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Abstract

We designed and tested the prototype of an adaptive Mast Vibration Absorber (MVA) which can be tuned at different fre-
quencies, aimed at use on variable rpm rotorcraft. The proposed solution offers a monolithic design with virtually no moving
parts. The resonance frequency is tuned by controlling the compressive load in the MVA support beam; compression tends
to destabilize a beam and thus reduces its natural frequency. With no need for reconfiguration mechanisms involving mass
displacement, the proposed approach preserves the typical rugged design and very low damping characteristics of stan-
dard fixed-frequency MVAs. We designed, built and tested a laboratory demonstrator broadly representative of a real
application in terms of dynamical properties and geometrical constraints, aimed at verifying the concept and evaluating
practical implementation issues such as system efficiency, size and actuation requirements.

1 INTRODUCTION

A mast vibration absorber (MVA) is a mass damper
mounted on the N-bladed main rotor of a helicopter, and
rotating with it, aimed at reducing the in-plane components
of the vibratory loads before they are transmitted through
the hub to the helicopter cabin.

The main function of the MVA is to create an antireso-
nance in correspondence of its natural frequency, which is
tuned to the same N/rev frequency of the disturbance that
needs to be attenuated in the fixed frame. Figure 1 shows
the MVA installation on the main rotor of the AW139 heli-
copter.

Figure 1: AW139 MVA assembly

It shall be remarked that the anti-resonance tuning
above described is strictly optimal only for a one degree
of freedom system excited by a single loading component,
which is not what happens on a helicopter rotor. In-fact the

rotor generates three force components and three moment
components on the hub, each with different phases and am-
plitudes. Under these circumstances, the MVA tuning at the
N/rev might not be necessarily the best choice, but simply a
trade-off between simplicity and performance.

Considering the in-plane components of the vibratory
loads generated by an N-bladed rotor spinning at 1/rev, we
find that the harmonics which excite the MVA in the rotating
frame are those at (N-1)/rev and (N+1)/rev (and multiples).
However, moving the perspective to the fixed frame, we ob-
serve a frequency shift so that the excitation is transmitted
to the helicopter at N/rev (and multiples).

This fact can be better visualized if we consider the fol-
lowing equivalent model of the MVA. Let’s assume the sta-
tionary rotor case; the inertial force generated by the MVA
mass oscillating at N/rev in the xy rotor plane is equivalent
to the combined effect of two eccentric masses spinning
around the rotor mast in opposite directions at +N/rev and
-N/rev respectively.

Under these circumstances, the force vector describes
an elliptic path on the xy plane, degenerating to a straight
line if the masses and their eccentricities are equal. Intro-
ducing the rotor rotation at 1/rev, one mass is spinning in the
same direction as the rotor, while the other in the opposite
direction, thus one at (N+1)/rev, the other at (N-1)/rev.

Plotting the path of the resultant force vector we observe
a figure with N lobes which graphically shows the N/rev ex-
citation exerted by the two-mass system, and thus by the
MVA, on the fixed frame. Figure 2 illustrates the MVA path
evolution during one rotation of the rotor.

Like all tuned mass dampers, MVAs are highly effective
only at the tuning frequency, while their effect becomes poor
or negligible outside a very narrow band. An MVA is pro-



vided with as little damping as possible in order to maximize
its efficiency at the tuning frequency of interest, effectively
operating as a notch filter.

Figure 2: MVA oscillation path after 1/5th, 2/5th, 3/5th and 4/5th of
a full rotation of the rotor spinning at ωR

As a simple illustrative example, Figure 3 shows the re-
sponse of a single degree of freedom tuned mass damper
which is interpreted here as a schematic model of a notional
helicopter rotor head and associated MVA. The key param-
eters are:

m = 400 kg: mass of rotor + hub + mast
md = 20 kg: mass of damper
ξ = 0.015: rotor structure damping ratio
ξd = 0.001: MVA damping ratio
f = 15 Hz: structure frequency (e.g. 1st mast harmonic)
fd = 24.9 Hz: damper tuning frequency
p = 6 kN: amplitude of rotor forcing load
1/rev = 4.98 Hz (298.8 rpm)
N = 5 blades

Under the above circumstances, a perfectly tuned MVA
is able to cancel the rotor vibration with an oscillation am-
plitude of about ± 12 mm. However, with a de-tuning of
even a fraction of Hz the benefits vanish; the MVA can ac-
tually amplify vibration if its displacement amplitude is not
restrained through an endstop.

Current MVA devices are designed as simple cantilever
beam systems with an end fixed at the rotor hub and the
oscillating mass on the opposite end.

Figure 3: Damped response of a schematic rotor-head

The system is very simple and effective, however its ma-
jor limitation consists in its inability to adjust to a chang-
ing forcing frequency, a need which naturally arises in a
variable-rpm helicopter. Various active vibration reduction
solutions have been explored to overcome this limitation (an
overview is contained in [1]).

A device which effectively represents an active ana-
logue of a tuned damper is based on counter-rotating
masses, essentially centrifugal force generators which can
produce force vectors in the rotor plane. However, the
higher complexity, cost and maintenance requirements of
these systems represent possible areas of concern.

The hub of a helicopter constitutes a very harsh environ-
ment for any vibration suppression device. This is primar-
ily a consequence of the high vibration amplitudes neces-
sary for an effective vibration damping function, which can
quickly lead to unacceptably high levels of fatigue damage.

An almost intuitive way to design a tunable device would
consist in providing some form of variable geometry fea-
tures, e.g. through moving masses and associated sliding
contact surfaces, guides or hinges. However, in general
these mechanisms would lead to fretting, backlash and thus
fatigue in a high-g vibratory environment, with an associated
increase in damping and reduced effectiveness.

A monolithic construction with no moving parts is there-
fore a desirable feature for any hub-mounted vibration sup-
pression system.

2 PROPOSED SOLUTION

A possible alternative approach being proposed here con-
sists in a tunable adaptive MVA system, which combines a
relatively simple monolithic design, lack of rotating inertial
masses and an intrinsic ability to cope with variable rpm.

The goal is achieved through a design whereby the MVA
support beam can be subjected to compression / tension,
thus altering its fundamental frequency and effectively al-
lowing the tuning of the beam. Compressive loads have
a destabilizing effect and thus reduce the resonance fre-
quency while tension has a stabilizing effect and increases
the frequency (as is well known in the field of string musical
instruments).



The above task is somehow simplified in the context of
the helicopter MVA application because the tuning range re-
quired to cope with variable rpm is not very large. As an ex-
ample, the variable-rpm helicopter AW169 operates within
a 7% rpm range, from 96% to 103% of nominal rpm.

Figure 4 shows a schematic cantilever beam system
with tip mass under compressive load.

Figure 4: Cantilever beam with tip mass under constant axial load

With reference to Figure 4 and ignoring the axial load P,
the frequency of the beam’s 1st bending mode is given by

ω =

√
3EJ
MT l3

Where EJ is the beam’s bending stiffness
Accounting for the distributed mass of the beam, as-

suming a linear mass density ρ, the expression is modified
as [2]

ω =

√
3EJ

(0.2235ρl +MT )l3

A change of ω can be achieved through the applica-
tion of a preload on the beam; with compression the fre-
quency decreases while if tension is applied the frequency
increases. The intuitive explanation is that a compressive
load tends to oppose the elastic restoring moment. At
the limit, the frequency tends to zero when the compres-
sive load P reaches the critical (Euler) buckling load which
destabilizes the cantilever beam

Pcr =
π2EJ
4l2

2.1 Remarks on Alternative Solutions

Looking at alternative tuning solutions able to preserve
the monolithic requirement, one could in principle consider
some form of variable stiffness, for example using magne-
torheological (MR) fluids or piezo-patches embedded in the
MVA support beam. MR fluid-filled tunable beams have
been demonstrated [3] [4], furthermore MR fluid dampers are
being designed for civil applications [5]. However this ap-
proach would not be suitable for the MVA case where we
need a combination of high stiffness in a thin element. MR
fluids properties [6] [7] in terms of Young’s modulus (∼10
MPa) and yield stress (50-100 kPa) are much too low to
have a noticeable effect on the support beam made of high-
strength steel (200 GPa Young’s modulus, >1000 MPa yield

stress). Filling the MVA support tube with MR fluid would al-
ter its bending stiffness by a negligible amount.

On the other hand, piezo patches embedded in the sup-
port beam material could conceivably generate a pre-stress
state and thus somehow alter the dynamic properties of the
element; however piezo-ceramic materials are notoriously
brittle and would represent a weak area under repeated vi-
brations.

In light of the above observations and considering the
specific application at hand, our conclusion is that the only
practical way to obtain a useful frequency variation in a
monolithic, highly stiff MVA device is through a ”brute force”
approach, i.e. applying rather large axial loads, as will be
described in the paper.

2.2 End Mass Effects

The scheme presented above is strictly valid in the case
of a point mass attached to the free end of the cantilever
beam. The reality of a typical Mast Vibration Absorber devi-
ates from this idealized situation due to the relatively large
mass and the associated rotational inertia which cannot be
completely neglected, despite the use of high density mate-
rials such as tungsten having ρ = 19250 kg/m3, almost 2.5
times higher than steel.

Figure 5: Replacement of end mass and inertia with effective con-
centrated mass at beam tip

Assuming the scheme of Figure 5, an effective lumped
mass which preserves the frequency response characteris-
tics of the system is computed as presented in [8]

(1) MT = M
[
(1+3e)+

9
4
(e2 + JM)

]
where M is the mass at the free end of the cantilever,

with eccentricity e and inertia JM , and defining the associ-
ated non-dimensional parameters e = e/l, JM = JM/Ml2.

3 THEORETICAL JUSTIFICATION

3.1 Free Vibration in the Euler-Bernoulli
Beam

Looking at the analytical model of the cantilever beam with
tip mass and compressive load [9] [10] [11] illustrated in Figure
4, we define the following variables:



EJ: beam bending stiffness
ρ: linear density of the beam (mass per unit length)
l: beam length
P: axial load
k: axial load parameter,

√
P/EJ

k: nondimensional axial load parameter,
√

Pl2/EJ
β: frequency parameter, 4

√
ρω2/EJ

β: nondimensional frequency parameter, βl
MT : tip effective mass, inclusive of inertia effect
MB: total mass of the beam, ρl
ηT : ratio of tip mass to total beam mass, MT/MB
v(x): beam displacement
v(x): nondimensional beam displacement, v/l
x: lengthwise coordinate
x: nondimensional lengthwise coordinate, x/l
ω: circular frequency of vibration

Let’s assume a uniform beam of linear density ρ in free
vibration and under the axial load P as illustrated in Figure
6

Figure 6: Coordinate system

Figure 7: Cantilever beam with tip mass under constant axial load

Let V (x, t) be the displacement of a point at coordinate
x along the beam neutral axis. Considering the beam ele-
ment illustrated in Figure 7 and the equilibrium of forces and
moments, two equations can be written

(2)
∂Q(x, t)

∂x
−ρ

∂2V (x, t)
∂t2 = 0

(3)
∂M(x, t)

∂x
+P

∂V (x, t)
∂x

+Q(x, t) = 0

The bending moment as a function of curvature can be
expressed as

(4) M(x, t) = EJ
∂2V (x, t)

∂x2

By combining equations 3 and 4 it is possible to write
an expression for shear

(5) Q(x, t) =−
[

EJ
∂3V (x, t)

∂x3 +P
∂V (x, t)

∂x

]
Substituting 5 in 2, the resulting equation of motion of

the beam in terms of the displacement V (x, t) is obtained

(6)
∂4V (x, t)

∂x4 +
P

EJ
∂2V (x, t)

∂x2 +
ρ

EJ
∂2V (x, t)

∂t2 = 0

We assume a harmonic solution for the displacement,
shear and moment, thus having the form:

(7) V (x, t) = v(x)eiωt

(8) Q(x, t) = q(x)eiωt

(9) M(x, t) = m(x)eiωt

After substitution of 7 in 6, then dividing by eiωt and
defining

k2 =
P

EJ
β

4 =
ρω2

EJ
The equation of motion 6 becomes

(10)
d4v(x)

dx4 + k2 d2v(x)
dx2 −β

4v(x) = 0

And the time-independent expressions for shear and
moment are

(11) m(x) = EJ
d2v(x)

dx2

(12) q(x) =−EJ
[

d3v(x)
dx3 + k2 dv(x)

dx

]
Furthermore, by defining

x =
x
l

v =
v
l

k = kl β = βl

equations 10 11 12 can be transformed into a nondi-
mensional form

(13)
d4v(x)

dx4 + k
2 d2v(x)

dx2 −β
4
v(x) = 0



(14) m(x) =
EJ
l

d2v(x)
dx2

(15) q(x) =−EJ
l2

[
d3v(x)

dx3 + k
2 dv(x)

dx

]
The differential equation 13 admits the following general

solution containing four constants A, B, C and D,

v(x) = Acosh(α1x)+Bsinh(α1x)(16)

+C cos(α2x)+Dsin(α2x)

Where

α1 =

√√√√
−k

2

2
+

√
k

4

4
+β

4

α2 =

√√√√k
2

2
+

√
k

4

4
+β

4

The boundary conditions for the beam clamped at one
end are

{
v(x) = 0 for x = 0
dv(x)

dx = 0 for x = 0

Applying the clamped end boundary conditions to equa-
tion 16 and knowing that

dv(x)
dx

= Aα1 sinh(α1x)+Bα1 cosh(α1x)(17)

−Cα2 sin(α2x)+Dα2 cos(α2x)

We obtain the following relations which allow evaluation
of two of the four constants{

A+C = 0
α1B+α2D = 0

Thus

{
C =−A
D =−α1

α2
B

The resulting solution for the beam clamped at x = 0 is

v(x) = A[cosh(α1x)− cos(α2x)](18)

+B[sinh(α1x)− α1

α2
sin(α2x)]

Figure 8: Equilibrium of forces at beam tip

The free end boundary condition at the beam tip (x = 1)
requires that both the bending moment and the shear force
vanish; looking at Figure 8 and accounting for the concen-
trated mass MT at the tip this implies

q(1)−MT ω
2v(1)l = 0

Since MT = ηT MB and MB = ρl we obtain

q(1)−ηT ρl2
ω

2v(1) = 0

By using equation 15

−EJ
l2

[
d3v(1)

dx3 + k
2 dv(1)

dx

]
−ηT ρl2

ω
2v(1) = 0

and observing that ρl2ω2 = β
4
EJ/l2 we obtain

EJ
l2

[
d3v(1)

dx3 + k
2 dv(1)

dx

]
+

ηT β
4
EJ

l2 v(1) = 0

simplifying

d3v(1)
dx3 + k

2 dv(1)
dx

+ηT β
4
v(1) = 0

we can thus summarize the two boundary conditions at
the free end

{
d2v(x)

dx2 = 0 for x = 1
d3v(x)

dx3 + k
2 dv(x)

dx +ηT β
4
v(x) = 0 for x = 1

Applying the boundary conditions to equation 18 we ob-
tain two homogeneous equations in A and B



A(α2
1 coshα1 +α2

2 cosα2)

+B(α2
1 sinhα1 +β

2
sinα2) = 0

A[α2
2 sinhα1−β

2
sinα2 +α2ηT β

2
(coshα1− cosα2)]

+B[α2
2 coshα1 +α2

1 cosα2

+ηT β
2
(α2 sinhα1−α1 sinα2)] = 0

This is a homogeneous system of two algebraic equa-
tions in A and B; in order for the system to have non-zero
solutions its determinant shall be zero, which leads to the
associated characteristic equation expressing the linkage
between the axial load (captured by k) and the frequency of
vibration (captured by β):



−2β
4
+β

2
k

2
sinhα1 sinα2− (2β

4
+ k

4
)coshα1 cosα2

+ηT β
2
(α2

1 +α
2
2)(α1 coshα1 sinα2

−α2 sinhα1 cosα2) = 0
(19)

Equation 19 is plotted in Figure 9 for different values of
the parameter ηT

[9], with positive P denoting compression

Figure 9: Frequency dependence on axial load for cantilever beam
with tip mass

3.2 The Effect of Oblique Axial Load

Let’s now consider the case when the axial load is not par-
allel to the undeformed beam axis [9] but oscillates with the
beam, always directed towards a point along the beam axis.
Under these assumptions the loading condition at the tip
end is represented by Figure 10.

Figure 10: Cantilever beam with tip mass under oblique axial load

Figure 11: Equilibrium of forces at beam tip under oblique axial
load

From Figures 10 and 11, the resulting boundary condi-
tion at the free end becomes

q(1)−MT ω
2v(1)l +Pv(1)γ = 0

where γ = l/L and L is the distance from the tip to the
vertex of the oblique load, which is the point where its direc-
tion crosses the beam axis.

Knowing that

P =
k

2
EJ
l2

We observe that the effect of the oblique load is to mod-
ify the second boundary condition at the free end through
the factor k2γ

{
d2v(x)

dx2 = 0 for x = 1
d3v(x)

dx3 + k
2 dv(x)

dx +(ηT β
4− k

2
γ)v(x) = 0 for x = 1

Leading to the reformulation of the characteristic equa-
tion

−2β
6
+β

4
k

2
sinhα1 sinα2−β

2
(2β

4
+ k

4
)coshα1 cosα2

+(ηT β
4− k

2
γ)(α2

1 +α
2
2)(α1 coshα1 sinα2

−α2 sinhα1 cosα2) = 0
(20)

Equation 20 is plotted in Figure 12 for different values of
the parameter ηT

[9], assuming the condition where the load
P is directed towards the beam’s fixed end, thus with γ = 1.



Figure 12: Frequency dependence on oblique axial load for can-
tilever beam with tip mass (γ = 1)

The oblique compressive load case is less efficient than
the parallel load case in terms of its frequency reduction
capability. This is because the oblique force has a com-
ponent which tends to re-stabilize the beam, thus altering
the boundary condition at the free end. The new boundary
condition reduces the beam’s effective length factor thus in-
creasing its critical load, resulting in reduced tuning effec-
tiveness.

This fact is illustrated in Figure 13 where we plot the fre-
quency variation as a function of the load for different values
of γ but this time normalizing the load to the critical load P0

cr
of the case γ = 0, i.e. with vertical load.

Figure 13: Loss of effectiveness of axial load frequency tuning with
increasing values of γ; here we plot on the x-axis the ratio of the
axial load to the critical load associated with the vertical load case
with γ = 0 (all cases plotted have ηT = 20)

Clearly, when γ→ 0 the loading condition converges on

the parallel load case and equation 20 becomes 19.
The oblique axial load case of Figure 10 is of practical

interest because it can be more easily implemented in a real
device, e.g. as illustrated in Figure 14 where a tubular ele-
ment contains a string-like tension link oscillating within the
tube without contact.

This concept can work under the assumption of small
vibration amplitude, which is consistent with an MVA case.

Figure 14: Practical implementation of the oblique loading scheme

3.3 The Effect of Centrifugal Acceleration

Let’s assume the beam is rotating around its neutral axis
with circular frequency ωr; we neglect the centrifugal effect
on the distributed mass of the beam because in the case
under study the tip mass is at least an order of magnitude
larger. Thus the tip mass is subject to the centrifugal force

F = MT ω
2
rV (l, t) = MT ω

2
r v(l)eiωt

The scheme is illustrated in Figure 15

Figure 15: Equilibrium of forces at beam tip under oblique axial
load and centrifugal effect

We define the non-dimensional parameter

β
4
r =

ρω2
r

EJ
with βr = βrl

We thus obtain a new tip load component similar in form
to the inertial component considered previously. The mod-
ified tip loading conditions lead to a modified characteris-
tic equation accounting both for the oblique axial load and
for the centrifugal acceleration at the tip mass due to the
beam’s rotation around its axis

−2β
6
+β

4
k

2
sinhα1 sinα2−β

2
(2β

4
+ k

4
)coshα1 cosα2

+(ηT (β
4
+β

4
r )− k

2
γ)(α2

1 +α
2
2)(α1 coshα1 sinα2

−α2 sinhα1 cosα2) = 0
(21)



4 EXPERIMENTAL VERIFICATION

An experimental device was designed and built, to be used
as a laboratory demonstrator of a helicopter TMVA. A sec-
tion view of the device’s layout is illustrated in Figure 16,
while Figures 17, 18 illustrate the TMVA demonstrator dis-
assembled and assembled. The as-built device character-
istics were:

Support beam: steel tube Øext = 28.7 mm, thk = 4.85 mm
ρ = 2.83 kg/m
l = 321 mm
MB = 0.91 kg
MT = 15.9 kg (effective mass incl. inertia effect)
ηT = 17.48

which lead to the expected free vibration frequency ω =
173.15 rad/s = 27.56 Hz.

A certain discrepancy between predicted and measured
frequencies can be explained both by uncertainties in the
material Young’s modulus and by the (small) elasticity of the
test rig. Specifically, the latter was slightly different for hori-
zontal and vertical vibrations, due to the particular geometry
of the installation.

Tension was provided through a high-strength steel ca-
ble of the type used for lifting equipment (Ø = 8 mm) with
threaded (M12) terminals, as illustrated in Figures 18 and
19.

In order to reduce the angular oscillation of the cable,
and thus approach the ideal case where the compressive
force is parallel to the undeformed beam axis, the cable
length was set as twice that of the cantilever beam, lead-
ing to a nominal γ = 0.5. Figure 20 shows the device on
its test rig, complete with a 3-axis accelerometer on the tip
mass.

For simplicity, tension was applied by manually tight-
ening a nut on the threaded cable terminal with a torque-
wrench, and a load cell was used to measure the applied
load.

To prevent uncontrolled vibration of the cable inside the
TMVA support tube, it is necessary to avoid resonance be-
tween the cable 1st harmonic and the oscillatory motion of
the TMVA. The cable characteristics are reported below:

L = 0.64 m
Ø = 8 mm
ρc = 0.32 kg/m (linear density)

The frequency of the 1st harmonic can be obtained by
Mersenne’s law for a stretched string (used for the tuning of
musical instruments):

(22) f =
1

2L

√
F
ρc

where F is the tension in the string.

Applying 22 to our cable geometry leads to the need for
F ≥ 500 N to avoid having f too close to the 27.56 Hz fre-
quency of the forcing oscillation. At the opposite extreme, a
value of F = 35 kN leads to f = 258 Hz.

Figure 16: Scheme of a tunable MVA for ground test concept
demonstration

Figure 17: The disassembled TMVA demonstrator

Figure 18: The assembled TMVA demonstrator and the tension
cable with terminals



Figure 19: Close up of a threaded terminal

Figure 20: The TMVA on the test rig

Figure 21 illustrates the accelerometer installed on the
tip mass, with indicated the vertical and horizontal acceler-
ation components (these would represent the in-plane vi-
bration directions in a helicopter rotor application). Figure
22 illustrates the opposite end of the TMVA, with the nut
used for torque application and the piezoelectric load cell
between washers.

Figure 21: 3-axis accelerometer on tip mass

Figure 22: View of the piezoelectric load cell and the torque nut on
the cable terminal

Figure 23: FRF plots for the various load cases analyzed

A rap-test was conducted with the use of an instru-
mented hammer. The direction of impact was not precisely
controlled, resulting in the tip mass response having both a
vertical and a horizontal component. The slight difference in
stiffness of the test rig in the two directions led to resulting
small differences (0.07 - 0.10 Hz) in the associated char-
acteristic frequencies. This was evident in the frequency
response function (FRF) plots where two closely spaced
peaks are clearly visible for each value of tension load, see
diagrams in Figure 23.

Recall that FRF is defined as the ratio of the complex
spectrum of the response to the complex spectrum of the
excitation

(23) FRF = H( f ) =
X( f )
F( f )

Table 1 shows the data points from the TMVA tests. The
data confirm that the relation between the applied torque
T , and the axial load P follows the typical formula used for
bolts:

T = k f PD

Where D is the bolt thread diameter and k f is a factor
dependent on friction. In our case we observed k f = 0.16,
a value typical of lubricated contact.

More importantly, the data show that a 2 Hz frequency
variation was achieved at a compression load of 45 kN, with
virtually no impact on the system’s damping ratio ξ, which



remained very low throughout the test and unaffected by the
tuning mechanism.

Figure 24 overlays the results of the experimental test
with the theoretical predictions for γ = 0.5 and for γ = 0.7.
Figure 25 shows a close-up of the previous plot in the load
range explored, which is approximately linear.

Table 1: Experimental results

Torque Load Elong. Freq. Damping
Nm N mm Hz %

1.0 500 0.0 27.38 0.06
11.5 6000 1.1 27.16 0.05
23.0 12000 2.0 26.91 0.06
34.6 18000 2.8 26.66 0.08
46.1 24000 3.2 26.34 0.05
57.6 30000 3.9 26.09 0.07
63.4 33000 4.2 25.94 0.05
69.1 36000 4.9 25.84 0.07
76.8 40000 5.1 25.56 0.05
86.4 45000 5.5 25.41 0.07

The plot shows that the experimental data are in agree-
ment with the curve γ = 0.7. This can be explained consider-
ing that the steel cable, despite its flexibility, cannot behave
as an ideal string-like element. The curvature radius of the
cable at the crimped terminals reduces its effective length
and thus increases the value of γ, resulting in a reduction
of the frequency-tuning capability. The effect is depicted in
figure 26 for clarification. A better implementation would re-
quire switching from a conventional steel cable to a carbon
fiber cable of the type used for special lifting applications.

Figure 24: Frequency shift as a function of axial load: comparison
of experimental data with two analytical cases (γ = 0.5 and γ = 0.7)

This new tension element would combine higher
strength, reduced thickness and increased bending flexibil-
ity, making it much more similar to the ideal string of the

analytical solution. We expect that, with these improve-
ments, the frequency vs load plot would approach much
more closely the curve for γ = 0.5, thus allowing the same
2-Hz tuning range with a tension load of 35 kN rather than
45 kN as was the case of our experiment.

Figure 25: Frequency shift as a function of axial load: experimen-
tal data match the analytical case for γ = 0.7

Figure 26: Bending curvature at the tension link terminals reduces
the offset and thus the destabilizing bending moment of the axial
load P (the dotted line is the ideal case for a string-like element
having only tensile axial stiffness)

The above geometry and dynamical properties were de-
signed to provide useful vibration amplitude at the tip, this



feature being directly linked to the force generation capabil-
ity of the vibration absorber. The 5.5 mm gap between the
Ø 8 mm cable and the Øint 19 mm tube is sufficient to ac-
commodate a tip vibration amplitude of over±9 mm without
contact, as illustrated in Figure 27. Under these conditions
the cable oscillates by a mere ±0.8 deg.

Figure 27: Profile of the deflected TMVA tube and inner cable un-
der a 9 mm tip displacement (horizontal coordinate is amplified
10X for clarity)

The resulting inertial force amplitude is computed as

d =±9 mm (tip vibration amplitude)
a = ω2d =±27.5 g (tip acceleration at 27.56 Hz)
F = MT a =±4290 N (inertial force)

5 CONCLUSIONS AND NEXT STEPS

The experimental setup described in this paper is broadly
representative of a rotorcraft application in terms of dynamic
characteristics, tuning range, overall geometry, size and
mass. However, a real installation would require substan-
tial improvements in several areas.

First of all the MVA support beam cannot be a constant
cross section tube but shall be tapered for stress optimiza-
tion. In the experiment described it was natural to adopt this
simplification because it is the only configuration for which
a rigorous analytical solution of the characteristic equation
can be obtained with reasonable simplicity. Just by adding

a linearly tapered section the mathematical complexity in-
creases sharply, with no real benefit in terms of proving the
principle.

Assuming an operational tip load F = 4290 N (corre-
sponding to a peak acceleration of 27.5 g for the 15.9 kg
mass), our MVA demonstrator design would lead to a nom-
inal bending stress (i.e. without considering stress concen-
tration factors) of ±734 MPa at the beam root, well above
the fatigue limit of the typical materials used for this applica-
tion (∼500 MPa for stainless steel 17-4 PH). While this was
acceptable for test purposes, obviously the detailed design
will require finite element modelling in order to converge on
a balanced configuration ensuring optimized stress distribu-
tion and at the same time adequate stiffness characteristics
allowing for frequency tuning with the lowest possible com-
pression loads.

In the demonstrator, the axial stress resulting from a
pre-compression load of 45 kN was -124 MPa. This com-
pression stress is a side benefit because it tends to improve
fatigue life, which represents a critical issue in MVA design.
Obviously, only through a detailed assessment of the ac-
tual MVA duty cycles one can evaluate the fatigue life credit
which could be achieved.

A second crucial point, as was briefly mentioned earlier,
is the need to use the most efficient tension element. This
means a tension link which behaves as closely as possible
as a perfect string with no bending stiffness, so that during
vibration it does not introduce unwanted effects, i.e. mo-
ments and curvatures which degrade the frequency-tuning
effect for a given axial load.

A further point to be addressed is the adoption of a pow-
ered actuation for the axial load application. This could be
relatively easily provided through a servo unit combining an
electrical motor with a planetary gearbox for torque amplifi-
cation; an example is illustrated in Figure 28.

Another remark stems from the observation that the
system achieves frequency tuning through the modulation
of a load state in the TMVA. This fact could be exploited
by an alternative actuation concept where the actuator re-
sides in the fixed frame and the load is transferred to the
rotating frame through a thrust bearing. This arrangement
would avoid the need to transfer electrical power to the rotor
through slip rings.

Finally, as far as control is concerned, a relatively sim-
ple controller would read the rpm (and thus the N/rev fre-
quency) and then adapt the TMVA accordingly by adjusting
the actuator torque until the load cell reading matches the
required value from the calibration curve. The rpm value is
readily available on helicopters through an encoder.

The servo actuator could be powered through a slip-
ring, a rechargeable battery or possibly even through an
energy harvester located on the MVA mass.

MVAs, by their very nature, are continuously subjected
to high accelerations in the 20-30 g range, thus they repre-
sent an ideal environment e.g. for a piezo harvester, which
could extract significant vibration energy to charge a battery
or supercapacitor.



The energy harvesting concept could be well suited to
this application especially if we consider the peculiar nature
of the duty cycles. In-fact the TMVA would need to be ac-
tuated only occasionally, through power bursts applying or
releasing torque when the mission profile dictates a change
of rotor rpm, thus with low actuation frequency.

Figure 28: Compact high-torque servo actuator

Figure 29: Scheme of tunable MVA installed on rotor mast

Figure 29 illustrates a notional installation on a rotor
mast, complete with servo actuator.

In summary, the illustrated system would offer fre-
quency tunability and rapid response in a relatively simple
design.

The concept of the TMVA has been translated into a
European patent filing (EP16156780.5) [12].
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