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ABSTRACT 

In this paper, the subject of the design of active vibration control of the helicopter airframe structural 
response (ACSR) is discussed. In the helicopter vibration reduction techniques, including higher harmonic 
control, individual blade control, trailing edge flap control, active control of structural response, active 
twist control, smart springs concept, hub mounted vibration suppressers and other recent proposed 
techniques, the goals are to provide counter oscillatory loads and counter oscillatory motion to cancel the 
incoming vibratory loads and oscillatory motion from the rotor system, transmission and other sources to 
the airframe. In this paper, the goal is different and it is to design controllers to increase the closed loop 
damping of the helicopter structural dynamic system to a specified level that would reduce the vibrations 
to the required level within a time frame of interest. This is accomplished by developing a procedure to 
design second order controllers to obtain the desired closed loop damping (ADC-AF) while maintaining 
the stability of the closed loop airframe structural dynamic system.  The design procedure starts with a 
coincident closed loop frequency for each mode which is followed by perturbation procedures to seek 
optimum solutions. The design procedure also yields the needed control authority that should be provided 
by the actuator. An option to increase the control authority by the use of offset piezoceramic stack 
actuator assemblies are proposed. Because the controller design procedure is different a simple example 
is first used to illustrate the controller design for a specified damping constant and the resulting control 
authority. Then, the control of a simple rotor/ airframe model is discussed. 

 

1. Introduction 

 As is well known, oscillatory loads and vibrations 
in helicopters are due to the air flow pattern of 
the main rotor system; the tail rotor; the 
transmission; interaction of the rotor and the 
fuselage; and the engine. The effect of the 
oscillatory loads and helicopter vibrations are 
also well known. The effects include fatigue 
damage of structural components; discomfort of 
crew and passengers; difficulty in an accurate 
reading of the instruments and difficulty in the 
pointing of any military hardware. Thus, the 
reduction of oscillatory loads and vibration levels 
in helicopters are important and challenging 
issue that have been addressed by the 
researchers and designers, by using active and 
passive control options.    

Since 1967, the problem of control of oscillatory 
loads and vibration reduction in rotorcraft 
fuselage, using active control has been a subject 
of interest. Some of the principal approaches [1] 
include higher harmonic control (HHC); 
individual blade control (IBC); use of actively 
controlled flaps that are located on the rotating 
blades; and active control of structural response. 
Because HHC and IBC require the oscillation of 
the whole blade at high frequencies, the 
required control power is large. This motivated 
the options of the use of actively controlled 
trailing edge flaps (ACF) and active control of 
structural response (ACSR). In the case of the use 
of piezoelectric-based trailing edge flaps the 
problem is the low stroke of the flaps. To 
improve low stroke, the options of resonant 



actuation [2] and multiple flaps are being 
explored. These options also increase fatigue 
failure conditions.  

In more recent studies, different combinations 
of active controllers HHC, IBC, ACF, ACSR and 
passive control options are being used [3]. 
Another approach that is proposed by Sikorsky 
[4] is the hub-mounted vibration suppressors 
(HMVS) that were jointly developed with Lord 
Corporation. These consist of four brushless 
electric ring motors, each with eccentric 
tungsten mass located atop the main rotor hub. 
A similar vibration suppressor is planned for 
main gear box. Another parallel study is that of 
the use of oscillating Gurney flaps [5]. Similarly, 
a structural impedance change technique known 
as the smart spring technique has also been 
proposed. 

In all these vibration reduction techniques, the 
goals are to counter the oscillatory loads and 
vibration amplitudes of the airframe either 
through the rotor mounted control systems, 
such as the HHC, IBC or ACF systems or through 
the airframe mounted system such as the ACSR.  
Such countering techniques usually result in 
large weight and power  for the control system. 
Thus, the objective of this paper is to use a 
different option of increasing the damping 
constants of the closed loop structural dynamic 
system of the airframe. Thus, the paper only 
addresses ACSR and actively increasing the 
damping constants of the airframe structural 
dynamic system by the use of second order 
controllers and a proposed offset piezoelectric 
stack assembly based actuators. 

2. ACSR 

In 1990, King and Staple [6], Staple [7] and Welsh 
et. al [8].,  reported the work on ACSR that 
superposes actuator induced response with 
incoming oscillatory hub response. The sensors 
were accelerometers and the actuators were 
electro hydraulic force actuators. The control 
procedure consisted of minimizing a quadratic 

performance index. In 1994, Hanagud and Babu 
[9], presented the use of piezoceramic sensors 
and actuators for ACSR.  They used a single axis 
finite element beam model, with non-structural 
masses, and an H- infinity controller. The results 
indicated a 60% vibration reduction, in the 
vertical direction at the selected sensor location. 
During the years 1995-1996, Friedmann, Chiu 
and Cribbs [10-12] developed a coupled rotor-
fuselage-wake model for ACSR and reduce 
vibrational in all three directions. They used four 
high force/ low displacement actuators and 
concentrated vibration on reduction at the pilot 
seat location. By using 1% tom 1.5% of the total 
rotor power, 45% of vibration reduction was 
realized only in the vertical and longitudinal 
directions. Other reported ACSR   works are on 
Sikorsky [13] UH 60 an d a tail boom model [14]. 

3. ADC-AF 

In the work of this paper, we start with second 
order controllers that were introduced by 
Caughey, Goh, Fanson, [15-16].  These second 
order controllers that were first introduced by 
Caughey and Goh to reduce spillover effects. 
Later the design was modified by Fanson to 
introduce positive position feedback, and 
increase damping instead of countering the 
oscillatory loads and vibration amplitudes. In 
both Goh’s work and Fanson’s paper, the 
problem of design of the controllers to achieve 
the specified closed loop damping coefficient did 
not form a well posed problem because of large 
number of unknowns, in the equations. They had 
to resort to trial and error approach.  

Bayon de Noyer and Hanagud [17], and Hanagud 
[18] solved this problem by first solving for a 
single closed loop frequency for the cases of 
both positive position feedback and acceleration 
feedback. Then, the resulting single frequency 
solution are now perturbed to seek optimal 
control solution, in this paper.. The resulting 
controllers were also compared with LQG and H-
infinity designs and later implemented for wind 
tunnel tests for multi frequency controls of 
buffet induced vibrations in twin tail high 



performance aircraft at high angle of attack 
conditions. These controllers can be designed to 
realize a specified close loop damping and the 
resulting controller has been implemented and 
successfully tested to reduce buffet induced 
vibration in a wind tunnel using aeroelastically 
scaled models, by Hanagud and Bayon de Noyer. 

4. ADC-AF Model for Helicopters 

The multi-mode active damping controller for 
the airframe structural response can be written 
for position feedback, velocity feedback or 
acceleration feedback. In this paper, 
acceleration feedback is used. It is assumed that 
the structure is discretized at n locations, with n 
large enough that all modes of interest are 
included. It is assumed that x includes 
displacements ( or displacements and slopes, as 
considered in some models to include rotations 
as well as externally applied loads and 
moments). The equation 1 is the structural 
dynamic model of the structure, with external 
load or external loads and moments. 𝛤𝛤𝑎𝑎𝑎𝑎𝑎𝑎  is the 
sensitivity and locations of the actuators. It has 
zero everywhere except at the locations of the 
actuators where they are equal to 𝑎𝑎1𝑖𝑖.  
Similarly 𝛤𝛤𝑎𝑎𝑎𝑎𝑎𝑎  It is zero everywhere except at the 
locations of the sensor where they are equal to 
𝑎𝑎2𝑖𝑖 . The term 1𝑝𝑝 refers to the use of a single 
sensor, such as. The accelerometer. 

     
          (1) 

By setting C and right side of the equation to 
zero, natural frequencies and modes are 
determined. Then, modal damping is added to 
complete the acceleration feedback control 
equations. 

     
            (2 a,b) 

In these equations, ξ is the modal 
coordinate  𝜙𝜙𝑇𝑇x φ  of the structure and φ are the 
modes.  The matrix 𝛬𝛬𝑠𝑠 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (2 𝜁𝜁𝑠𝑠 𝜑𝜑𝑠𝑠𝑠𝑠)    are 
the damping constants of the structure.  The 
second equation 2b is the second order 
controller in terms of η. This equation resides in 
a computer. 

𝛬𝛬𝑐𝑐 = diag (2 𝜁𝜁𝑐𝑐 𝜔𝜔𝑐𝑐𝑐𝑐 )                                                     3) 

  𝜔𝜔𝑐𝑐𝑐𝑐 are the natural frequencies of the 
controller. 𝛺𝛺𝑐𝑐 = diag ( 𝜔𝜔𝑐𝑐𝑐𝑐

2  ). Similarly 𝛤𝛤𝑎𝑎𝑎𝑎𝑎𝑎  is the 
sensitivity and location of the sensors 
(accelerometers) The inputs to the controller 
equation are the accelerations 𝜉̈𝜉 of the structural 
locations in modal coordinates. 𝛤𝛤𝑎𝑎𝑎𝑎𝑎𝑎   takes care 
of the conversion from x to ξ. The output from 
the controller (1b) forms the input to the 
structure through the actuators, as the first term 
on the right hand side of the equation 1a. In 
equation 1a 𝛺𝛺𝑠𝑠 = diag (𝜔𝜔𝑠𝑠𝑠𝑠

2  ) where 𝜔𝜔𝑠𝑠𝑠𝑠 are the 
structural natural frequencies. 

Equation 1b resides in a computer. Different 
terms of the first term on the right-hand side of 
1b are the actual control forces and moments 
that should be applied to the structure and 
represents the control authorities that should be 
provided by the actuator. The terms  G are the 
gain or the amplification. 

The design of the controller is to determine 
parameters in 𝛬𝛬𝑐𝑐 matrix, 𝛺𝛺𝑐𝑐 matrix and G matrix 
to realize the specified constants in the closed 
loop system of equtions 1a and 1b. To explain 
the procedure and results, we consider a single 
degree of freedom system, in a later section. 

5. Goh Fanson and Caughey’s Approach to 
Design Vibration Controllers for 
Specified Closed Loop Damping:  

In reference [15], Goh and Caughey propose a 
method to design vibration controllers, for single 
and multiple degrees of freedom vibrating 
structures. Their objective is to obtain a specified 
closed loop damping. In their approach they 



consider a position feedback. Such an approach 
is also applicable to acceleration feedback 
controller designs. They assume that it is 
possible to approximate the N degrees of 
freedom vibrating systems by N number of 
independent second order linear differential 
equations, for each mode i using modal 
decomposition and adding modal damping. 

 𝜉𝜉𝚤𝚤 ̈ +2𝜁𝜁𝑠𝑠𝑠𝑠𝜔𝜔𝑠𝑠𝑠𝑠  𝜉𝜉𝚤𝚤 ̇  +𝜔𝜔𝑠𝑠𝑠𝑠
2 𝜉𝜉𝑖𝑖 = (𝑓𝑓𝑖𝑖(t)/𝑚𝑚𝑖𝑖) + 𝑔𝑔𝑖𝑖  𝜔𝜔𝑐𝑐𝑐𝑐𝜂𝜂𝑖𝑖 

 (4) 

For each mode, a second order controller is of 
the following form: 

 𝜂̈𝜂 𝑖𝑖 + 2𝜁𝜁𝑐𝑐𝑐𝑐𝜔𝜔𝑐𝑐𝑐𝑐 𝜂𝜂𝚤̇𝚤 + 𝜔𝜔𝑐𝑐𝑐𝑐
2 η =  𝜔𝜔𝑠𝑠𝑠𝑠

2 𝜉𝜉𝑖𝑖   
 (5) 

Briefly, their method is as follows: In the first 
step, Goh and Caughey identify the closed loop 
transfer function between  𝜉𝜉𝑖𝑖  and𝑓𝑓𝑖𝑖; and the 
characteristic equation. Then, they equate the 
closed loop characteristic equation of a multi 
degree of freedom version of equations (4) and 
(5) to a desired closed loop characteristic 
equation. Then, , their resulting equation is as 
follows. 

[𝑠𝑠2 +(𝜁𝜁𝑠𝑠𝑠𝑠 𝜔𝜔𝑠𝑠𝑠𝑠)s + 𝜔𝜔𝑠𝑠𝑠𝑠
2  } [𝑠𝑠2 +( 𝜁𝜁𝑐𝑐𝑐𝑐𝜔𝜔𝑐𝑐𝑐𝑐) s + 𝜔𝜔𝑐𝑐𝑐𝑐

2 ]  

– g 𝜔𝜔𝑠𝑠𝑠𝑠
2 𝜔𝜔𝑐𝑐𝑐𝑐

2    = [𝑠𝑠2 +(𝜁𝜁𝑓𝑓1𝑖𝑖 𝜔𝜔𝑓𝑓1𝑖𝑖) s + 𝜔𝜔𝑓𝑓1𝑖𝑖2  ] [𝑠𝑠2  

+ (𝜁𝜁𝑓𝑓2𝑖𝑖 𝜔𝜔𝑓𝑓2𝑖𝑖) s + 𝜔𝜔𝑓𝑓2𝑖𝑖2  ]                                                             
(6) 

In this equation,  𝜁𝜁𝑓𝑓1𝑖𝑖 ,𝜔𝜔𝑓𝑓1𝑖𝑖, 𝜁𝜁𝑓𝑓2𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝜔𝜔𝑓𝑓2𝑖𝑖) are 
the two desired closed loop damping ratios and 
closed loop natural frequencies that 
corresponds to the closed loop poles. They 
attempt to design 𝜁𝜁𝑐𝑐𝑐𝑐,𝜔𝜔𝑐𝑐𝑐𝑐 and g for prescribed 
values of the quantity ′(𝜁𝜁𝑓𝑓1𝑖𝑖’. The subscript ‘i’ 
corresponds to the ‘ith’ mode. Goh and Caughey 
and later Fanson attempt to calculate 𝜔𝜔𝑓𝑓1𝑖𝑖, 
𝜁𝜁𝑓𝑓2𝑖𝑖 ,𝜔𝜔𝑓𝑓2𝑖𝑖, 𝜁𝜁𝑐𝑐𝑐𝑐,𝜔𝜔𝑐𝑐𝑐𝑐 and g from four equations 
that result by equating coefficients of the 

powers of s in the equation (6). Because there 
are six unknowns and 4 equations, their attempt 
to obtain a closed form solution fails and they 
resort to numerical iteration to obtain practical 
solutions, for some cases.  

Subsequent sections show that the equation (7) 
yields procedures to calculate  𝜁𝜁𝑐𝑐𝑐𝑐,𝜔𝜔𝑐𝑐𝑐𝑐 and g for 
prescribed 𝜁𝜁𝑓𝑓1𝑖𝑖. 

6. Design of Acceleration Controller, for 
Specified Closed Loop Damping Ratio, 
with Coincident Closed Loop Poles 

In the subsequent sections, we, describe and 
illustrate the modified Goh and Caughey’s design 
procedure for a system with a single degree of 
freedom and a specified closed loop damping 
ratio. For example the specified damping closed 
loop ratio can be 0.25 when the open loop 
structural damping ratio is 0.02. Procedures. For 
other specified damping ratios or settling times 
are similar to the following example. Following 
the illustration of the controller design, the 
paper describes perturbation methods to seek 
other solutions that can lead to optimum design 
or other sought designs, to realize the same 
specified damping ratio. This procedure can be 
generalized to N degrees of freedom systems. 
Then, the paper discusses piezoelectric material-
based actuator design procedures to provide the 
needed control effort or authority and their 
experimental verification.  

The determination of the controller parameters 
is from the equation (6) with i=1, for a system 
with a single degree of freedom. By equating the 
coefficients of different powers of s of the 
characteristic equation of the starting system 
with second order controller to the powers of s 
of the characteristic equation of the coincident 
poles of the desired closed loop controller , one 
obtains the following sets of equations, without 
the subscript i. 



𝑠𝑠3 :  2𝜁𝜁𝑓𝑓𝜔𝜔𝑓𝑓=𝜁𝜁𝑠𝑠𝜔𝜔𝑠𝑠+𝜁𝜁𝑐𝑐𝜔𝜔𝑐𝑐                                 (7)                                                        

𝑠𝑠2: 2𝜔𝜔𝑓𝑓2 + (2𝜁𝜁𝑓𝑓𝜔𝜔𝑓𝑓)2 = 

              𝜔𝜔𝑠𝑠2 +  𝜔𝜔𝑐𝑐2 + 4𝜁𝜁𝑠𝑠𝜔𝜔𝑠𝑠𝜁𝜁𝑐𝑐𝜔𝜔𝑐𝑐 + abg𝜔𝜔𝑠𝑠2𝜔𝜔𝑐𝑐2  (8) 

s : 2𝜁𝜁𝑓𝑓𝜔𝜔𝑓𝑓3 = 𝜔𝜔𝑠𝑠2𝜁𝜁𝑐𝑐𝜔𝜔𝑐𝑐 + 𝜔𝜔𝑐𝑐2𝜁𝜁𝑠𝑠𝜔𝜔𝑠𝑠          (9) 
  

𝑠𝑠0: 𝜔𝜔𝑓𝑓4 = 𝜔𝜔𝑠𝑠2 𝜔𝜔𝑐𝑐2                                      (10) 
      

In these set of equations, we have controller 
design specified value of𝜁𝜁𝑓𝑓= 0.25; the structural 
damping ratio is assumed to be 𝜁𝜁𝑠𝑠=0.02; and 𝜔𝜔𝑠𝑠 
is assumed to be known. By using equations (7), 
(8) and (10), we solve for g, ( 𝜔𝜔𝑓𝑓/𝜔𝜔𝑠𝑠), (𝜔𝜔𝑐𝑐/𝜔𝜔𝑠𝑠) 
and 𝜁𝜁𝑐𝑐. Because the equations are nonlinear, we 
obtain three sets of solutions. 

( 𝜔𝜔𝑓𝑓/𝜔𝜔𝑠𝑠) = (I)1.0; (II) 0.004006;  (III) 24.960 
                                           (11)              

(𝜔𝜔𝑐𝑐/𝜔𝜔𝑓𝑓) = (I) 1.0;(II) 0.001605;  (III) 622.998 
                                           (12)              

𝜁𝜁𝑐𝑐 =      (I) 0.48; (II) 0.02;   (III) 0.02                                                                           
                             (13) 

By using the values of ( 𝜔𝜔𝑓𝑓/𝜔𝜔𝑠𝑠), (𝜔𝜔𝑐𝑐/𝜔𝜔𝑠𝑠) and 𝜁𝜁𝑐𝑐, 
from equations (11-13), equation (9) yields the 
value of g                  

g= (I) (0.2116/ ab𝜔𝜔𝑠𝑠2);   (II)-(386727/ ab𝜔𝜔𝑠𝑠2);   

                                      (III) - (0.9964/ ab𝜔𝜔𝑠𝑠2) 
                                            (14) 

After examining the three sets of solutions, it is 
seen that the closed loop frequencies and 
controller frequencies are significantly different 
from the structural frequency 𝜔𝜔𝑠𝑠, in the solution 
set 2 and 3. Also, the margin of stability, from the 
Routh-Hurvitz criteria are very small. Thus, the 
only feasible solution set is as follows: 

 

SET I: 

( 𝜔𝜔𝑓𝑓/𝜔𝜔𝑠𝑠) = 1.0 

(𝜔𝜔𝑐𝑐/𝜔𝜔𝑓𝑓) = 1.0 

𝜁𝜁𝑐𝑐 = 0.48 

g= (0.2116/ ab𝜔𝜔𝑠𝑠2) 

The following figures illustrate the effect of the 
designed controller parameters on damping the 
oscillations induced by a step input load, with 
initial damping ratio of 0.02. In figure2, the 
oscillations are due to a damping ratio of 0.02, 
without any controllers. 

 

            Figure 2: Oscillations due to step input, 
            𝜁𝜁𝑠𝑠=0.02 and no controller 

In comparison to Figure2, the figure 3 illustrates 
the effect of the controller set I. As c seen in the 
figure the settling time is significantly reduced 
and the oscillations are damped within few 
cycles. 



 

Figure 3: The Effect of Set I Acceleration 
Feedback Controller; 𝜁𝜁𝑓𝑓= 0.25; 𝜁𝜁𝑐𝑐 = 0.48 

To illustrate the effect of Set II and set III 
controllers, Figures 4 and 5 illustrate the effects 
of the controllers on the step input, with 
structural damping of 0.02. 

 

Figure 4: the Effect of the Set II Controller 

 

Figure 5: The Effect of the Set III controller 

As discussed before, the closed loop frequency 
and the controller frequencies are very different 
from the structural frequency in sets II and III. 
The stability margin is very small. To illustrate, 
the effect of small stability margin, we select the 
set III controller and change the gain g from “- 
(0.9964/ ab𝜔𝜔𝑠𝑠2)” to  - (0.996679/ ab𝜔𝜔𝑠𝑠2). The 
change in the effect of the controller is seen in 
the Figure 6. 

 

Figure 6: Sensitivity to Small Changes in the 
Gain in Set III controller 

Perturbations to Seek solutions Other Than the 
Solution with Coincident Closed Loop 
Frequencies: 

For the cases of designs of controllers, with 
specified closed loop damping ratios, we are able 
to obtain controller parameters without 
resorting to iteration. The resulting design 
procedure requires the assumption of coincident 
closed loop frequencies. The resulting solution 
may not be the desired controller or an optimum 
controller. To seek other controllers, including 
an optimum controller, subject to restrictions on 
the selected actuator, we propose perturbations 
from the acceptable result from the assumption 
of coincident closed loop frequency, such as, the 
set I controller in the studied example. Thus, 
𝜔𝜔𝑓𝑓 ,of set I controller, is replaced by (𝜔𝜔𝑓𝑓 +δ). 
Then, by equating the open loop characteristic 



transfer function with desired closed loop 
transfer function, the following equations are 
obtained to replace equations (7)  to (11). 

𝑠𝑠3 :  2𝜁𝜁𝑓𝑓𝜔𝜔𝑓𝑓= 𝜁𝜁𝑠𝑠𝜔𝜔𝑠𝑠 + 𝜁𝜁𝑐𝑐𝜔𝜔𝑐𝑐   
 (15) 

𝑠𝑠2: (2𝜁𝜁𝑓𝑓)2 (𝜔𝜔𝑓𝑓2 +  𝛿𝛿2 ) + 2 (𝜔𝜔𝑓𝑓2 −  𝛿𝛿2 )  = 

                  𝜔𝜔𝑠𝑠2 +  𝜔𝜔𝑐𝑐2 + 4𝜁𝜁𝑠𝑠𝜔𝜔𝑠𝑠𝜁𝜁𝑐𝑐𝜔𝜔𝑐𝑐 + 
abg𝜔𝜔𝑠𝑠2𝜔𝜔𝑐𝑐2                    (16) 

s : 4𝜁𝜁𝑓𝑓   (𝜔𝜔𝑓𝑓2 −  𝛿𝛿2)𝜔𝜔𝑓𝑓 = 𝜔𝜔𝑠𝑠2𝜁𝜁𝑐𝑐𝜔𝜔𝑐𝑐 + 𝜔𝜔𝑐𝑐2𝜁𝜁𝑠𝑠𝜔𝜔𝑠𝑠
       (17)   

𝑠𝑠0: (𝜔𝜔𝑓𝑓2 −  𝛿𝛿2)2 = 𝜔𝜔𝑠𝑠2 𝜔𝜔𝑐𝑐2    
       (18) 

Solutions to these equations, for different values 
of (δ/𝜔𝜔𝑠𝑠) , yield the following results: 

 

 

 

 

 

(δ/𝜔𝜔𝑠𝑠) =     0.1;   0.2 0.3 0.4 0.5         
`  (19) 

( 𝜔𝜔𝑓𝑓/𝜔𝜔𝑠𝑠) = 1.005 1.0198 1.044031.0770 1.118 
  (20) 

(𝜔𝜔𝑐𝑐/𝜔𝜔𝑓𝑓) = 1.0;     1.0        1.0       1.0 1.0 
  (21) 

𝜁𝜁𝑐𝑐 = 0.482 0.49   0.50.    0. 518  .539 0.54
 (  22) 

g= (0.2514/ ab𝜔𝜔𝑠𝑠2); 0.3708 
 0.56984 0.84852
 1.20688  (23) 

These solutions display a damping behavior 
similar to the effect of set I controller. The 

following figure illustrates the performance for 
(δ/𝜔𝜔𝑠𝑠) = 0.5, for a step input loading 

 

Figure 7: Damping with Perturbed Solution 
(δ/𝜔𝜔𝑠𝑠) = 0. 

.9. Optimal Solution: 

The perturbation method can used to seek an 
optimum solution that uses the lowest amount 
of energy to achieve the design-specified 
damping ratio. In the example of this paper the 
design-specified damping ratio is 0.25. Because 
the model in the paper assumes that the 
damping is linear viscous damping, the energy 
used by controller [12] is “πc𝜔𝜔𝑓𝑓 𝑋𝑋2” per cycle of 
harmonic excitation of amplitude X . In this 
expression c  is the design specified closed loop 
daming ratio.For any given amplitude the energy 
expended per cycle is proprtional to the closed 
loop frequency 𝜔𝜔𝑓𝑓 .  Thus the lowest 𝜔𝜔𝑓𝑓 decides 
the optimal solution. Equations (15 ) to (18) 
determine the the solutions for perturbatiins δ 
from 𝜔𝜔𝑓𝑓  of set I, for coincident closed loop 
frequencies. Equations (15) to (18) contain only 
𝛿𝛿2. Thus the solution is the same for both +δand 
–δ. 

Now, we examine the solutiions for different 
values of δ, as presented in (19) to (23). The 
lowest value of 𝜔𝜔𝑓𝑓 cor responds to the case of 
coincident closed loop frequency.. Thus the case 
of coincident closed l;oop frequency represents 



the optimal slution when we do not consider 
uncertainties. 

10. Application to a Simple Beam Finite 
Elkement Airframe Model 

Now, a simple beam finite element model ifpr a 
helicopter is considered. This is a modified 
version of Hsu and Peters model and includes 
higher harmonic loads. This is the same model 
that is considered in the papoere by Hanagud 
and Babu. The element properties, helocopter 
characteristics and non-dtructural masses are 
the same as those reported in the paper by 
hanagud and Babu. The natural frequencies are 
as follows. 

 

 

                   Figure 8 A four bladed Helicopter 

 

Rotor Propereties 

No. of Bldes    4 

Radius     20.8 ft 

Chord     1.56 ft 

Mass/unit length   0.283 
slug/ft 

Lift curvev slope   5.73  

Lock Number    6.53 

Rotor Speeed    33.62 
Rad/ sec 

Firs t non  rotating Frequency  10.08 
Rad/Sec 

Solidity     ).095 

 

 

 

 

 

 

 

Fus elge Mass Stiffness 

 

Elem.  Mass/ Mass Mom.   Bending  Torsional 

 /Length Moment 

No. Slugs/ft /length           Stiffnes    stifffness 

  (x100)               (𝑥𝑥107)   (𝑥𝑥107) 

                                     Sl/ft                   lb 𝑓𝑓𝑓𝑓2      lb 𝑓𝑓𝑓𝑓2 

1 1.57 8.38                   1.15         0.86 

2 5.76 20.94  2.88 2.16 

3 5.76 20.94  2.88 2.16 

4 12.56 38.74  5.33 4.00 

5 12.56 38.74  5.33 4.00 

6 3.14 15.70  2.16 1.62 

7 0.52 9.42  1.30 0.97 

8 0.52 5.23  0.72 0. 

9 0.42 4.19  0.58 0.43 

10 0.42 2.09  0.29 0.22 

 

 

 



 

Figure 9 Finite Elent Idealization 

The degrees of freedom at each of the node are 
vertical displacement, pitch angle and roll 
anmgle. The resulting airframe model has 33 
degrees of freedom. The mass and stiffness of 
the elements are as follows. The natural 
frequencies are as follows. 

 

 

 

 

 

 

 

 

 

 

 

Mode No. Frequency ( TYPE 

  Hz 

   4  8.33  1st Vertical  

Bending 

   5  16.59            2nd Vertical  

Bending 

   6  22.69  1st  Torsion 

   7  32.76  3rd Vertical  

Bending 

    8  32.95  2nd Torsion     

Without control, the modal daming is 2%. Using 
these results of frequencies , we can costruct the 
modal models for the structure and controllers, 
similar to equations (4) and (5), as follows. 

 𝜉𝜉𝚤𝚤 ̈ +2𝜁𝜁𝑠𝑠𝑠𝑠𝜔𝜔𝑠𝑠𝑠𝑠  𝜉𝜉𝚤𝚤 ̇  +𝜔𝜔𝑠𝑠𝑠𝑠
2 𝜉𝜉𝑖𝑖 = (𝑓𝑓𝑖𝑖(t)/𝑚𝑚𝑖𝑖) + 𝑔𝑔𝑖𝑖  𝜔𝜔𝑐𝑐𝑐𝑐𝜂𝜂𝑖𝑖; 

i=4 to 8      
  

For each mode, a second order controller is of 
the following form: 

 𝜂̈𝜂 𝑖𝑖 + 2𝜁𝜁𝑐𝑐𝑐𝑐𝜔𝜔𝑐𝑐𝑐𝑐 𝜂𝜂𝚤̇𝚤 + 𝜔𝜔𝑐𝑐𝑐𝑐
2 η =  𝜔𝜔𝑠𝑠𝑠𝑠

2 𝜉𝜉𝑖𝑖 ; i= 4  to 8 
     

It is sppecified that the closed loop damping 
should be 0.25. Then, we can use the previous 
results to find the controller parameters. 

( 𝜔𝜔𝑓𝑓𝑓𝑓/𝜔𝜔𝑠𝑠𝑠𝑠) = 1.0 

(𝜔𝜔𝑐𝑐𝑐𝑐/𝜔𝜔𝑓𝑓𝑓𝑓) = 1.0 

𝜁𝜁𝑐𝑐𝑐𝑐 = 0.48 

𝑔𝑔𝑖𝑖= (0.2116/ ab𝜔𝜔𝑠𝑠𝑠𝑠
2) 

For i= 4 to 8 

On the basis of the experience of the control of 
buffet induced vibrations, it is not necessary to 
Have 5 controllers. If we build controllers for 2 
or 3 dominant modes other modes will also be 
damped.  

To illustrate the power of this method of 
increasing the closed loop damping ratio or 
constant, let us consider just the case of mode 
no. 4 vertical bending and discuss the case of 
harmonic inputs, as expected in helicopter 
airframes. After controller effect the system has 
become, in this case one degree of freedom 
system with damping ratio of o.25 and natural 
frequency corresponding to 8.33 Hz. Even if the 
input frequency is at the natural frequency (this 



is not the usual case), the input amplitudes of 
f/m (N/kg ) of 1 is reduced 0.73 mm. If we are 
away from the resonant frequency the resulting 
amplitudes are much smaller. In practical cases, 
away from the natural frequency the input 
amplitudes are drastically reduced. This also 
avoids the requirement that the control signals 
should be carefully placed selected frequencies. 

 

The sensors need not be piezoelectric sensors. 
Accelerometers can used and located at 
locations not maximum accelerations. The 
actuators consist of piezoceramic stacks with an 
offset from the controlled surface to amplify the 
control forces and moments. Because 
piezoceramic stacks are subject to failure in 
bending, we designed an actuator assembly that 
prevents such failures. The design is similar to 
our previous design, with modifications to 
mount on the helicopter. The design is shown in 
the following sketch 

 

 

Figure 10 Offset Piezoceramic StackActuatot 

 

 

 

Figure 11 Offset Actuator on a Beam Structure 

 

 

 

Figure 12 Sketch of a Piezoceramic Stack 

11. Conclusions 

In this paper, we have discussed the design of 
second order controllers to control the airframe 
vibrations of a helicopter. Specifically the 
controllers can be designed to achieve a 
specified closed loop damping ratio or a settling 
time. The controller design also yields the 
needed control authority or control effort to 
obtain the specified closed loop damping ratio. A 
design of an offset piezoceramic stack assembly 
based actuator assembly is also presented, to 
increase the control authority. The next level of 
study is to test the controllers design on a full 
scale helicopter. 
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