the rotating frame.
The availability of only hub load (and possibly fuse-
lage) sensors imposes certain restrictions on the
design of the control law, which this paper seeks to
examine.

Helicopter vibration reduction belongs to the class
of vibration control problems for plants with periodic
coefficients. Here, periodicity is a result of the
mechanics of the system and cannot be avoided. A
linear time-periodic system responds to a sinusoi-
dal input not only with a sinusoid at the excitation
frequency, as linear time-constant systems do, but
also at additional harmonic frequencies that are
spaced by multiples of the plant-periodic frequency
(Ref. 2). The introduction of multiblade coordinates
(MBC, Ref. 6) opens up the possibility of using a
wide range of time-invariant controller synthesis
techniques, since the periodicity of the plant is
(partly) preserved in a time-constant MBC repre-
sentation. This paper addresses effects associated
with the time-periodicity and examines the interac-
tion of the multiblade coordinate transformation, the
multiharmonic response of the system, and the hub
filtering effect of the rotor.

An elementary issue in helicopter vibration control
is the selection of outputs to be controlled. For a
four-blade rotor, typically three hub forces/moments
are chosen, e.g. the force vector or a combination
of the force in thrust direction and the roll and pitch
moment. However, a reduction of vibration in
selected hub loads can lead to reduced or
increased vibration in the remaining hub loads,
depending on the dynamic properties of the sys-
tem, but typically vibration is increased in outputs
not considered for vibration reduction, which is
obviously counter-productive to the aim of reducing
vibration that is transmitted to the fuselage. This
paper examines the extent to which the achievable
vibration reduction depends on the number of
degrees of freedom and presents a systematic

analysis of the extent to which the number of
degrees of freedom available for vibration reduction
depends on the number of rotor blades.

The paper is organized as follows. Firstly, the mod-
els used for analysis and design are described, fol-
lowed by a presentation of the effects associated
with periodicity. Next, vibration reduction results are
presented, and lag damping enhancement is dis-
cussed. Finally, some conclusions are presented.

Model Description

In this section, two different rotor models are pre-
sented: a simple analytical model and a complex
aeromechanical analysis model, including
advanced rotor aerodynamics in addition to
detailed kinematics and detailed dynamics derived
with the commercial helicopter analysis software
Camrad II (Ref. 7).

Analytical Rotor Model

An analytical model of an -blade helicopter rotor
is developed. The model is outlined briefly in this
section. For a detailed derivation see Ref. 10,
Ref. 14, and the original source Ref. 8. The struc-
ture of the rotor blades is modelled using mass and
spring systems. In aerodynamics, blade element
theory is used to determine the blade loading. Only
rigid flap and lag motion is considered, with collec-
tive, cyclic, and, in case of even blade numbers, dif-
ferential pitch control. The rotor is articulated with
flap and lag hinge offsets. In general, small angles
are assumed. The section aerodynamic character-
istics are described by a constant lift curve slope
and a mean profile drag coefficient. The effects of
stall, compressibility, and radial flow are not
included. A uniform induced velocity is used. The
blade has constant chord and linear twist. Higher
harmonics of flap and lag motion and the pitch
degrees of freedom are neglected. The model
parameters are chosen to resemble those of the
BO 105 helicopter.

While the basic features of rotor behavior are con-
tained in the model described above, it is far too
limited for accurate quantitative results. Despite the
fact that various effects are neglected and that
structural and aerodynamic modelling is far too sim-
ple to predict vibrational loads, the model is
assumed to allow a qualitative evaluation of the
potential to influence vibration with IBC from a con-
trol law design perspective.

The motion of a hinged blade (“articulated rotor”)
consists basically of rigid body rotation about each
hinge, with restoring moments as a result of the
centrifugal forces acting on the rotating blade. For a
blade without hinges (“hingeless rotor”), the funda-
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mental modes of out-of-plane and in-plane bending
define the flap and lag motion. Because of the high
centrifugal stiffening of the blade, these modes are
similar to and can be approximated by the rigid
body rotations of hinged blades, except in the vicin-
ity of the root, where most of the bending takes
place (Ref. 8). In addition to the flap and lag motion,
it is possible to change the pitch of the blade in
order to control the rotor. Pitch motion allows the
angle of attack of the blade to be controlled and
hence the aerodynamic forces on the rotor.

The forces acting on the blade are the inertial, cen-
trifugal, Coriolis, and aerodynamic forces. Equilib-
rium of moments about the flap hinge (with hinge
offset ), including a spring moment 
with the precone angle , gives the flap equation
of motion expressed in dimensionless quantities

(1)

with the natural frequency of the flap motion

(2)

the normalized generalized mass of the flap mode
, the normalized Coriolis flap-lag cou-

pling , the blade lock number

(3)

where  is the air density,  the blade section lift-
curve slope,  the blade chord,  the characteris-
tic inertia of the rotor blade, and  the aerody-
namic flap moment, which is mainly a function of
helicopter flight speed , thrust , and pitch con-
trol input , see Ref. 10, Ref. 14, and Ref. 8.

Equilibrium of moments about the lag hinge, includ-
ing a spring moment  and a mechanical lag
damper term , gives the lag equation of motion
that is expressed in dimensionless quantities as:

(4)

The natural frequency of the lag motion is

(5)

and the normalized generalized mass of the lag
mode is . The aerodynamic lag moment

 is again a function of flight speed, thrust, and
pitch control input, see Ref. 10, Ref. 14, and Ref. 8.

Loads, Vibrations, and Hub Filtering

The forces and moments at the root of the rotating
blades are transmitted to the helicopter airframe.

The steady components of these hub reactions in
the nonrotating frame are the forces and moments
required to trim the helicopter. The higher fre-
quency components cause helicopter vibration.
Fig. 1 shows the definition of the root shears and
moments of the rotating blade and the forces and
moments acting on the hub in the nonrotating
frame.  

The vertical shear force  generates the rotor
thrust  and the in-plane shear forces  and 
cause the rotor side and drag forces  and .
The flapwise root moment  produces the rotor
pitch and roll moments  and , whereas the
lagwise moment  results in the rotor shaft torque

. The rotating blade root loads can be obtained
by integrating the section forces acting on the
blades. The forces and moments in the nonrotating
frame are obtained by summing over all  blades,
where the notation (m) stands for the mth blade:

(6)

(7)

(8)

(9)

(10)

(11)

In steady-state forward flight, the root reaction of
the mth blade ( ) is a periodic function
of  with . Therefore, all
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rotating system (Ref. 10, Ref. 8)
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blades have identical loading and motion. When the
loads are written in the rotating frame as Fourier
series and the summations are evaluated, all loads
cancel at the rotor hub, except for those appearing
in the nonrotating frame as harmonics of 
(Ref. 8). The rotor hub basically acts as a filter,
transmitting to the helicopter only harmonics of the
rotor forces at integer multiples  of . Table 1
summarizes the transmission of loads through the
rotor hub.  

Multiblade Coordinate Transformation

The equations of motion are derived in the rotating
frame. However, the rotor responds as a whole to
excitations (control inputs, gusts) from the nonrotat-
ing frame. This is the motivation to use coordinates
in the nonrotating frame. Multiblade coordinates
(MBC), which result from a linear Fourier coordi-
nate transformation from single blade coordinates
(SBC), are introduced (Ref. 6). The following equa-
tions describe the transformation from SBC to
MBC. As an example, the flap motion is considered.

 denote the flap angles in SBC, whereas
the coordinates  (collective mode),  and 
(cosine and the sine modes), and  (differential
mode, exists only for  even) are used in MBC.
The blade index  ranges from 1 to . The azi-
muth is  with the dimensionless
time variable  for constant rotational speed

 and the equal azimuthal spacing between the
blades .

(12)

(13)

(14)

(15)

The inverse coordinate transformation is given by:

(16)

The summation index  goes from  to 
for  odd and from  to  for  even.

Trimming and Linearization

Linearization is typically performed about an oper-
ating condition, e.g. a trim state  and trim input

. Here, the system is linearized about a trim tra-
jectory over one rotor revolution, resulting in a lin-
ear time-periodic system. The three control
variables, collective, longitudinal cyclic, and lateral
cyclic pitch, are adjusted to trim three quantities:
thrust, propulsive force, and side force, referred to
as “wind tunnel trimming”. The trim state trajectory

 is obtained by means of nonlinear simulation
and is written as a Fourier series. The trim input tra-
jectory  is defined by the collective and cyclic
pilot inputs. 

The resulting system is transformed into state-
space form:

(17)

Both state and input vectors are given in MBC:

(18)

(19)

The harmonic index  goes from  to
 for  odd and from  to 

for  even. The differential degree of freedom
(index ) only exists if  is even.

The output vector contains the hub loads in the
nonrotating system:

(20)

Camrad II Rotor Model

The aeromechanical analysis software Camrad II
(Ref. 7) is used to derive a state-space model of a
BO 105 helicopter rotor with four flexible blades
(Ref. 4). This model very much resembles the sim-
ple analytical model in the previous section in terms
of inputs and outputs, as well as in terms of time-

Table 1 Transmission of helicopter vibration 
through the rotor hub (Ref. 8)
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periodicity and multiblade coordinates, but is of
much higher complexity and accuracy, thus allow-
ing quantitative results.

The rotor blades are modelled as beams by finite
elements, allowing flap (out-of-plane), lag (in-
plane), and torsion motion. Aerodynamics are cal-
culated using blade element theory combined with
experimental airfoil tables and a wake model. The
structural blade modes considered are four flap
modes, two lag modes, and the first torsion mode.
Higher frequency structural and aerodynamical
modes, as well as flight mechanical modes are
neglected. The BO 105 helicopter fuselage is
implemented as a rigid body in order to model the
inertial properties of the helicopter. Aerodynamic
effects of the fuselage and stabilizer are considered
by table data. The tail rotor is treated as a rigid rotor
without degrees of freedom. The actuators are
modelled using first-order dynamics.

Periodicity

This section presents aspects of the plant that arise
from its periodicity and discusses some conse-
quences for control law design. The interplay of the
Fourier coordinate transformation, the multihar-
monic response of the periodic plant, and the hub
filtering effect of the rotor are analyzed in detail.

Multiharmonic Responses

An ordinary time-constant linear system, described
with one or a set of linear differential equations with
constant coefficients, responds to a single har-
monic input with a single harmonic output of the
same frequency. A system that can also be
described with one or a set of linear differential
equations having time-periodic coefficients is called
a “linear time-periodic system”. The response of a
linear time-periodic system to a single harmonic
input is generally a multiharmonic output. The Fou-
rier coefficients of the multiharmonic response
depend on the system properties, i.e. on the peri-
odicity of the coefficients of its differential equa-
tions. Fig. 2 illustrates the fundamental difference
between time-constant and time-periodic linear
systems. 

Transmissibility of Single Harmonic Blade 
Inputs

The following analysis is based on the time-periodic
Camrad II model of the four-blade BO 105 helicop-
ter in forward flight (Ref. 4). Open-loop simulations
are performed with various single harmonic sinuso-
idal inputs with various frequencies but identical
amplitudes of . The bar graphs in Fig. 3 repre-
sent the output amplitude of the Fourier coefficients

and correspond to the input frequencies of  to
. The amplitudes are given for different out-

puts: blade root moments for one blade in the rotat-
ing frame and rotor hub loads in the nonrotating
frame. The Fourier coefficients are given for fre-
quencies from  to . Note that the multi-
harmonic responses of the plant to the single
harmonic input are caused by the time-periodic
coefficients of the system, as described in the pre-
vious section. The input of the  blade (
to ) is a periodic function of ,

. Therefore, all blades have identical
loading and motion.

The blade root load outputs in the rotating frame
respond to a single harmonic input with a multihar-
monic output generally in all frequencies (only lim-
ited by the periodicity of the system). However, the
response is dominated by frequencies close by, e.g.
the response of a  input is typically dominated
by , , and  sinusoidal components.
The largest output amplitude is typically in the fre-
quency of the input, whereas the amplitude of the
“sidebands”, i.e. the responses in frequencies dif-
ferent from the input frequency, typically decrease
as the difference in frequency increases. 

Fig. 4 shows the same simulation, but now with the
time-constant rotor model in MBC. The rotating
blade root outputs respond to single harmonic
inputs with the frequencies  only with single
harmonic outputs of . The same also holds for

 inputs. By means of multiblade coordinates,
the system responds to inputs with frequencies of

, , and , with multiharmonic out-
puts in all three frequencies , , and

, respectively. This is due to the fact that the
multiblade coordinate transformation for the four-

1°

Fig. 2 Multiharmonic response of a linear time-
periodic system to a single harmonic input 
(Ref. 9)
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blade rotor introduces a progressive 
 and a regressive   cyclic

mode. The multiharmonic response of the time-
constant plant demonstrates how the transforma-
tion from SBC to MBC (partly) preserves the peri-
odicity of the plant. 

Hub Filtering

In order to determine the total influence of a rotor
with  blades undergoing identical periodic
motion, it is necessary to evaluate sums of harmon-
ics, e.g.

(21)

where  only if  is a multiple of the number
of blades, otherwise  (Ref. 8). Again, the azi-
muth of the  blade is given by ,

. This means that blade root loads with
a frequency of  are transmitted to the nonro-
tating frame. However, there are blade root loads
that are multiplied by terms  (or ), see
(6), (7), (9), (10). By means of trigonometric rela-
tions, e.g.

(22)

it can be shown that , , and
 blade root loads yield  terms in

the summation and consequently are transmitted
through the hub to the nonrotating system, see
Table 1. 

As regards transmission from individual blade com-
mands in SBC to nonrotating hub loads, it can be
stated that, in the periodic system, inputs of any fre-
quency causing , , or 

blade root loads are transmitted to the rotor hub.
Consequently, for a four-blade rotor, not only ,

, and  inputs, but also  and 
inputs can be used to provoke  hub loads in
the nonrotating system. However, whereas the

, , and  inputs are “directly” trans-
mitted to the rotor hub, the  and  inputs
are only transmitted “indirectly” via the multihar-
monic sideband responses of the blade root loads.
These theoretical results are confirmed by experi-
ments in Ref. 13.

Unfortunately, the Fourier coordinate transforma-
tion for the four-blade rotor translates  MBC
inputs only into , , and  individual
blade commands in SBC, leaving the  and

 inputs inaccessible for controller designs
based on a time-constant model. In contrast to this,
periodic controllers based on the periodic plant can
make use of the additional input frequencies;
Ref. 11 shows an example of where a periodic con-
troller uses a  input. However, there are two
drawbacks of  and  inputs: First, the
effectiveness is reduced in comparison to ,

, and  inputs due to “indirect” transmis-
sion via sidebands only, as also reported in Ref. 13.
Second, the  input considerable affects 
trim loads and the  input affects  hub
loads in what could be an undesired way, see
Fig. 3.

Periodicity of the Total System in MBC

The total system consists of three subsystems with
periodicity effects, see Fig. 5. First, for a four-blade
rotor, the  input signal in MBC is split up into

, , and  signals in the coordinate
transformation. Additional signals with 
and  are created for rotors with 

Fig. 3 Multiharmonic response of the periodic 
system at the blade root (rotating system) 
and at the hub (nonrotating system) to 
single harmonic inputs

0 1 2 3 4 5 6 7 8
0

2

4x10
4

Output Fourier Series Coefficients [/rev]

M
z [N

m
]

0

2

4x10
4

M
y [N

m
]

0

5

10x10
4

M
x [N

m
]

0

2

4x104

F
z [N

]

0
5000

10000

F
y [N

]

0

5000

F
x [N

]

0

200

400

M
θ [N

m
]

0

5000

10000

M
ζ [N

m
]

0

1

2x10
4

Time-Periodic System

M
β [N

m
]

2/rev Input
3/rev Input
4/rev Input
5/rev Input
6/rev Input

R
ot

at
in

g 
B

la
de

 R
oo

t L
oa

ds
N

on
-R

ot
at

in
g 

H
ub

 L
oa

ds
 

4 1+( )/rev
= 5/rev 4 1–( )/rev = 3/rev

N

1
N
---- nψmsin

m 1=

N

� fn nsin ψ=

fn 1= n
fn 0=

mth ψm ψ m∆ψ+=
∆ψ 2π/N=

N/rev

ψmsin ψcos

xsin ysin⋅ 1
2
--- x y–( )cos x y+( )cos–( )=

N 1–( )/rev N/rev
N 1+( )/rev N/rev

N 1–( )/rev N/rev N 1+( )/rev

Fig. 4 Multiharmonic response of the constant 
system in MBC at the blade root (rotating 
system) and at the hub (nonrotating 
system) to single harmonic inputs

0 1 2 3 4 5 6 7 8

Time-Constant System in MBC

2/rev Input
3/rev Input
4/rev Input
5/rev Input
6/rev Input

0

2

4x10
4

Output Fourier Series Coefficients [/rev]

M
z [N

m
]

0

2

4x10
4

M
y [N

m
]

0

5

10x10
4

M
x [N

m
]

0

2

4x104

F
z [N

]

0

5000

10000

F
y [N

]

0
5000

F
x [N

]

0

200

400

M
θ [N

m
]

0

5000

10000

M
ζ [N

m
]

0

1

2x10
4

M
β [N

m
]

R
ot

at
in

g 
B

la
de

 R
oo

t L
oa

ds
N

on
-R

ot
at

in
g 

H
ub

 L
oa

ds
 

3/rev
4/rev 5/rev 2/rev 6/rev

4/rev

3/rev 4/rev 5/rev
2/rev 6/rev

4/rev
3/rev 4/rev 5/rev

2/rev
6/rev

2/rev
2/rev 6/rev

3/rev
4/rev 5/rev

2/rev 0/rev
6/rev 8/rev

4/rev
3/rev 4/rev 5/rev

N 2–( )/rev
N 2+( )/rev N 5=



81.7

or 6 rotor bladesi. The rotor blades considered to be
the second subsystem respond to these input sig-
nals with multiharmonic responses. The resulting
signals are dominated by frequencies of between

 and . Finally, the hub filters frequencies
with integer multiples of the number of blades, i.e.

, mostly , , etc.

The system can be linearized from the input in
MBC to the hub load outputii. Both signals are given
in the nonrotating frame. This system can be aver-
aged, i.e. constant coefficients can be used,
neglecting higher-order Fourier series terms. The
resulting system is a linear time-constant system.
This opens up the possibility of using a wide range
of classical linear control law synthesis methods.
The single harmonic  to  transfer func-
tion of the plant internally contains the ,

, and  physical transmission paths,
making it an ideal choice on which to base control
law designs. 

Vibration Reduction for the N-Blade Rotor

A control law for the -blade rotor is developed in
this section. The focus is on analyzing the potential
of individual blade control and examining the
dependence of the number of rotor blades. Optimal
output feedback strategies are used to design con-
trol laws in order to reduce vibration.

N-Blade Rotor Effects

A straight forward approach to studying the influ-
ence of the number of rotor blades would be to

compare different helicopters with different num-
bers of rotor blades. A drawback of this approach is
that the results would be affected by two factors:
First, by the number of blades, as intended, and
second by the fact that the different helicopters
might have been designed for different missions,
differ in size, mass, etc., whereby the second would
make comparisons difficult, if not impossible. To
overcome this problem, fictitious -blade rotors are
modelled for the four-blade BO 105 helicopter. In
the four-blade rotor, all parameters of the rotor
model are chosen to resemble the original BO 105
helicopter. For  blade rotors, the number of
blades changes. If identical blades were used to
those of the  blade rotor, the thrust and other
forces and moments produced by the rotor would
change. Therefore, the blade chord is scaled by the
factor . Consequently, the lift per blade is
scaled and the total thrust is approximately inde-
pendent of the number of rotor blades. This leads to
approximately the same trim situation, i.e. the -
blade rotors produce the same trim forces and
moments at the rotor hub for a given input of pilot
collective and cyclic pitch. Choosing the blade
chord as a parameter to be adapted to the number
of blades means that the rotational speed, the rotor
diameter, and fundamental blade properties, such
as the natural frequencies of the flap and lag
motion, remain unchanged, which helps to simplify
comparisons (Ref. 14).

The different rotor models are trimmed at identical
forward cruise flight conditions and are linearized
about a trajectory about one rotor revolution. The
result is a family of linear time-periodic models for
rotors with  blades that differ in the number of
inputs ( , corresponding to  blades and  input
modes in MBC) and states ( , corresponding to
flap and lag degrees of freedom and derivatives).

The most dominant vibration occurs at the blade
passage frequency of  (Ref. 4). Amplitude
and phase information is only available for the four-
blade rotor from calculations using Camrad II or
from flight tests. For the moment, it is assumed that
the amplitude and phase is independent of  and
only the excitation frequency is changed. Ref. 1
gives a comparison of vibration for a four and five-
blade helicopter. The results show that the ampli-
tude of most hub loads is decreased with the five-
blade rotor, except for the vertical shear in some
cruise flight conditions. The above assumption is
therefore simplifying. When comparing results,
therefore, it has to be kept in mind that approximat-
ing  vibration with  data tends to under-
estimate true vibration for  and overestimate
vibration for .

i. In the case of  rotor blades, third-order cyclic modes
lead to additional frequencies of  and .

ii. The coordinate transformation and the rotor are not realized
as a series connection as shown in Fig. 5; rather both inputs and
states of the rotor are transformed to MBC.

Fig. 5 Transmission of signals through the 
coordinate transformation, rotor, and hub
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Optimal Output Feedback Control Law Design

The objective of the control law is to cancel vibra-
tion that enters the system as an output distur-
bance. The pitch of the individual blades can be
controlled in order to change the lift (and drag) of
the blades and consequently provoke additional
forces and moments at the rotor hub. By applying
appropriate blade pitch commands, the baseline
vibration can be reduced and ideally cancelled out
at the rotor hub. The resulting hub loads are avail-
able to the controller as a measurement.

This disturbance rejection control problem is dealt
with by implementing a servo-compensator. The
servo-compensator is a dynamic compensator that
is in resonance with the external disturbances act-
ing on the plant (Ref. 3), representing an internal
model of the external disturbances. In the helicop-
ter vibration problem, the external disturbances of
sinusoidal type with the blade passage frequency

 are considered. The internal model of this
external disturbance is an undamped oscillator
tuned to the disturbance frequency. The oscillator is
implemented as a second-order notch filter.

Standard optimal output feedback strategies are
used to design the control law. A system of the form

(23)

is considered, whereby  is the state vector,  the
input vector,  the output vector, and  the output
disturbance vector. The control law has the form:

(24)

The gain-matrix  is to be chosen to minimize the
performance criterion

(25)

where  such that  is detectable and
 (Ref. 12).

The linear time-constant plant in MBC is aug-
mented with the servo-compensator. The gain
matrix is derived using an algorithm (Ref. 12) for
calculating optimal output feedback gains for the
augmented system. Fig. 6 shows the structure of
the output feedback system with plant, servo-com-
pensator, gain matrix, and with the baseline vibra-
tion acting on the system as output disturbances. 

Vibration Reduction Results

For the family of -blade rotors (here three to
seven-blade rotors are considered), a set of control-
lers is designed using identical state and control
weighting matrices in the performance criterion, as

described in the previous section. For each rotor,
the number of outputs to be controlled is varied
from three to six hub loads. The out-of-plane force
and moments are chosen in the case of three hub
loads. In the case of four outputs, the in-plane force

 is added. In the case of five outputs, all three
forces and the out-of-plane moments are consid-
ered. Finally, the entire force/moment vector at the
rotor hub is considered when six outputs are con-
trolled, see Table 2. 

Table 3 shows the vibration reduction results for the
different rotors and different numbers of outputs to
be controlled. By following the first row of the table,
a comparison can be made of the controllers
designed for the same three outputs, but for differ-
ent rotors. In all cases, the vibration in the outputs
considered can be reduced considerably (between

 and ). A slight degradation can be
observed when a rotor with an increasing number
of blades is considered in the design. This is due to
the higher blade passage frequency and the
assumption of identical actuator dynamics, which
leads to a smaller gain and a larger phase lag in the
frequency response of the actuators for an increas-
ing number of blades. 
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Fig. 6 Disturbance rejection control structure

Table 2 Selection of outputs to be controlled

No. of 3 4 5 6
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Outputs

, , , , 
, 

, , 
, , 

, , 
, , 
, 

Table 3 Vibration reduction results for different 
numbers of blades and outputs

Resulting 
Vibrationa

a. Example reading: For the four-blade rotor, the vibration in the
three considered outputs are reduced on average by -94% of the
original values of the three outputs considered. The vibration
reduction (or, possibly, the vibration increase) in the outputs not
considered is not included in the number.

3-
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Rotor
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Blade 
Rotor
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Blade 
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3 Outputs -96% -94% -93% -92% -91%

4 Outputs -49% -43% -94% -91% -93%

5 Outputs -23% -20% -92% -88% -92%

6 Outputs -36% -32% -74% -72% -67%
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By taking into consideration the three-blade rotor
and starting to increase the number of outputs to be
controlled, the table shows that only three outputs
can be reduced considerably. From four outputs
onwards, the vibration can only be reduced by half
of the original level (the shaded area in the table). A
further increase in the number of outputs to be con-
trolled further degrades vibration reduction. The
results for the four-blade rotor are nearly identical to
the results obtained with the three-blade rotor. The
fourth blade does not lead to any additional degree
of freedom being available for vibration control,
since the rotor has a reactionless mode for an even
number of blades. Thus, the vibration reduction
potential is the same as it is for the three-blade
rotor. The five and six-blade rotors allow a consider-
able vibration reduction (of between  and

) in five outputs. Although the results for up
to five outputs are slightly better in the case of the
seven-blade rotor, this rotor does not allow a con-
siderable reduction in vibration (by around )
in all six forces/moments at the rotor hub, but only a
value of  is achieved, which is a result com-
parable to the results of the five and six-blade
rotors.

The result is that with three and four-blade rotors,
three degrees of freedom are usable for vibration
control, i.e. vibration can be reduced considerably
in three outputs simultaneously. From five-blade
rotors onwards, there are five degrees of freedom
available for vibration reduction.

Singular Value Analysis of the Plant

The linear time-constant model of the helicopter
rotor in MBC is analyzed in the following. The multi
input multi output (MIMO) transfer function from the
IBC inputs to the hub loads is analyzed using sin-
gular values. Fig. 7 shows the singular values for
rotors with  to 7 blades. The frequency
response is evaluated for a frequency from  to

. The number of singular values coincides
with the number of inputs (number of rotor blades,
inputs in MBC). A comparison of the singular val-
ues of the three-blade rotor with those of the four-
blade rotor shows that the largest three singular
values (collective, progressive, and regressive
cyclic modes) are almost identical, whereas the
additional degree of freedom in the four-blade rotor
corresponds to the differential mode with a gain
some  lower (reactionless) than the other
modes. In the case of five rotor blades, first and
second-order cyclic modes exist, resulting in five
“usable” modes for active rotor control. As is the
case for the four-blade rotor, the differential mode of
the six-blade rotor is reactionless. The third-order
cyclic modes in the case of seven rotor blades have
a gain some  and  lower than the

collective and the first and second cyclic modes.
From a control law design perspective, this basi-
cally leaves five modes available for rotor control,
as is the case for the five and six-blade rotors.

The findings confirm the results of the previous sec-
tion where the number of degrees of freedom was
examined by designing controllers with an increas-
ing number of outputs to be controlled. 

Lag Damping Enhancement

In addition to reducing vibration at the blade pas-
sage frequency , a main objective of the con-
trol law design is to increase damping, especially in
the weakly damped lag modes, in order to reduce
gust sensitivity. This section examines the possibili-
ties of lag damping from the nonrotating frame in
more detail.

If the advantage of individual blade root control,
namely the usability of unchanged blades, is to be
exploited, control strategies without lag rate sens-
ing in the rotating blades are required. Therefore,
the control strategy for increasing damping is to use
an observer-based controller and to feed back the
(observed) rates of the modes to be controlled
(Ref. 11). The physical mechanism of lag damping
augmentation is as follows: The (observed) lag rate
is fed back to the individual blade pitch control. A
blade flapping rate is thus generated, which results
in an in-plane moment due to the Coriolis force
opposing the lag motion. Since the opposing Corio-
lis force is proportional to the lag rate, blade damp-
ing is augmented (Ref. 5).

By definition, the observer requires that the modes
to be controlled are observable in the measured
outputs. The differential lag mode cannot be con-
trolled by a time-constant controller based on a
time-constant approximation of the time-periodic
plant, since the differential mode is not observable
(“reactionless” mode) in the time-constant system. 
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The section of the pole map containing the most
relevant second lag mode is given in Fig. 8. The
critical damping of the cyclic modes is increased
from the minimum open-loop damping of 0.5% to
2% in the closed-loop. Collective lag mode damp-
ing is increased to >2%, assuming a measurement
of  is available. The differential mode remains
unchanged.

Fig. 9 shows the results for a time-periodic control-
ler (Ref. 11). The controller is based on the same
design parameters as above, with the exception of
time-periodicity. The open-loop pole locations of the
plant are compared with the Poincaré exponents
(closed-loop pole locations of the Floquet-trans-
formed time-periodic closed-loop system). While
the results of the cyclic and collective modes are
only slightly improved, the key result is that the
time-periodic controller allows one to control the dif-
ferential mode. Differential second lag mode damp-
ing is increased to approximately 1% critical
damping. The possible differential damping
enhancement is not as large as for the cyclic or col-
lective form. This is due to the dynamic properties
of the plant and not to periodicity or the gain-sched-
uled time-periodic implementation of the controller,
since time-constant controller designs for fictitious
time-constant rotors “fixed” at specific azimuthal
positions yield similar results (Ref. 11). Although
the differential damping enhancement is smaller
than that for the cyclic and collective forms, the
time-periodic controller allows one to increase sec-
ond lag mode damping from minimal 0.5% critical
damping to 1% in the differential form and to 2%-
3% in the collective and cyclic form, whereas with a
controller design based on the constant coefficient
approximation, it is not possible to control the differ-
ential form from the nonrotating system. 

Conclusion

This paper has addressed effects associated with
the time-periodicity of the rotor and examined the
interaction of the multiblade coordinate transforma-
tion, the multiharmonic response of the system,
and the hub filtering effect of the rotor. The use of
multiblade coordinates opens up the possibility to
use time-constant control design techniques. How-
ever, the “reactionless” mode (for even blade num-
bers) can only be controlled using periodic control.

A simple analytical model for an -blade rotor was
developed and used to analyze the potential of indi-
vidual blade control and examine its dependence
on the number of rotor blades. The result is that the
achievable vibration reduction depends on the
available number of degrees of freedom, which in
turn depends on the number of rotor blades. With
three and four-blade rotors, three degrees of free-
dom can be used for vibration control. From five-
blade rotors onwards, there are five degrees of
freedom available for vibration reduction.

The capability of an observer-based control law to
increase lag damping without dedicated blade sen-
sors was demonstrated. The controller was applied
in simulation to a complex model of a four-blade
BO 105 helicopter rotor derived with the compre-
hensive aeromechanical helicopter and rotor analy-
sis software Camrad II.
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