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ABSTRACT 

A computer-flight-testing (CFT) program for helicopters has been under develop
ment at NLR for some time to evaluate helicopter dynamics and handling and con
trol qualities. To eliminate problems in estimating control inputs during 
maneuvering flight, the nonlinear 6 degrees of freedom helicopter model is 
driven by control inputs generated by a specially developed control model (or 
"pseudo pilot"). This is an adaptation of a linear optimal control model as used 
in human factor analysis. 
The helicopter model is based on 2-dim. strip aerodynamics and steady-state rotor 
blade dynamics using only out-of-plane bending mode shapes, which are suitable 
for various types of rotor articulation. 
The "pilot" model consists of a flight path generation (FPG)- model and a stabili
zation (STAB)- model. The FPG-model is based on linearized system dynamics using 
terminal optimal control, generating both the required flight path and the con
trol inputs to achieve it. These controls are input into the helicopter model. 
The two flight paths are compared, and differences are fed back to the STAB-
model to generate corrective control inputs of such a nature that the helicopter
model-generated flight path tracks the required flight path generated by the FPG
model. Also the STAB-model is based on linearized system dynamics. 
As an example, two flare maneuvers are 11flown 11

, and the results discussed. 
The pseudo-pilot model performes well, provided that helicopter dynamics do not 
change much during a specific maneuver. 
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INTRODUCTION 

A Computer-Flight-Testing (CFT-) program for helicopters has been under develop
ment at NLR for some time. With this program, dynamic aspects of helicopter 
flying can be calculated or simulated under various conditions of helicopter 
configuration and atmospheric circumstances. Typical applications might entail 
the following: 
- determination of aircraft gust response 
- determination of maneuver loads 
- study of minimum distance to clear an obstacle 
- examination of large-perturbation response to control inputs and external 

perturbations 
- determination of thrust and power maneuver limits 
- simulation of tactical maneuvers 
- determination of total aircraft statiliby, including the studying of time 

histories. 
Two operating parts of the computer program may be discerned, viz. a static (or 
trim) part, and a dynamic part. The first part is used to calculate the trim 
values of various helicopter parameters such as control positions, the attitude 
of the fuselage, rotor blade coning and flapping, and trim forces and moments 
acting on rotors and fuselage. The second part calculates the time histories of 
the helicopter motion variables as result of: control inputs, gust inputs, 
recoil forces from on-board weapons and change of helicopter mass and/or e.g. 
location. 
When a specific maneuver is required, e.g. a landing flare or a transition from 
hover to level flight the user of the CFT-program, before the controller had been 
developed, had to supply the time histories of the various controls (longitudinal 
and lateral cyclic control, collective control, rudder pedal) to effect the 
required maneuver. In practice this turned out to be a very difficult task, 
especially when it was required to maintain heading, keep altitude constant, or 
the like. The matching of the 4 controls in synchronization so as to execute the 
maneuver at hand proved to be almost impossible, especially when no prior informa
tion from actual flight tests was available. To alleviate this problem a controller 
was designed and implemented in the CFT-program, enabling various types of 
maneuvers to be made, meeting prescribed terminal conditions at a specified final 
time. 
The theoretical basis of the controller is rooted in optimal control theory as 
applied to linear(ized) dynamical systems. There are connections with human factor 
analysis work, in that the controller, in the application to the CFT-program, may 
be regarded as a highly motivated, well trained pilot having perfect information 
about the entire state of the helicopter. In mathematical terms this means that 
perfect observations of the entire helicopter state are made, but that there are 
time delays when applying corrective control inputs. These time delays reflect 
the neuro-muscular lags of the human, or his reluctancy to make rapid control 
movements. The controller dynamics model consists of an open-loop part which 
generates the required flight path to be flown as well as the required control 
inputs to effect the maneuver, and a stabilization part which generates feedback 
control inputs such that the actual CFT-model-generated flight path tracks the 
required flight path. In chapter 2 a short description will be given of the 
helicopter rotor and body dynamic model; chapter 3 will discuss the controller 
dynamical models, and in chapter 4 an application of the controller, integrated 
with the CFT-program, will be discussed. 
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2 DYNAMIC MODELS 

2.1 Helicopter body 

The dynamic model of the helicopter body consists of a set of differential 
equations of motion which, when integrated with respect to time, provides the 
time histories of all helicopter motion quantities of interest. The equations 
of motion are non-linear and take into account the rotating mass of the main 
rotor. Generally the equations can be cast in the following vector form: 

M(t) ~t (t) = £ [~t(t), ~t(t), t] ( 2. 1) 

where the time-varying matrix M(t) contains the (variable) helicopter mass and 
inertia moments and products; the state vector ~t(t) describes the total state of 
the helicopter, ~t(t) is the control vector containing all controls, and f is a 
complicated vector-valued function containing aerodynamic forces and moments 
(from rotors and fuselage) and inertia forces and moments, helicopter mass etc. 
The vector ~t(t) is defined as: 

~t(t) = [u(t), v(t), w(t), p(t), q(t), r(t), S(t), ((l(t), lji(t), h(t), x(t), y(t)]T 

(2.2) 
and the control vector ~t(t) as: 

~t ( t) = [ o CP ( t) , o a ( t ) , o e ( t) , or ( t) ] T (2.3) 

The set of equations (2.1) is generally called the CFT-model. Integration with 
respect to time using an integration algorithm will yield the time histories 
~t(t) of the total helicopter state and the controls ~t(t). 

2.2 Main rotor 

The dynamic behaviour of the (elastic) rotor is also governed by a set of differ
ential equations, which constitutes the rotor dynamic model. Without derivation 
the equations are given as follows: 

(2.4) 

where fn(lJi) is a complicated aerodynamic forcing function containing blade 
element aerodynamic and inertia loads as well as modal displacements q(lJi) and 
velocities qn(t) or qh(lJi), when expressed as function of blade azimuth angle lji. 
A steady-state period~c solution of ~ is postulated, using constant coefficients: 

~(lJi) = ~ + ~ cos lJi + ~ sin lJi, n = 1, 2, ... , k (2.5) 
0 c s 

and substituting this into (2.4) yields a set of algebraic equations, from which 
~, ~ and~, for n = 1, 2, .•. , k, can be solved. This, however, requires a 

Ne~on-~aphson-type algorithm to calculate the required variables iteratively. 
Once calculated, the rotor thrust and hub moments can be determined using 
numerical integration techniques. 
Thus the rotor blade dynamics are assumed to be harmonic, and the entire rotor is 
behaving in a steady-state manner. This approximation is considered adequate for 
the present application of the CFT-program. 
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2. 3 Trim model 

All maneuvers with the CFT-program start from a steady-state, or trim, condition. 
This may include steady turns and/or climbing or descending flight, including 
steady-state autorotative flight. Main rotor rpm is not yet a motion variable 
and is kept at a prescribed value. 
The trim model is obtained from eq. (2. 1) by requiring: 

which 1s identical to: 

(2.6) 

The parameters which specify the trim condition are: 
aircraft speed V, height h, rate of climb ROC, rotor rpm n, and aircraft mass. 
These parameters relate to the state vector elements according to the following 
set of additional trim equations: 

ROC = u sin 8 - w cos 8 

For trim it is furthermore assumed that: 

(2.7)(a) 

(b) 

v = 0 (2.8) 

thus zero sideslip is assumed for all trim conditions. 
If necessary the state vector x (t) may be augmented to include x, n or y. 
Equations (2.6), (2.7) and (2.8Y together form the augmented trim model with the 
equations: 

§ [~t(o), ~t(o) ] = 0 (2.9)(a) 

f [~t(o), ~t(o) 

where: 

I 2 2 I 
V- \fu +w 

(b) 
ROC - u sin 8 + w cos 8 

v 

A modified Newton-Raphson process has been applied to solve eq. (2.9)(a) for the 
unknown elements of xt and all the elements of Ut· Because of the important 
applications of this-process later-on, a short description is given in the 
appendix. In the CFT-program the matrix P = [3g/32tl from eq. (A.7) is calculated 
and used in the linear(ized) dynamical models employed for the controller. 
Because P is calculated for a trim condition, the linearized models are applicable 
only when the perturbations from trim are such that linearization is allowed. 
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3 CONTROLLER 

3. 1 General 

The controller has been designed to generate control inputs to stabilize the 
helicopter and to perform maneuvers. The 11ser specifies which motion variables 
are the primary variables for the maneuver, and which are the "secondary" ones 
(for stabilization). For example, when one wants to make a pull-up from level 
flight, the longitudinal motion variables u, w, q, 8, h and control o (possibly 
also ocp)describe the maneuver. If one wants to keep roll angle ~ con~tant at 
its trim value during this maneuver, then one specifies ~ as a variable for 
stabilization (or "secondary" variable). There is an almost infinite number of 
choices which the user can make, but in practice the choice is normally made 
between subsets of longitudinal variables (u, w, q, 8, x, ocP• oe) and lateral/ 
directional variables (v, p, r, ~, ~, oa, or). Very often both subsets of 

variables are used for stabilization, and only one of the two for the maneuver. 
The number, and type, of maneuvers are only limited by the controllability 
argument (Ref. 1), which implies that the set of terminal conditions (section 
3.3) should be attainable without infinitely large control. 

The structure of the controller has been adapted from human pilot models as 
encountered in human factor analysis. These models are rooted in optimal control 
and estimation theory and are formulated in the time domain using state space 
techniques. For the particular application here the display and estimation 
portions of the human pilot model were omitted since the random noise sources 
involved in displaying signals and estimating the aircraft state would, in real
time calculations, lead to Monte-Carlo type calculation processes which, by their 
very nature, consume much computation time. Therefore the controller in the CFT
program may be regarded as a highly motivated, well-trained pilot having no 
perceptual delays, and having perfect observations of the entire helicopter state. 
The human pilot models are applicable to linear dynamical systems, hence the 
requirement to have some scheme with which the respective linear(ized) systems 
can be derived. This is indicated in the appendix. 

3.2 Stabilization model 

After the linearization scheme has been applied the controller 1s to stabilize 
the following (linear) system: 

x (t) =Ax (t) + B u (t) 
-s -s -s 

( 3. 1 ) 

where the nx -dimensional vector x (t) contains "secondary" variables only, i.e. 
s -s 

only those elements of ~t(t) which need stabilization. The nu -dimensional control 
vector u (t) contains on~y those elements of the total control vector ut(t) which 
are spec~fied to be used for stabilization purposes. Both ~s (t) and ~; (t) are 
vectors whose elements are perturbations of xt(t) or ~t(t) from the nominally 
reguired flight path. The (nx x nx )-dimensional (constant) matrix A and 

s s 
(nx x nu )-dimensional (constant)matrix Bare derived from a linearization 

s s 
scheme as previously outlined. 
The initial conditions for the system, eq (3.1), are: 

X (0) = 0 
-s 

u (0) = 0 
-s 
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The "feedback", or stabilization control u (t), is 
copter state from deviating from its desir~d path, 
This control ~~(t) is generated in such a way that 
criterion is m2nimized: 

required to prevent the heli
that is, to keep x "small". 

. -s . 
the follow1ng quadrat1c 

Js = t J {~~(t)Qx ~s(t) + ~~(t) Qu ~s(t) + ~~(t)Qu ~s(t)} dt (3.3) 

The tim~ derivative of u (t) is also weighted, through the term uT(t) Q. u (t), -s -s . u ~s . in the quadratic cost function J . In human factor analysis terms th1s we1ght1ng 
s reflects pilot's neuro-motor lag or his reluctancy to make rapid control move-

ments. 
By adjoining ~s to the state vector the optimal control u (t) which minimizes 
J while obeying eq. (3.1) can be derived to be (Ref. 2)os 

s 

1 X ( t) 
-s 

( 3. 4) 

This equation is generally called the "feedback law", where T is a neuro-motor 
lag matrix, and L is a constant feedback gain matrix, obtaine~ from solving a 
Ricatti matrix equation (Ref. 1). It has been assumed that the Ricatti equation 
has reached a steady-state solution, implying low frequency dynamics compared to 
system time constants. 
The choice of the diagonal weighting matrices Q , Q and Q. depends upon the 
objective task requirement and the pilot's subj&cti~e modeuof behaviour. An often 
used method is to assume that the weightings are inversely proportional to the 
square of the maximum allowed deviation, i.e. 

-2 
Qx. = xi,max 

1 

where X· is the i-th element of ~s(t). In accordance with the general practice 
used in

1
human factor analysis, the weightings of the control and control rate 

are chosen in a similar fashion; however, the relative weighting is such that 
the resulting neuro-motor lag time constants are between 0.1 and 0.2 per second. 

3.3 Flight path generation model 

The flight path which the helicopter is desired to follow, is generated also by 
a linear system of the following form: 

with initial conditions: 

~d 
0 

~d(o) = 
~d(O) = 0 

( 3. 5) 

(3.6)(a) 

(b) 

here the nx -dimensional vector ~d(t) contains those elements of ~t(t) which are 
d 

incorporated in performing the maneuver. The ~d-dimensional vector ~d(t) contains 

only those elements of ut(t) with which the maneuver is to be performed. Both 
~d(t) and ~d(t) are vectors whose elements are desired perturbations of ~t(t) 
from a trimmed steady-state flight path. This is defined by: 

xt . ( t) = ~t + x .t (3.7)(a) -r1m -0 t 
0 

ut . ( t) = ~t (b) 
-r= 

0 
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where ~t is a constant vector of time derivatives for trim (e.g. constant sink 
0 

rate, turn rate at trim, etc.). The (nx x nx )-dimensional, time-invariant d . 

system dynamics matrix F and (nx x nu )-dime%sional, time-invariant control 
d d 

distribution matrix G are obtained using the previously described linearization 
scheme around a given trim condition. 

In order to take maneuvers into account, aspects of terminal control, or finite 
time, will have to be taken into consideration. Therefore the control Yd(t) is 
re~uired to transfer the system, e~s. (3.5) from the given initial condition to 
a terminal condition at time tf, where the following terminal condition has to 
be met: 

(3.8) 

where ~ is a constant nx -dimensional vector, given on input by the user, and 
H is a constant (nx x nt )-dimensional matrix specifying which elements 

f d 
of ~d(t), or linear combinations thereof, have to meet a terminal condition at 
time tf. 
Of the many controls which can accomplish this transfer that one is chosen which 
minimizes control rate, i.e. minimizes the following cost function: 

tf 

Jd = ~ J ~~(t) ~ ~d(t) dt (3.9) 
0 

The weighting of control rate in the cost function seems appropriate in view of 
general piloting techni~ues. Also in this case it yields a closed-form solution 
for the control time history gd(t). If other terms would have been included in 
the weighting function of e~. (3.9), complex numerical schemes for solution of 
~d(t) would then have become mandatory. 

By adjoining the control rate ~d(t) to the state vector ~d(t) and solving the 
optimal control problem of the augmented system, according to reference 1, the 
resulting optimal control ~d(t) can be shown to be a purely open-loop, or feed
forward, control of the form (Ref. 2): 

~d(t) =- ~ (t) (3.10) 

where h(t) is described by a vector-differential e~uation with given terminal 
boundary condition ~(tf). Thus, after backward integration with respect to time, 
~d(t) is known for 0 < t < tf and the state 4d(t), for all t, can be generated 
using e~s. (3.5), (3.5) and (3. 10) and integrating e~. (3.5) forward with respect 
to time. 

3.4 Integration with helicopter model 

The helicopter body dynamic model, also defined as the CFT-model, e~. (2.1), 
re~uires the control ~t(t) as input. This control is a summation of the trim 
value ~to' the re~uired perturbation ~d(t), and the stabilization part ~~t), as 

shown in figure 1. The summation applies to corresponding elements of each con
trol vector. Through the non-linear CFT-model the control ~t(t) generates a 
flight path ~t(t) which is (continuously) compared to the re~uired flight path 
generated by the flight path generation (FPG-) model, which is 
~d(t) + ~t + Xt

0 
t. The difference between these two flight paths is the 

0 
stabilization part x (t), which, through proper feedback, generates corrective 
control inputs ~8 (t}sso as to drive ~s(t) to zero. The total control ~(t) is 
modified by this amount ~s(t). The complete structure and integration of the 
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controller is shown in figure 1. 
The differences which accrue between actual and desired flight path are due to 
differences in dynamic model (non-linear versus linearized around a trim condi
tion), time delays in applying corrective control inputs (inherent with the con
trol model), and errors associated with numerical integration algorithms. 

4 APPLICATION 

As an example of the functioning of the controller to perform a maneuver, and in 
its role as a stabilizer,two landing flare maneuvers of an Alouette III heli
copter have been calculated, both starting from the same initial condition but 
having different terminal conditions. 
The initial condition is a 60 kts descending flight on a 6° glide path (rate of 
descent 3.2 m/s (633ft/min)), helicopter mass 1850 kg ( 4 079 lbs). 
The duration of the maneuver is 12 s. 
The terminal conditions which apply to both flares are: zero pitch rate (~=o), 
zero height (h=o) and zero vertical speed (n=o). In addition to these, the 
second flare maneuver has a terminal condition on "groundspeed" X, viz. X(tr)=15 
m/s (30 kts). 
The maneuver is performed primarily using collective pitch and longitudinal 
cyclic pitch. For stabilization of the longitudinal/lateral variables (section 
3.2), excluding x andy, all four controls are used. 
The desired response of the state variables, as calculated by the FPG-model, is 
indicated in all figures by a dashed line. 

The resulting time-histories are shown in figures 2a-2h. Figure 2a shows the 
time-history of the velocity along the X-axis, u(t), for the two flares. It 
becomes clear that toward the end of the maneuver the difference between desired 
and actual trace of u becomes larger due to time delays and increasing non
linearity affects. As might be expected, for the second flare u(tf) is lower 
than for the first flare. The time-histories of the velocity along the Z-axis, 
w(t), is shown in figure 2b for the two flares. Clearly there is a larger peak 
in w(t), hence a greater angle of attack, for the second flare, because more 
deceleration has to take place within the same span of time. Again here, toward 
the end of the maneuver, a greater discrepancy has developed between desired and 
actually calculated response, this discrepancy being larger for the second 
flare because of stronger non-linearity effects (greater departure from trim) and 
because of time delay effects, which will become more apparent when 11 quicker" 
maneuvering is required. 
Figure 2c shows the response of pitch rate, and pitch angle in figure 2d. Clearly 
a larger pitch-up maneuver is re~uired for the second flare so as to allow for 
a stronger deceleration. The same arguments as before apply to the discrepancies 
between desired and actually calculated response. For these reasons also the 
pitch rate did not meet the prescribed terminal condition. 
In figure 2e is shown height versus time and height rate of change (vertical 
speed or climb rate) versus time is shown in figure 2f. Due to time delays and 
non-linearity effects the aircraft undershoots its terminal condition for the 
second flare. Also the time duration of the maneuver has been a little too much, 
because the desired trace of height, for the second flare, shows a 11dip 11 at 
around 7 s from the start. This implies that, in order to minimize control rate 
during the flare, the controller uses the phugoid oscillation to advantage, such 
that the terminal condition is met with minimum control effort indeed. The 
desired path only has to meet terminal conditions; there are no "intermediate'' 
conditions given, e.q. to remain clear of the ground before final time. It is 
therefore well possible that the desired path, especially for long-term maneuvers 
close to the ground, may reach below zero height conditions before the final time. 
The control response, to perform the flares, is given in figures 2g and 2h. 
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For both flares the control inputs are very mild and small changes are enough to 
bring the maneuver about. 
For the second flare, the collective is reduced slightly and aircraft decelera
tion is therefore achieved by flaring, or, pitching up. Obviously, more aft cyclic 
is re~uired for the greater pitch-up in the second flare, as illustrated by 
figure 2h. 

5 CONCLUDING REMARKS 

For a computer-flight-testing program for helicopters, the generation of control 
inputs to perform a maneuver has greatly been facilitated by the incorporation 
of a controller. This consists of two models i.e. a flight path generation 
model (FPG) and a stabilization model (STAB). Because of the multiple options 
available, a highly flexible tool has become available, which has not yet been 
fully explored. Both models in conjunction performed well to execute flare 
maneuvers. 
For the FPG-model, the terminal conditions could have been modified so as to 
have the aircraft meet the terminal conditions exactly. For maneuvers of long 
duration, say more than 10-15 s, specifying only a terminal condition and 
weighting only control rate may not be ade~uate to describe the entire open-loop 
maneuver. Further work in this area is required. The stabilization part can be 
updated more fre~uently, so as to have feedback gains optimized for the locally 
linearized system. This will reduce discrepancies between desired and actually 
calculated response due to non-linearity effects. 
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APPENDIX 

Trim algorithm and linearization 

When starting the Newton-Raphson algorithm to find the unknowns for a particular 
trim condition, an estimate is made of the augmented state vector ~t(o), where: 

~t{o) = [~t(o), ~t(o)]T (A.1) 

Then an initial estimate 1s ~t' where it 1s assumed that: 

~t = ~t(o) + d ~t 

where ~t(O) is the true solution of eq. (2.9)(a). 

Generally, when substituting ~t in (2.9) one has: 

~ [~tl # 0 

(A.2) 

but 1s approximately close to 0. A linearized Taylor series expansion yields: 

~ 6 
~ [~t] =~ [~t(O) + 6 ~t] 

= ~ [~t(o)J +{a~ [~t(o)J/a ~tJ. 6~t + ... 

Because~ [~t(O)] = 0 eq. (A.3) results 1n: 

~ [~tl = [a~/a~tl 6~t 

(A.3) 

(A. b) 

where [a~/a~t] is written instead of {a~[~t(O)]/a~t). From this equation 6~t 
may be solved: 

(A.5) 

and a subsequent, improved guess of the true trim value of gt(O) can be calcu
lated, using eq. (A.2) as algorithm: 

or: 

x (o) = ~ - 6x_t -t -t 

new 
= ~t - ~X 

old -t 
(A.6) 

This process continues until [x 1 ~ 0_ with sufficient accuracy. During this ~ new 
process the matrix· a~/a~t is calculated (numerically), where, using eq. (A.1): 

(A.7) 

The sub-matrices ag/ax and og/au can be used directly in the linearization of 
the dynamical equation~ around a-~rim condition. Linearizing eq. (2.1) around a 
trim condition ~t(O), ~t(o) yields: 

M
0 

6~t(t) = [of{~t(o), ~t(o)}/a~t}J 6~t(t) 

(A.8) 
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In matrix form: 

(A.9) 

where matrices A and B equate directly to M~ 1 [a!/a~t] and M~ 1 [a!/a~t] respective

ly. Because of the relation between vector g and fin equation (2.9)(b) it is 
obvious that when a~/a~t and a~/a~t are calculated during the Newton-Raphson 

process, also the matrices A and B from eq. (A.9) can be derived. 

38-12 



y to (TRIM VALUE) 

I 
y t (t) Kt (tl = 1 [o.t(tl, ut(tl. t] !S((t) ~ - - - - --

JuM 
C FT -MODEL 

y s ( t) ----------------1 
.I I !s ( t) 

(TN +S)J!s -L I 
I 

TIME DELAY GAIN I 
y d ( t) I 

I 
I 

~ d ( t) I 
FLIGHT PATH I+ 
GENERATION I 

I + 
I 

_____ ..Q.ONTROLLEB._ ____ _j 

~to+~ta·t I 

Fig. 1 Operational scheme of controller, combined with 
the CFT-mode 1 

38-13 

+ 
-

REQUIRED 
FLIGHT PATH 

TRIMMED 
FLIGHT PATH 



I NAME 

WEIGHT 

ALTITUDE 
FLIGHT SPEED 

ALUUOJIOIII . 

18142 N 11849 KGFI 

15 m I 50FT I 
30.9 m/s I 60 KTSI 

CENTER OF GRAVITY LOCATION 
(AFT OF DATUMl 2.95 m I116.11NCHI 

40. 40 

+ 
IFLARE-11 

+ m/s m/s 
'!) '!) 
X X 

1 30 1 30 
X X 
(!) (!) 

z z 
0 0 
-' -' 
~ ~ 

>-
20 >- 20 

>:: ~ 

u u 
0 0 
-' -' 
w w 
> 10 > 10 

0 2 4 6 8 10 12 0 
2a) TIME.....-

6 6 

+ m/s 
+ 

m/s 

5 5 '!) '!) 
X X 
1 ~ 
N 4 ,;, 4 
(!) 

(!) z z 0 0 -' 3 3 
~ -' 

~ 
>- >->:: DESIRED 

~ 
u 2 -------2-------
0 u 
-' ACTUAL/ 0 
w -' 
> 1 w 1 

0 2 4 6 8 10 12 > 0 
2b) TIME-.. 

0.08 0.08 

rad /s rad /s 

0.06 0.06 

+ + 
w 0.04 w 0.04 
~ ~ 
~ ~ 
a: a: 
I 0.02 I 0.02 
u --- u 
~ >:: --- ACTUAL ~ ~ 

0.00 --~~~~A-ED7- 0.00 

·0.02 ·0.02 
0 2 4 6 8 10 12 0 

2c) TIME_.. 
0.4 0.4 

<ad cad 

0.3 0.3 

+ + 
w 0.2 w 0.2 -' -' 
(!) (!) z z 
~ ~ 
I 0.1 ACTUAL 0.1 

I u -----.:.::DESIRED-- u 
~ ~ 
~ 0.0 ~ 0.0 

·0.1 -0.2 
0 2 4 6 8 10 12 0 

2d) TIME ....... 

. 

Fig. 2 Response of helicopter during two flares 

38-14 

IFLARE-2) 

---- DESIRED 

----
ACTUAL --

2a)· 2 4 6 8 10 12 
TIME-.. 

-~ -· ------
,.. ...... .::.::-DEsiRED . . . . . . . . . . . . . . . 

2 4 6 8 10 12 
2bl TIME_.. 

--- -- ----------......... DESIRED 

... ----
2 4 6 8 10 12 

2cl TIME_.. 

ACTUAL 

~ 

.. .... --..:..:-DESiRE o- ·- .... 

2 4 6 8 10 12 
2d) TIME....._ 



MOLI~vr > -.1 NAMt ALUL<o> 'o'lll 
WEIGHT 18142 N !1849 KGFI 
ALTITUDE 15 m I 50FT I 
FLIGHT SPEED 30.9 m/s i 60 KTSI 
CENTER OF GRAVITY LOCATION 
(AFT OF DATUM) 2.95 m (116.11NCHI 

2or 20 

m~ IFLARE·1) m !FLARE 21 

15~ 15 

10 10 

+ 

:[ 
+ 

1- 1- 5 
I I 
!1 DESIRED 

~ 

w w DESIRED 
:r ~------· I 0 ---------------------· t ACTUAL. ACTUAL 

·5 ' -5 0 2 4 • a 10 s 12 0 2 4 6 8 10 12 
2el TIME_,.. 2•1 TIME-.... ' 

• ml:[ + 
mls 

I DESIRED -------w o, 
~~~T~~~~ 

w 0 DESIRED / -- --
"' t -- --- " -z 

-1 ~ 
-- z -<( < ---I I -1 

' ' ACTUAL 

" () 
' "- "-

0 0 ' ' w -2 w -2 
' ' 1- 1- ' <( t < 

3l 
rr "' l- -3 l-
l: I 
!:! " w ·• w 
I 0 21; 2 4 6 • 10 12 I 4 6 8 10 12 

TIME_... TIME_.,.. 
50 so 

PERCENT PERCENT 
FULL UP FUL.L UP 

70 70 

+ + 
:t 60 :r so 
::: () 

1-
;;: ~ 

w 50 w 50 

" > 
1- ;: 

•or 
1.) u 
w 40 w 
-' -' 
-' -' 
0 0 
1.) 30 () 30 

0 2gl 2 4 • 8 10 s 12 0 2gl 2 4 6 • 10 12 
TIME__...,.. TJME_... 

70 70 
PERCEN! PERCENT 

FULL. FWD FULL FWD 

+ 
60 

+ 
60 

~ () 

-' 50 J 
u u ,_ >-
0 u _, 

40 
_, 

40 
<( <( 

z z 
i5 0 
::1 30 ::1 30 
1- 1-

0 (!i 
z z 

20 0 20 0 _, 0 
2hl 

2 4 6 8 10 12 -' 0 2hl 2 4 6 8 10 12 
TIME....,. TIME-• 

Fig. 2 Continued 
38-15 



 
 
    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 3 to page 3
     Mask co-ordinates: Left bottom (547.70 524.92) Right top (573.45 560.58) points
      

        
     0
     547.7015 524.9242 573.4524 560.5792 
            
                
         3
         SubDoc
         3
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     16
     2
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 5 to page 5
     Mask co-ordinates: Left bottom (557.01 521.19) Right top (582.87 557.99) points
      

        
     0
     557.0083 521.1916 582.8694 557.9939 
            
                
         5
         SubDoc
         5
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     16
     4
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 7 to page 7
     Mask co-ordinates: Left bottom (545.72 517.99) Right top (578.40 559.59) points
      

        
     0
     545.7207 517.9913 578.4045 559.5888 
            
                
         7
         SubDoc
         7
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     16
     6
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 9 to page 9
     Mask co-ordinates: Left bottom (553.64 515.02) Right top (582.37 557.61) points
      

        
     0
     553.644 515.02 582.3661 557.608 
            
                
         9
         SubDoc
         9
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     16
     8
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 11 to page 11
     Mask co-ordinates: Left bottom (552.03 519.20) Right top (586.85 557.99) points
      

        
     0
     552.035 519.2023 586.848 557.9939 
            
                
         11
         SubDoc
         11
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     16
     10
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 13 to page 13
     Mask co-ordinates: Left bottom (526.54 13.84) Right top (550.25 44.46) points
      

        
     0
     526.5405 13.8371 550.2499 44.4618 
            
                
         13
         SubDoc
         13
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     16
     12
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 15 to page 15
     Mask co-ordinates: Left bottom (519.63 15.81) Right top (568.03 44.46) points
      

        
     0
     519.6252 15.8128 568.032 44.4618 
            
                
         15
         SubDoc
         15
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     16
     14
     1
      

   1
  

 HistoryList_V1
 qi2base





