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This article presents the work in progress at ONERA for the numerical prediction of dynamic stall solving the

Reynolds-averaged Navier-Stokes equations. Two numerical methods are under development.

The first one is based on a Jameson-type scheme with a fourth-stage Runge-Kutta time stepping integration and

makes use of the implicit residual smoothing technique. To assess the method, the eflect of the time step and the effect of
the grid on the numerical predictions, several computations have been performed for a deep stall test case using either the
Baldwin-Lomax turbulence model or the k — ¢ Launder-Sharma turbulence model.

The second method stands on the dual-time stepping technique. Preliminarvy results are presented for two test cases

of validation - an unsteady channel flow and an airfoil oscillating in pitch - providing a comparison of the efficiency of the
two mumerical methods.
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NOTATIONS

j dynamic viscosity
P density
SPeeq of sound T dual time
alrfo_ll chord T stress tensor
specific heat at con#ant pressure & heat flux vector
total energy per unit volume W pulsation of the oscillating motion
frequency 0 vector of the angular velocity
total enthalpy
identity tensor Subscripts
reduced frequency
turbulence kinetic energy € inviscid value
Mach number i stagnation value
outward normal to the surface t turbulent value
static pressure v viscous value
Prandt] number o0 upstream value
E:;SZISIZ txil:ni)s:;mon Mathematical notations
grid velocity A vector product
surface element & tensor product
time
statlc temperature
vector of the source term INTRODUCTION
vector of the absolute velocity
DoV nt
: v:iil;l;: ZF lti::ibsolute conservative unknowns Dynamie stall appears on tbe retreatir'lg blade of
a rotor and may lead o a massive separation on the
incidence angle - upper surface of the blade. Although this phenomenon
turbulence energy dissipation has been known for a long time, it is always a major
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challenge for helicopter design since, for instance, mo-
ment stall can greatly affect the fiight performance of a
helicopter and reduce the flight enveloppe. As a mat-
ter of fact, a lot of experimental and numerical work
lras been devoted to this problem.

Since the work of AMehta (1], many computations
of the 2D unsteady Reynolds-averaged Navier-Stokes
equations have been performed. According to these
numerous works ([2]-{18]). the numerical prediction of
dynamic stall raises many quesiions.

The first one is the turbulence modelling. The
Baldwin-Lomax [19] algebraic turbulence model has
been extensively used over the vears because of its sim-
plicity and also, in order to test the numerical meth-
ods. However, it 1s well-known that this model cannot
eive a correct description of the massive separation oc-
curing on the upper surface. Computations involving
one- and two-equations turbulence models have also
been done [3, 5, 6, 10, 12, 14, 16, 17, 18]. As expected,
a more compiex turbulence model may improve the
computation of the dynamic stall but the quantitative
prediction of the phenomenocn still seems out of reach.
Tightly linked to the turbulence problem is the tran-
sition prediction. Although the influence of the tran-
sitlon of the boundary layver may be dramatic, most
of the Navier-Stokes computations deal with a fully
turbulent fow. Only Ekaterinaris ef.al. [12, 16] have
proposed a transition eriteria which is based on experi-
mental knowledge of the dynamic stall. The transition
onset is immediately downstream of the pressure peak
on the upper surface. Their results clearly demonstrate
the influence of transition on the numerical prediction
of dynamic stall.

The last question is relative to the numerical method.
Due to the unsteadiness of the flow and to the low
reduced frequency involved, the need for an efficient
method seems clear. The requirement for an im-
plicit method 1s quite strong because, with an ex-
plicit method, the choice of the time step may be
restricted by stability considerations rather than by
time accuracy. A first possibility consists in using a
factored /unfactored scheme with or without Newton
subiterations. These subiterations remove the Hneari-
sation or the factorisation errors. Another choice is
based on the dual-time stepping method [20] allow-
ing the use of multigrid technique, local time stepping
and implicit residual smoothing ~ techniques which
are fully operational for steady-state consitions — along
with a second-order time discretisation.

The aim of the paper is to present the two nu-
merical methods developed at ONERA in the CA-
NARI code for predictions of dynamic stall. The first
method - which we will call Basic Numerical Scheme

— corresponds to a Jameson scheme with a -lth-stage
Runge-KNutta time-stepping integration using a cell-
centred finlte-volume discretisation.  The Baldwin-
Lomax medel and the & —¢ Launder-Sharma model are
retained for the turbulent simulations. In particular,
the algebraic model has aliowed to test the numerical
method and to study the influence of the grid and of
the time step on the numerical predictions. All the re-
sults have been abrained on a deep stall test case for
the NACAD012 airfoil [21].

The other method is the dual-time stepping method.
For the validation stage of this latter method. two test
cages have been retained. "The frst test case corre-
sponds to an unsteady channel flow and the numerical
simulation 1s a Navier-Stokes computation using the
algebralc model of Michel et al. {22]. In this case, the
grid is motionless. The second test case concerns a
NACAOQ012 airfoil oscillating in pitch around its quar-
ter chord {23]. The flow is transonic and Euler com-
putations have been performed because the viscous ef-
fects are negligible. However, the grid has a rigid-body
motion. Dyvnamic stall predictions using the dual-time
stepping method are currently i progress.

GOVERNING EQUATIONS

The governing equations are the 2D Reynolds-
averaged Navier-Stokes equations, written in a carte-
sian frame of reference which i1s atiached to the body.
In this non-izertial frame, the integral form of the con-
servation laws is

d
— (]WdV) +/F-nd$: ]TdV
di \Jy i v

with
o 0
W =] pV T = —p AV
pE ]
p(V —s)
F = pV @V ~s) +pld ~ r

PE(V —s)+pV —7-V 4+ 4

The W term represents the vector [p,pV,pE]T of the
conservative vanzables where the vector V is the abso-
lute velocity vector, the compenents of which are writ-
ten in the non-inertial frame. Due to the formulation,
the time dependency of the airfoil frame leads to the
presence of a source term T which appears in the right
hand side of the momentum equations. Such a choice
for the formulation is in agreement with previous com-
putational works [24, 25] since it ensures an accurate
treatment of the convective fluxes and of the boundary
conditions in the farfield.
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The pressure p 1s obtained through the equation
of state for a perfect gas

p={(v—1 (pE - P}%:)

The stress tensor T and the heat flux vector ¢ are rep-
resented by viscous and turbulent components

T =

¢)z

Ty + T

¢u+¢’r

For a Newtonian fluid using the Stokes hypothesis, the
expression of the viscous stress tensor 7, is

[ o]

Te = 1t (vv+\7v’f—

wl

(V. V) Id)

where p 1s the dynamic viscosity obtained with the
Sutherland law. Through the Boussinesq’s hypothe-
sis, the expression of the Reynolds or turbulent stress
tensor 7 15

-2 <

and y, is the turbulent viscosity given by the chosen
turbulence model.

Both components of the heat flux vector obey Fourier’s
taw of heat conduction

G y
= —LvT
qbu P,.
I Cp "
¢t B Pri Vi

where P, and F,; are respectively the Prandtl number
and the turbulent Prandtl number.

The vector s is the velocity vector of the grid and
Q0 1s the vector of rotation of the non-inertial frame
relatively to the absolute one. The grid being non-
deforming with a rigid-body motion, the velocity of a
mesh point is

s = QA(r —ro)

where r and rg stand respectively for the vector posi-

tion of the point and the vector position of the rota-
tional axis.

Finally, the turbulent viscosity is estimated ei-
ther with the Baldwin-Lomax algebraic turbulence
model [19] or with the £ — ¢ Launder-Sharma two
equations model [26]. In this last case, the convective
terms of the transport equations are modified due to
the rigid-body motion. The differential form of these

equations is thus

3ok
Q%'%—l + N (ph(V=5)) = 7VV—ps—2uVETE
+ V. ((,u+ ilii)\”k)
Gk
Q) L ¢ (o2 (Vos) = Coln¥V - pCufil
C)t Ape b - ‘slk't — e .'.‘A'
+ V. ((;1 + & )Vf)
Te
+ 2oV T (YY)
s
with
; 9 l(':)
fo = 1-03exp(-R;) ; Ri=—

143

Co = 000;Co=144;Con=192
o = lio. =13

The termy R, defines the turbulent Revnolds number
and the turbulent viscosity 1s given by

— —3.4
w=rG = e ()

NUMERICAL METHOD

Basic Numerical Scheme (BNS)

The CANARI code [27, 28] is 2 multidomain
solver for structured meshes with a cell-centred finite-
voiume discretisation. The numerical scheme corre-
ponds to the Jameson scheme [29] following the method
of lines by decoupling the approximation of the spatial
and temporal discretisations. TFor a model problem,
the equations are written

aw

at
where C(W) represents the convective and diffusive
fluxes. The steady-state implementation contains con-
vergence acceleration techniques such as local time
stepping, FAS muitigrid method [30] using V-cycles
and the implicit residual smoothing of Lerat et al. [31].
For turbulent computations, several turbulence models
are available including the Baldwin-Lomax model and

the k& — ¢ mode] of Launder-Sharma [32].

Concerning the explicit stage, second-order cen-
tral differences are used for all spatial derivatives. A
blend of linear 4th-difference-based and 2nd-difference-
based artificial dissipation D{W) is added in scalar
form to suppress the odd-even decoupling and to pre-
vent the appearance of oscillations in the neighborhood
of shock waves or stagnation points

oW

7+ CW) = DW) =0

+ C(W) =0
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The solution iz then advanced explicitly in time with
a dth-stage Runge-Kutta time-stepping algorithm. If
n is the index associated with time and by denoting
R(W) = C(W) — D(W) as the residual term, the al-

gorithin is written as

wio = e

Wi = w0 o) At RO
W = WO oy AL RO
W = W ey At RV
W= WO oy A RE(Y)

Wl = ()

where the values of the oy coefficients are 1/4, 1/3,
172, 1. The choice of the last coefficient ensures the
consistency while the last two values provide a second-
order time discretisation 1f the flux terms of the last
stage are computed with the values W of the third
stage.

The Implicit stage corresponds to the implicit resid-
ual smoothing technique of Lerat ef al. [31], originally
developed for the Euler equations. It has been ex-
tended to the Navier-Stokes equations. In this case,
the mmplicit method preserves the time accuracy of
the explicit stage and ensures an unconditional sta-
bility [33, 34]. Modifications of the implicit method,
to take into account the Jacobian of the viscous terms,
are possible but reduce the time discretisation to or-
der one. The numerical boundary conditions for the
implicit conditions are Neumann type boundary con-
ditions. In the paper, the turbulent computations of
dynamic stall are first-order accurate in time since the
viscous terms are frozen at the first stage of the Runge-
Kutta scheme in order to save up computational time.
Note also that the same choice stands for the dissipa-
tive terms.

"The present computations require the treatment
of three types of boundaries. At the wall, the relative
velocity (V —s) is zero because of the no-slip condi-
tion and the airfoil surface is also adiabatic. For the
farfield boundaries, non-reflecting boundary conditions
are applied. Lastly, ai the wake cut, continuify of the
conservative variables is ensured.

Dual-Time Stepping Method (DTS)

The DTS method aims at the resolution of un-
steady equations with a time-marching steady-state
solver using the usual acceleration techniques such
as local time stepping, multigrid, implicit residual
smoothing while providing a second-order time accu-
racy. In order to do so, the governing equations have to
be reformulated with the introduction of a dual time 7.

To illustrate this point, consider the unsteady model
equation

AL
o
where R(IV) iz the residual term which coentains the
convective, diffusive and artificial dissipation fluxes.
The introduction of a dual time derivative of the con-
servative variables leads to

oy o . g -

*51—_—+ T + R(WY = —a?-%-R(H) =0

The term R (1V) corresponds to the unsteady residual.
Performing subiterations in the dual time 7 allows io
use a time-marching steady-state solver and, at con-
vergence (A7(H7} = 0), to obtain the solution of the
uasteady equation,
In the unsteady residual, the discretization of the flux
term is similar to the discretization of the basic numer-
ical method. On the other hand, a three-point back-
ward formula gives the time derivative 8;':" and results
in a time implicit scheme which is second-order accu-
rate In time

AW N 3L e 4 el
ar 2A¢

Note that the indices are relative to the physical time.
Due to the use of two different times, the stability anal-
vsis of the method requires the treatment of two prob-
lems. The first one concerns the stability of the phys-
ical problem [20]

+ ROW) = 0

+ R(W™ Y =0

3WH — g 4 et
241

which does not set any trouble because the second-
order backward difference scheme is A-stable. The
second analysis lies on the stability analysis of the
dual time solver. According to a linear analysis of the
Runge-Kutta scheme applied to the model equation,
the dual time step A7 in each cell is expressed as

+RW™Y =0

AT = Min (Are , ATy, 233)

with

L
Ve
pL?

2 (4 + #)

where L is a characteristic length of the mesh cell and
¢ 1s the local speed of sound. The two time steps Ar
and A+, respectively take into account the convection
and diffusion limitations.

In order to manage the number of subiterations in dual

AT, CFL

il

At = CFL
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time, between the physical times t and ¢ + Af, 1t is
possible to specify the number of subiterations or to
define a tolerance criterion. In the ONERA method,
the second choice has been retained and the tolerance
criterion is satisfied once the root mean square of the
first component of the residual R*(W) is less than a
prescribed value. The checking of the tolerance crite-
rion is equivalent to the end of one time step in physical
time.

Once the tolerance criterion is reached, it is necessary
to update the time derivative %- and to provide an
initial solution for the next time step. A three-point
backward linear interpolation gives the new solution

3W" — AW 4 2
2

W =Ww" +

Note that, at the beginning of an unsteady compu-
tation, a first-order time discretisation replaces the
second-order relation.

Grid Generation

The grid generation is performed with an hyper-
bolic grid generator {35] enabling to get C-topology or
{-topology around an airfeil. Such a grid generator en-
sures the regularity and the orthogonality of the mesh
although the location of the farfield boundaries is not
perfectly managed. These two properties of regularity
and orthogonality are very important in order to give
a good description of the boundary layer.

RESULTS WITH THE BNS

All the computations presented in the article

have been performed on a Fujitsu VX2 computer. The
steady state solution at the mean angle of incidence
provides the initial solution for the unsteady computa-
tion. The periodic regime of the unsteady sciution is
said to be reached when the evolution of the global co-
efficients from one cycle to the other is similar. It usu-
ally takes three periods to reach the periodic regime.
The computational cost of one time step per cell and
per point for the basic numerical method costs approx-
imately Tus for the Baldwin-Lomax computations and
10pus for the Launder-Sharma computations.
Three grids have been built for the computations. They
all have a C-topology and their respective dimenstons
are 257x65, 321x97 and 385x97. At the wall, the height
of the first cell is worth to 0.00001C which corresponds
to a dimensionless height y* of order unity. The ra-
dial extension of the grids is close to 20C. The figures
1 and 2 present views of the coarse grid around the
NACAD012 airfoil, the second one demonstrating the
regularity of the mesh.

Description of the Test Case

The test case comes from the experimental work
of McAlister ef al. [21). It correspouds to the refer-
enced frame 14106 with the following test conditions

Poa Voo O

Mo, = (.184 Re = = 2.45x10°
Moo
at) = 10° + 15% sin (wi)
wC
E = —— = (.0994
Wos 0

The airfoll is oscillated in pitch around its quarter
chord axis. In this test case, a boundary-layer trip
is located at the leading edge in order to eliminate
the laminar separation bubble. The flow can thus be
regarded as fully turbulent. Note that this test case
corresponds to a deep stall case.

Effect of the grid

In order to test the influence of the grid on
the numerical solutions, computations have been per-
formed on the three grids using the same dimension-
less time step At = 0.0001 {reference time C/ai). A
whole cycle is covered in 172000 time steps. The order
of magnitude of the maximal C'F L number is around
125. Tigure 3 shows the comparison between the nu-
merical resuits and the experimental data for the hift,
the moment and the drag coefficients.

At first, we notice that the numerical results are qual-
itatively correct but important discrepancies with the
experimental data are obvious. For instance, all the
predictions delay the occurence of the moment stall or
of the lift stall. Furthermore, oscillations of the global
coefficients appear during the downstroke part of the
motion. Although the experimental values are aver-
aged over several cycles, these oscillations seem of a
numerical origin,

Concerning the influence of the grid, a grid conver-
gence seems to be reached between the medium and
the fine grid. Due to this fact, all the other Baldwin-
Lomax computations have been performed on the fine
grid. The coarse grid results are significantly different
but provide the best estimations of the moment stall,
the lift stall and the drag increase.

Effect of the time step

Figure 4 illustrates the effect of the iime step
on the numerical predictions of the global coefficients
on the finer grid. The dimensionless time steps are
equal to 0.0005, 0.001 and 0.002. The time step ef-
fects are net very important, the main discrepancies
appearing during the downstroke motion beiween the
solution At = 0.002 and the two other computations.
By the way, it demonstrates the time convergence of
the calculations and the reliability of the basic numer-
ical method.
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Grid 385x97

This paragraph presents a more physical descrip-
tion of the dynamic stall prediction on the finest grid
using the time step At = 0.0001. Emphasis is laid on
the first hall of the oscillating motion (from 15% up to
157 down) and especially te the formation and convec-
tion of the first stall vortex.

Figure 5 gives the evolution of the predicted global co-
efficients during the third computed period versus the
phase angle ¢ = wt. Starting from the mean angle of
incidence in the upstroke motion, the coeflicients obey
a quasi-steady behaviour till the angle of 60° where
the moment stall begins. The moment coefficient de-
creases suddenly attaining a first peak at 90°, increases
and decreases again to reach a second peak around
165%. New oscillations oceur around 135° and 1807
before the reattachment of the flow at the end of the
downstroke motion. The lift coefficient and the drag
coefficient experiment the same kind of evolution but
with a slight delay when compared with the moment
behaviour. For instance, the lift stall or the drag de-
crease appear 30° later relatively to the moment stall.
Figure 6 shows the distribution of the pressure coef-
ficient on the airfoil surface, the phase angle varying
from 10° to 180°. For the first six locations, it is clear
that the suction pressure peak increases with the angle
of incidence. Between 60° and 70°, there is a brutal
breakdown of the pressure peak and the presence of the
stall vortex is clear at 70° (z/c = 0.1). The convection
of the vortex takes place up to a phase angle close to
90°. As mentioned previously, new evenis occur in the
following positions, in particular at the trailing edge,
due to the growth and convection of other vertices.
In the next figure 7, the pressure distribution is piot-
ted for several chordwise locations versus the phase
angle. In the upper plot, the phase angle describes the
first half of the cycle while the bottom figure only con-
tains the interval between 60° and 120°. The dramatic
breakdown of the peak pressure clearly appears in the
upper figure near a phase angle of 60°. Note also the
perturbations of the pressure distribution during the
oscillating motion. The lower plot provides an esti-
mation of the convection speed of the first stall vor-
tex because the pressure peak denotes the presence of
a vortex. A crude approximation gives a convection
speed close to 0.3 V., in accordance with usuval experi-
mental values.

The instantaneous streamlines are plotted on Figure 8
between the phase angles 50° and 190°, every 10°, The
view confirms the previous explanations. The growth
and convection of the first two stall vortices are clearly
seen. Purthermore, small structures appear and vanish
at the leading edge and at the irailing edge during the
oscillating motion. Finally, note that the stall effects

seem to disappear after a phase angle of 190°.
Launder-Sharma Computatious

Drue to the computational cost, the computations
have only been performed on the medium grid for a
dimensionless time step A¢ = 0.0002. 1t takes 882670
time steps to cover one period.
Figure 9 gives a comparison of the global coefficients
between the experimental data and ike numerical re-
sults due to the Baldwin-Lomax computation and the
Launder-Sharma computation. The main conclusion is
that the use of the Launder-Sharma turbulence mode
does not improve the prediction of the dynamic stall,
When compared to the Baldwin-Lomax results. the
Launder-Sharma computation gives an earlier moment
stall or an earlier drag increase. The global coeffi-
cients have also a less oscillatory behaviour durinig the
downstroke motion. However, the 1ift estimate in the
upstroke motion is even worse than for the Baldwin-
Lomax computation. These results strongly under-
line the need to extend the numerical method to other
transport equations turbulence models.

RESULTS WITH THE DTS

Channel Flow

The test case is based on a steady channel flow
{Délery bump — case B [36]) for which the experimental
conditions are

Me = 145  Re = 2.078x10°
with a dimensionless downstream pressure fixed to
0.6875. A quite simple unsteady test case — useful for
numetrical validation - consists in prescribing a sinu-
soidal law to the downstream pressure
p=ps(l + asin(wt)) p, = 0.675

The dimensionless period is equal to 4. The com-
putations have been performed on a H-topology grid
(Fig.10) with 181 points along the streamwise direction
and 65 in the normal direction using the BNS method
and the DTS method. The algebraic turbulence model
of Michet et al. [22] provides an estimate of the turbu-
lent viscosity.

For the BNS method, the dimensionless time step is
equal to At = 0.001 (4000 time steps per period) lead-
ing to a CF Ly, number close to 20. The implicit
residual smoothing technique is empleyed without its
viscous part and the time discretisation is second-
order accurate. The computational time for one pe-
riod is equal to 334s on the Fujitsu VX2 computer.
For the DTS computation, the time step is At = 0.1
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(400 time steps per period). During the subitera-
tions, the method makes use of the local time stepping
(CFL =4}, of the implicit resicdual smoothing and of
the multigrid technique including two grid levels with
two iterations on the coarse grid. Due to the tolerance
criterion, the computation requires approximately 15
subiterations per time step. Lastly, the computational
time to cover one period is 85s.

Figure 11 shows a comparison of the time evolution
of the pressure at several locations in the channel for
both numerical methods. It takes two periods to get a
periodical behaviour. In both computations, the pres-
sure levels are quite close although the shape of the
curves are slightly different. The next figure (Fig.12}
presents the Mach number contours obtained with the
DTS method during the fifth period. The plots show
a shock/boundary layer interaction on the rear of the
bump and a pressure wave moving periodically from
downstream to the shock. The BNS method gives sim-
ilar results.

AGARD CT1 Test Case

The test case comes from the experimental wotk
data collected in the AGARD Report No.702 [23]. It
has be chosen to test the DTS method with a non-
deforming moving grid. The test configuration is

M., = 06 Re = £2"=C _ jeqp8
Heo
alty = 2.80° + 2.41°sin (wi)
ko= 0.0808

The airfoll oscillates in pitch around the quarter-chord
axs. The gnd contains 25Tx65 nodes. The height of
the first cell 1s 0.001C along the airfoil and the farfield
extension is close to 8C.

For the BNS method, the computations are first-order
accurate in time. The CF L, number is close to 65.
The dimensionless time step is At = 0.03 and 2160
time steps are necessary to cover one period, cotre-
sponding to a computational time per period worth to
180s. For the DTS method, the time step is At = 1.8
and only 36 time steps are required for one cycle. The
local CFL number is equal to 9. Two grid levels are
used with the multigrid method with three iterations
on the coarse grid. For the dual time convergence, an
average of 33 subiterations is necessary to cover one
time step. The CPU time is worth to 215s meaning
that the BNS method is more efficient than the DTS
one. No explanation has been found yet, but the BNS
method seems quite efficient in this case because of a
C'FL number value. Further work is needed to fully
explore the efficiency of the two methods.

In order to check the validity of the numerical results,

figure 13 presents a comparison of the lift and moment
coefficients from the experimental data and the results
provided by the two methods. It takes three periods
to attain a periodical regime and the numerical predic-
tions are very similar for both ceefficients. Note that
the discrepancies on the moment coefficient between
the experimental data and the numerical results have
been already reported {for instance, {37]). They seem
tc be due to a bad experimental location of the rota-
ticnal axis.

CONCLUSIONS

From the present study, one can draw several
conclusions about the two numerical methods and de-
fine future goals for the prediction of the dynamic stail
phenomenoca,

From a physical point of view, it is clear that,
even 1f the use of the Baldwin-Lomax or the & - ¢
Launder-Sharma turbulence models enabled to vali-
date the BNS method, the numerical results are not
very satisfactory for the prediction of dynamic stall.
New computations have to be performed with other
turbulence models following the work of Ko and Me-
Croskey [14], for instance.

From a numerical point of view, the BNS method
seems quite efficient for unsteady Navier-Stokes simu-
lations, at least when an algebraic turbulence model
is used. However, its efficiency is not so clear with
the Launder-Sharma turbulence modei. Further work
is needed to point out the possible limitations of the
method for unsteady computations. Regarding the
DTS methed, the preliminary results are quite encour-
aging for the channel flow but the oscillating airfoil
test case raises some questions. The comparison of the
performances of the two numerical methods requires
some new simulations. In particular, it is planned to
perform stall computations with the DTS method and
to extend the use of the method to simulations with
transport-equations turbulence models {38, 17, 18].

Beyond these tasks, efforts will be put on the use
of a high-order numerical scheme (39, 40] and an auto-
matic grid adaption method [41] since such approaches
could lead to a better prediction of the dynamic stall
phenomenon.
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