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Abstract 

For the simulation of multi-bladed rotors in 
hover and forward flight the influence of the pre
ceding blades has to be taken into account for the 
correct calculation of all vortex-related features 
of the flow field. This can be done by applying a 
local angle of attack correction or transpiration 
velocity at the blade which are obtained by a 
prescribed wake model. In the present paper an
other approach is made since a free wake model 
is used to provide the boundary conditions at 
the outer limits of the Euler grid in order to pro
duce and transport the wake into the calculation 
domain. It is shown that this procedure is able 
to capture the wake correctly. Thus, the grid 
can be limited to one blade so that there is no 
need to cover the whole rotor by a closed grid. 
This leads to considerable savings in storage and 
computational time. Results are presented for 
the ONERA PFl three-bladed model rotor and 
show good agreement with the experiment. 

List of Symbols 

A,B,C 
Cp 

Cn 

D 
EJ,i',c 
e 
e 
I 
i,j, k 
j( 

L 
LHS 

jacobian matrices of fluxes 
pressure coefficient 
normal force coefficient 
diagonal matrix 
flux vectors in~, 1), ( direction 
specific total energy 
specific total disturbance energy 
identity matrix 
grid index in ~, '7, ( direction 
centrifugal and Coriolis 
force vector 
lower triangular matrix 
matrix of left hand side 

59.1 

p 

Pco 
R 
RHS 
r 

s 
s 
u 
u,v,w 
u,v,w 

U,ii,W 
v 
x,y,z 

x,y,z 

a 
a, 
(3 

w 

~ 

tip mach number 
freestream mach number 
index of time step 
pressure 
freestream pressure 
rotor radius 
right hand side 
radius 
jacobian matrix of R 
velocity of sound 
upper triangular matrix 
absolute velocities 
contravariant disturbance 
velocities 
disturbance velocities 
cell volume 
cartesian coordinates 
grid velocities 
pitch angle 
shaft angle 
flap angle 
isentropic exponent 
index of Newton iteration 
angular velocity 
vector of conservative variables 

>J! azimuth angle 
p density 
(J spectral radius 
T time 
~, 1), ( body fitted coordinates 
c c c surface normal vector ,x,,y,,z 
[x etc. V · ~x 

Introduction 

A key component for the realistic simulation of 
helicopter flight is the accurate calculation of 
the aerodynamics of the rotor. Today blade ele
ment theory together with prescribed i. e. fixed 
wake geometries are still widely used in industry 
for performance prediction, analysis of stability, 



trim and flight mechanics. 

Important features of rotor flow, such as blade
vortex interactions, shock movement on the ad
vancing blade at high advance ratios and dy
namic stall on the retreating side are not cap
tured by these methods, thus necessitating the 
development and use of more sophisticated tech
mques. 

For the accurate treatment of rotor flow, in the 
last few years Euler and Navier-Stokes meth
ods have been developed for steady and unsteady 
flight conditions. However, they make high de
mands on computational speed and memory clue 
to the required grid size. A large extension of 
the net is necessary for the correct calculation of 
the wake, which has to be as undisturbed by the 
farfielcl boundary as possible. The correct sim
ulation of multi bladed rotors in forward flight is 
strongly dependent on the way in which the wake 
is handled. If the use of a computational domain 
enclosing all blades in order to capture the wake 
without further modelling is not desired or pos
sible, there are several possibilities to take the 
wake influence into account. Firstly, the local 
angle of attack at the blade sections is rotated 
by the induced angles clue to the other blades. 
Secondly, a transpiration boundary condition is 
applied on the blade surface using induced ve
locities. The alternative to these two methods is 
prescription of initial and farfield boundary con
ditions by a fixed or free wake model. This pos
sibility was already successfully applied to Eu
ler calculations of steady rotor flows by Hertel 
[2) and an extension to unsteady flows is accom
plished in the present paper. 

Applied methods 

)<;uler solver 

The Euler equations are formulated in body
fitted coordinates as 

where 

a~ 8E 8F 86 -· 
-+--+-+-=K 
8r 8~ ary 8( 

~ = v · (p, pu, pv, pw, e) 

(1) 

(2) 

is the vector of conservative variables multiplied 
by the cell volume. Velocity and energy are given 

in terms of disturbance velocities in the rotating 
frame of reference, which is attached to z-axis 
representing the rotor shaft, as 

u = u -wy (3) 

iJ = v+wx (4) 

w = w (5) 

e e- pw(uy -vx)- ~(wr)2 (6) 

The flux E is given by 

p [u +w (Y~x- x~y)] 

E= '" \" e w (''" "'" w ,(" pv U + w Y~x - x~y + P~y 

pw U+w(Y~x-x~y) +P~z 
e [ U + w (Y~x - X~y) l + pU- P~T 

(7) 
with 

~7 = V (x~x + Y~y + i~z) (8) 

representing the time derivative of the surface 
nonnal vector. 

The source term R: resulting from the trans
formation into the moving system, which con
tains the contributions of centrifugal and Coria
lis forces can be written as 

0 
v 

i( = pw -u (9) 
0 
0 

tJ is the contravariant disturbance velocity and 
is defined as 

The formulas for F and G are analogous to E 
substituting their respective metric terms and 
contravariant velocities V, W. Here [x = V · ~x 
is the product of the normal vectors of the cell
faces and the volume and x, y, i denote the grid 
velocities. 

For the time integration the second order 3-point 
backward-difference scheme was chosen, which 
gives after semi-discretization the following im
plicit system of equations 

(11) 
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For its solution, a Newton method was applied 
and led to 

[_!_ + ~ (A'' + B" + C" - S")].c..j;wt-~ 
L'.r 3 < " \ 

LHS 
_ [.j\1' _ .j;n 1 .j;n _ .j;n-1 

L'.r 3 L'.r 

+~ (i" + F" + 6"- K")] (12) 
3 < " \ 

'----------v-~------~ 
RHS 

where J-t denotes the index of the subiteration 
within the time step and A, B, C and S are the 
jacobian matrices of the fluxes, respectively of 
the source term. 

In [10] a Point-Gauss-Seidel method with an ad
ditive decomposition of the left-hand side matrix 
has been used for the solution of the arising sys
tem of equations, whereas for the present study 
the LUSGS (Lower-Upper Symmetric Gauss Sei
del) implicit operator by Jameson and Yoon [3] 
has been implemented. It consists of an approx
imate factorization in lower L, diagonal D and 
upper matrices U of the form 

LHS =L·D·U (13) 

With L'.<,ry,\ and 'V <,ry,\ as forward- and 
backward-differences in the 3 coordinate direc
tions the matrices are defined as 

L = I+ -yf'.r ( --Aijk + 'V<A'1 - Bijk 

+ 'V ryB+ - Cijk + 'V 1c+) (14) 

D [I+ -yf'.r (A;jk- Aijk + B;jk 

-Bijk + Cjjk- Cijk) ]--
1 

(15) 

U I+ -yf'.r ( Ajjk + t.,A'- + B;jk 

+ t."B- + c;jk + .c.1c-) (16) 

-y is 2/3 for the chosen time discretization, when 
other schemes are applied this factor has to be 
adapted on the LHS. A simplified calculation of 
the split matrices can be carried out using 

- 1 
A"= '2(A±o-,I), (17) 

where o-< is the spectral radius of A multiplied 
by a factor k 2: 1 

o-< = (l(u -- x)~x + (v- vk" + (w- z)~z I 

+s)~; H~ H;) k (18) 

Applying LUSGS to steady hypersonic flows, 
Rieger and Jameson [8] noted that diagonal dom
inance could be enhanced by substituting o-< by 
its maximum of the currently computed point 
and its preceding respectively following neigh
bour for the L and U matrices: 

max(o-, . . k,o-'--1 -k) '>?.,), ., t ,], 

max ( o-<i,j,k' o-<i+1,j,k) 

(19) 

(20) 

Though the unsteady formulation of the pre
sented solver leads to the additional I on the 
main diagonal, experience showed that the mod
ified calculation is advantageous in terms of ro
bustness. Introducing the abbreviations 

0'£ = O'<i]· k + O'ryi] k + O'(i;· k 
'' '' ') 

o-+. +o-+ +o-+ 
~z,;,k 1Jt,J,k (t,y,k 

~(o-L-1--o-u) 

(21) 

(22) 

(23) 

eq. (14) - (16) can be written as 

L = I (1 + -yil.r o-L)- -y!'.r · 

. ( A;l_1,j,k + Btj-1,k + ctj,k-1) (24) 

D I [(1 + -y!'.r o-oJr1 (25) 

u I (1 + -y!'.r o-u) + -y!'.r 

. ( A;+1,j,k + B~i+1,k + C~i.k+1) (26) 

A closer inspection reveals that the diagonals of 
the 3 matrices consist only of scalar diagonal 
5 x 5 submatrices, which means that only divi
sions are necessary for the solution, thus result
ing in fewer operations than the Point-Gauss
Seidel algorithm where block matrix inversions 
have to be carried out. The following equation 

L · D · Ut.<l;;.+l = -t.rRHS" (27) 

is therefore straightforward to be solved in three 
steps. 

L -I ( -t.rRiis") 

n-t.c.ii>• 

u-t.c.q; .. 

(28) 

(29) 

(30) 

It is even possible to eliminate the calculation of 
the flux jacobians and the subsequent multipli
cation with .c..j; by applying a Taylor expansion 
to the fluxes. 

e±' = e±'' + 
8~± ( .j;•- .j;t•) +O(It.\1;

2
1) (31) 
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Now the matrix-vector products can be replaced 
by 

t;,j!/' = iJh- iJ±~" = A±t;,~' + O(ID.if>2 1) 
(32) 

Using the homogeneous property 

(33) 

the following relation is approximatively valid: 

Now the split fluxes can be determined by 

~ [EJ (~~"+D.~') 
E ( ~~") +"<D.~'] 

~ [EJ (~~"+D.~") 
E ( ~~") -"<D.~"] 

(34) 

(35) 

(36) 

The experience described in [8] that the substitu
tion of jacobians by flux differences did not influ
ence the convergence rate in a negative manner 
can be confirmed for unsteady flow conditions, 
too. 

The algorithm is completely vectorizable by 
choosing the sweep direction normal to planes 
defined by i + j + k = canst avoiding recursion 
in that way. The grid points have to be reordered 
and stored by diagonal planes. In that way, the 
vector length is also increased with respect to a 
i, j, k ordering. Depending on the computer ar
chitecture the implemented algorithm runs faster 
by a factor ranging from to 2 to 4 than the for
merly used Point-Gauss-Seidel solver. 

For the finite volume, cell centred scheme the 
evaluation of the fluxes at the cell faces, which 
appears on the RHS is done by an approximate 
Riemann solver due to Eberle [1] and its imple
mentation for unsteady rotor-flows is described 
by Stangl in [9]. Application of a low dispersion 
scheme [4] results in third order spatial accuracy, 
being switched to first order upwind at disconti
nuities. 

Potential method 

For the generation of initial and boundary con
ditions an accurate method is needed in order to 

predict the wake-induced velocities correctly for 
arbitrary rotor configurations and forward flight 
conditions. Because of this requirement a free
wake method as given by Zerle and Wagner [11] 
was prefered to a prescribed wake. It is based on 
3-dimensionallinear potential flow and the solu
tion is advanced in time by using the information 
of the former step by a procedure which con
sists of two parts. First, by imposing the no-slip 
boundary condition at the blade control points, 
the local vorticity strength at the panel can be 
calculated. Then, a displacement of the wake 
networks takes place, they are prolongated and 
newly positioned. Assuming a quasi steady po
tential flow and a frozen geometry system during 
the timestep the new flow field and wake geom
etry are determined at the end of the timestep. 

The discretization of the blade consists of thin 
panels each covered with a vortex doublet ring. 
Using the blade-panel to blade-panel influence 
coefficient matrix at the end of the time step the 
panel doublet strength is computed. 

Using sheets of quadriliteral ring vorticies (wake 
doublets) the wake is discretizecl. The vortex 
strength of the vortex filament between two ad
jacent doublets is calculated by balancing (sub
tracting) their strengths. At each new time step 
a new wake row is produced at the trailing edge, 
where the Kutta condition is applied. For wake 
movement and distorsion the influence of the 
freestream and every singularity is taken into ac
count. Further details are contained in [11 J. 

The output consists of lattices of blade and wake 
vortices and their respective strengths, which are 
shown in fig. 1 together with the outer bound
aries of the Euler grid. 

Postprocessing of vortex-lattice data 

In order to produce input data suitable for the 
Euler solver, the vector of conservative flow vari
ables has to be provided initially at the location 
of all cell centers and at the farfield boundary in 
the subsequent time-steps. 

Since the vortex lattice with known doublet 
strengths is given, the vorticity strength of the 
single vortex filaments can be computed by 
adding up the doublet strengths of neighbour
ing rafters as well as spars of the blades and of 
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the wake. Then the applica.tion of Biot-Savart's 
law to each spar and rafter of all the blade and 
wake vortices gives the incltrcecl velocities. In or
der to moclel the physical characteristics of a real 
vortex a suitable zero induction radius and an 
exponential clamping factor are applied. Adding 
freestream and induced velocity the absolute ve
locity is determined. Density and specific total 
energy are computed under the assumption of 
isentropic flow. For the preservation of the third 
order scheme the generated data serves as input 
for the outer two cell rows. 

Two revolutions were performed with a step-size 
of 15 degrees, which is sufficient for the gener
ation of the older wake portion which is not in 
the vicinity of the blade. Then a third revolution 
was performed with 5 degrees, producing a finer 
lattice for the vortex system interacting more 
closely with the blade. At these angles the grid 
positioning and the evaluation at the cell cen
ters on the outer boundaries took place. Since 
the data generation for every step of the Euler 
calculation (about .5 to 1 degree) would be pro
hibitive in terms of computation time and result
ing input file size a linear interpolation between 
two subsequent steps of the vortex lattice was 
chosen for the provision of the time-dependent 
variations of the conservative flow variables for 
the Euler solver. 

Results 

Test case 

The selected test case was that of the ONERA 
PFl 3-bladecl rotor with a tip Mach number .613 
and an advance ratio of .4. The following pitch 
and flap variations as well as the shaft angle were 
applied: 

a = 14.16° +0.43°cos'I'(t)- 5.14°sin'l'(t) 

f3 - 1.25°- 5.12° cos w(t) + 0.:12° sin w(t) 

a, = -12.4° 

The grid used for the wake visualizations, which 
outer boundaries are shown in fig. 1 is made up 
of 197 x 60 x 48 nodes. 

Exmnination of the wake syste1n 

'Within a closed computational domain Euler 
methods are able to capture the wake correctly 
as a part of the solution without the application 
of external wake models as reported by Kroll [6} 
or Kriimer et a!. [5} for steady rotor flows. For 
unsteady flows, like helicopter configurations in 
forward flight, the chimera technique consists of 
covering the whole computational domain with 
overlaid embeclclecl grids thus ensuring the cor
rect capturing of all wake influences. The single 
components (rotor-blades, fuselage, tail rotor) 
can interact exchanging the conservative vari
ables on the overlapping boundaries, as has been 
demonstrated by Stangl [10}. However, this pro
cedure puts high demands on available memory 
and computational time. Also some care is nec
essary to assure similar cell sizes in the regions 
where intergrid information transfer occurs, so 
that transport of vorticity is assured. 

In the present paper the question is investigated 
if the wake-capturing feature can also be used to 
simulate the influence of preceding blades with
out the need for a domain enclosing the complete 
rotor only by imposing suitable conditions on the 
boundaries of the grid thus allowing for consid
er-able savings in storage and CPU time. 

For the visualization of the wake system several 
possibilties exist. For hover and axial trans
lation cases, Kriimer [4} used isolines of total 
pressure loss and circulation density in planes 
through the axis of rotation. Since in forward 
flight conditions it is difficult to define such 
planes of prilnary interest, in [10] isosurfaces 
of the absolute magnitude of the rotation vec
tor were found to be adequate for the purpose 
of examining the main features of the flow as 
tip and inboard vortices, but also vortex sheets. 
Since a huge amount of data is involved in this 
analysis, only three azimuthal positons at \1' = 
0°, , 120°, 240° are shown here, which are suf
ficient to demonstrate the results of the cou
pling. They have been calculated on the orig
inal grid in order to obtain a more comprehen
sive insight comparing the geometry of the Euler 
wake which is represented by white isosurfaces, 
and the vortex-lattice wake, which is depicted by 
a network in grey shades. The direction of the 
freestream lies in the x - z plane, forming an 
angle of 12.4 ° with the positive x-direction. 
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Fig. 2 shows the flow at 1Ji = 0°. Vortex sheet 
and tip vortex of the Euler blade are clearly vis
ible. The position of the two solutions agree in 
a satisfactory manner, the apparent deviation of 
the tip vortex after a turn of 180 degrees is clue 
to the fact that it follows the path of the filament 
leaving the blade tip which is covered by the en
rolling lattice. Far in front of the blade the traces 
of the preceding tip vortex are visible which are 
highly stretched because of the high cell aspect 
ratio in this region, thus demonstrating the need 
for a fine net also in the outer parts of the grid. 
For further clarification a close-up from another 
perspective is shown in fig. 3 which uses an iso
surface of a higher rotationstrength to cut away 
secondary features. The structures in the vicin
ity of the blade can now be explained. First, the 
inboard vortex can easily be identified below the 
blade in a position which coincides with the vor
tex lattice. Second, the reentering tip vortex and 
its interaction with the preceding vortex sheet is 
visible. 

Fig. 4 illustrates the situation at 1Ji = 120°. 
Again the vortex sheet positions coincide, how
ever the roll up of the tip vortex has not yet 
taken place. This fact is confirmed by the po
tential solution. The preceding tip vortex enters 
the domain in the right position and is continu
ing below the blade following closely the geome
try of the vortex lattice. For this case it is known 
that the main interaction occurs in the range be
tween 0 and 120°, so that the terminal phase is 
visualized in this figure. 

A further confirmation of the good agreement is 
given in fig. 5 for 1Ji = 240°. The Euler solu
tion reproduces accurately the vortex structure 
of the potential method. It also evident that the 
preceding tip vortex which is generated by the 
boundary conditions is positioned at the right 
place. 

Solution on reduced grids 

Now tl'at the feasibility of the coupling approach 
has been proved, an attempt to lower the stor
age and CPU-time requirements by reducing the 
size of the Euler grid has been made. Numeri
cal studies with grids of different sizes have been 
carried out, and grid-point savings up to 30% 
turned out to be possible without accuracy de-

terioration. The grid on which the following re
sults have been obtained is shown in fig. 6. 

For the radial station of r / R = . 9, the cp
clistribution at 12 azimuthal positions is clipictecl 
in fig. 7. The pressure coefficient is defined as 

P- Poo 
Cp = -,-----,----''-c---'-=------

~Kp00 (Mt r / R +Moo sin (1Ji)) 
(37) 

A good agreement with the experiment is 
achieved. In [7] the deviations at 1Ji = 0° can 
be explained by the influence of the rotor shaft 
at this azimuthal position. 

In fig. 8 the time dependency of the normal force 
coefficient multiplied by Mach number squared 
during a revolution is plotted. It is calculated 
with 

2 norma/force 
Cn!VI = -.-----,~---,----,~~~----,---c 

~Kp00 (local chord) (length unit) 
(38) 

Again, good agreement with the experiment is 
achieved. 

Cone! us ions 

It can be concluded that by imposing free wake 
data the generation and the transport of the vor
tices of the preceding blades into the Euler do
main can be achieved. Therefore, modeling of 
multi-bladed rotor flows in the unsteady flight 
regime is possible by calculating only one blade 
and taking the others into account by the ve
locity distribution that they cause on the grid 
boundaries. Furthermore the farfielcl boundary 
can be located closer to the body which results 
in saving of storage and time. The coupled ap
proach will be investigated in future as a flow
field preconditioner for the chimera technique in 
order reach faster a periodicity of the solution. 
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Figure 1: Example of output of vortex-lattice code and dimensions of Euler grid for rotor calculations 

Vortex lattice of preceding blades 

Figure 2: Wake syste1n at W = 0° 
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Figure 5: Wake system at w = 240° 

z 

~ X 

lmax=189, 

Jmax=51' 

Kmax=42, 

385400 cells 

Figure 6: Grid of reduced size 
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Figure 8: Normal force coefficient as function of azimuth angle, (D: experimental values from [7]) 
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