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Abstract

Classical Floquet theory is widely applied to pre-
dict trim and stability. However, the sequential run
time for trim grows between quadratically and cubi-
cally with the number of states or order because many
integrations through one complete period are required.
By comparison, the fast Floquet theory requires inte-
gration through 7/, where T 1s the period and ) the
number of blades in a rotor with identical blades; the
mode identification becomes simpler as well, Accord-
ingly, a parallel shooting method based on the fast Flo-
quet theory and damped Newton ieration is developed
to predict trim and the equivalent Floguet transition
malrix (EFTM). A parallel QR library is used to pre-
dict stability from the elgenanalysis of the EFTM. The
parallel fast Ploquet analysis comprises these shoot-
ing and QR methods. The computational reliability
is measured by the condition numbers of the Jacobian
matrix in Newton iteration as well as by the eigenvalue
condition numbers and residual errovs of the cigen-
pairs. Similarly, the parallel-performance measures in-
clude the dominance of the parallelizable part, paraliel
and sequential run times and their rates of growth with
the order, and efficiency. Basically, efficiency shows
how eflectively the processors are used, allowing ana-
lysts to guard against processor underutilization. The
parallel fast-Floquet analysis 1s compared with three
other analyses: parallel analysis based on classical Flo-
quet theory and sequential analyses based on classical
and fast Flocquet theories. Nearly 500 states are used
o treal iselated-rotor trim and stability with dynamic
stall and wake. ‘The data on computational relia-
biltty and parallel-performance measures demonstrate
ine feasibility of the paraliel fast-Floquet analysis with
thousands of states.

Nomenclature

Unless otherwise stated, the symbols below are nondi-
mensional:
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constant profile drag coefficient
resulfant profile drag force in the plane af

the rotor disk opposite to the flight direction

rolling moment coefficient

pitching moment coefficient

thrust coefficient

welght coefficient of the helicopter
error vector for k-th iteration
efficiency using p processors

equivalent flat plate area of parasite drag
sequential fraction

identity matrix

number of states or state variables,
M=N+c¢

number of structural and aerodynamic
states or state variables

nurmber of biade states

number of dynamic wake states
number of processors

flap natural frequency, rotating
permutation matrix

rnumber of blades

Speedup

stale vector x augmented with
control-input vector ¢

Line unit such that 1" = 27

parallel run time on p processors, sec
uniprocessor or sequential run fime, sec
sequential pact of ¢y, sec

parallel part of {;, sec

period, sec

state vecfor

matrix of angmented initial-condition
vectors, Be. (30)

solution vector with components x(2r)
and 8 corresponding to initial response
vector s, Bq. (25)

solution vectors with components x{27)
and & correspeading to perturbed
veclors, B, (25)

malrix of augmented solution vectors
having components vy, Tq. (31)

k-th eigenvalue of the FTM

k-th eigenvalue of [Pd(AT))

wake states

k-th mode nonunigue frequency of z;
k-th mode nonunique frequency of Ty
Newton damping parameter

trirm-error vector for control inputs



AT T/Q

¢ perturbation quantity

o4 Lock number (blade inertia parameter)
o rotor solidity

o k-th mode damping of z,

7 k-th mode damping of 7

I advance rablo

¢ state transition matrix

b Jacobian or Partial Derivative Matrix
we lag natural frequency, rotating

[T transpose of [ ]

i1l Euclidean norm of a vector or matrix

(x} time derivative of x

Introduction

Classical Floquet theory provides a rigorous basis
to predict trim and stability; trim means control set-
tings and the corresponding periodic responses, and
stability means frequencies and damping levels (Ref.
t). Broadly stated, the shooting method is used to
predict trim, which gives the Floquet transition ma-
trix (FTM) as a byproduct, and the QR method is
used for the eigenvalues and eigenvectors of the FTM,
from which stability is predicted (Refs. 1—4). Despite
the basis and other attractive computational features,
the sequential run time for trim becomes prohibitive;
in fact it prows between quadratically and cubically
with the number of states or order (Ref. 5). Thus, en
sequential computers, classical Floquel theory can be
routinely applied to relatively small-order models, say
order ¥ < 100. More important, its utility is limited
in cases of practical interest such as comprehensive and
design analyses that require models with thousands
of states. Recently, the fast Floquet theory with se-
quential computing and classical Floquet theory with
parallel computing have been pursued to remove or al-
leviate this run-time constraint {Refs. 5-7). In this
paper, we present a new approach thal exploits both
the fast Floquet theory and parallel computing and
thereby demonstrate the feasibility of treating models
with thousands of states routinely; as it turns out, the
potential practical utility is dramatically borne out by
the numerical resulls. We begin with a meniion of
why the run time for trim becomes prohibitive. This
facilitates a better appreciation of why the combina-
tion of the fast Floquetl theory and parallel comput-
ing provides nearly a tailor-made solution to the run-
time constraint. Moreover, we primarily address trim
with only a passing reference to stability and use the
run times for trim and stability and for trim almost
interchangeably.  This is because for large systems
(N > 100) the ran time for stability is hardly 1% of
the run time for trim.

Prediction of trim is a demanding and computer-
heavy exercize that couples nonlinear differential equa-
tions of motion with algebraic-transcendental equa-
tions of trim (e.g. Ref. 2). We have to predict the con-

trol settings that satisfy the ilight conditions and then
(given these controls) find the Initial conditions that
guarantee periodic response. Furthermore, the control
settings appear not only in the damping and stiffness
matrices but in the forcing-function matrix as well, and
they are specified indirectly to satisfy flight conditions
of prescribed thrust level and force-moment equilib-
rium. Therefore, we predict trim iteratively, starting
with assumed values, say for N initial conditions for
an N-order model and for ¢ number of controls. Then
we integrate the equations of motion through one com-
plete period, find the error in satisfying the trim and
periodicity conditions, improve the starting values ac-
cording to Newton iteration and perturb the starting
values one at a time. The cycle of perturbing, integrat.-
ing and improving continues till convergence. Thus, if
k cycles are required for convergence, the procedure re-
quires k(N +c) perturbations, integrations through one
complete period and improvements. Here, twe points
need to be stressed since they have considerable bear-
ing on the fast Floguet theory and parallel computing.
First, a large number of integrations through one com-
plete period is vequired; k(N -+ ¢ + 1) integrations to
be precise. Second, a fairly large number of integra-
tlons in cach cycle are independent; that is, N 4+ ¢ 4 1
independent integrations. The first point leads to the
fast Floquet theory since integrations through 7/ are
required, where T is the period and @ the number of
blades; the only restriction is that the rotors have iden-
tical blades. Similarly, the second point leads to par-
allel compubing since these independent integrations
could be executed in parallel or concurrently. Given
the fact that the integrations take the bulk of the se-
quential run time, the fast Floguet theory and parallel
computing, in principle, recluce the run time by a lac-
tor of nearly Q(N + ¢+ 1}. This is the motivation for
bringing together the fast Floquet theory and paral-
lel computing. Parallel fast Floquet analysis does just
that. To put it in perspective, the state of the art of
classical and fast Floguet theories is presented next,
Relatively few studies are available that apply clas-
sical and fast Floguet theories to predict trim and sta-
bility of farge systems with sequential or parallel com-
puting (Refs. 1, 5-7). In fact, predictions of trim and
stability are based almost exclusively on classical Flo-
quet theory, even for rotors with identical blades. In
Ref. 1, Gaonkar and Peters review these applications
of classical Floquet theory with sequential computing
up to 1986. As reviewed therein {Ref. 1), the applica-
tions arc limited to relatively small systems, the order
N hardly exceeding 35, owing to run-time constraint.
Developments since 1986 are covered by Chunduru
(Rel. 5); he applied both classical and fast Floquet
theories to large systems (N 2 300) with sequential
computing and shows that the fast Floquet theory in-
deed brings in nearly ()-fold reduction in run time for
a (J-bladed rotor. Similarly, Subramanian et al. ad-
dress large systems (N =2 500} by exploiting parallel
computing (Refs. 6 and 7); classical Floguet theory
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is used in Ref. 6 and the fast Floquet theory in Refl.
7. A case in point 1s two earlier studies due to Peters
(Ref. 8) and to McVicar and Bradley (Ref. 9). Peters
presents the theoretical aspects of the fast Floguet the-
ory with respect to single- and multi-rotor models and
two of these aspects merit special mention: the fast-
Floquet theory makes the mode identification simpler
(vis-a-vis the classical Floquet theory) and lends itself
equally well to multirotor aircraft. In Ref. 9, McVicar
and Bradley apply the fast Fioquet theory and paral-
lel computing to simulate tilt-rotor trim in real time.
This paper is a condensed and amplified version of Ref.
7.

Parallel fast Floquet analysis comprises a shoot-
ing method based on the fast Floquet theory and on
parallel computing, and -a parailel QR library. It Is
compared with three other analyses: parallel analysis
based on classical Floquet theory and sequential anal-
yses based on classical and fast Floguet theories. To
make this comparison comprehensive and realistic we
treal models of order as high as 430 and present data
on the following items: 1) computational reliability,
2) sequential and parallel run times and their rates
of growth with the problem size or order and 3) par-
allelizable versus nonparallelizable parts. These com-
parative data also include efficiency of parallel com-
puting, which is a measure of how busy the processors
arc kept; for example, an efficiency of unity means the
processors are used effectively without underutiiiza-
tion. Both efliciency and run time together provide
a systematic means of scaling the processors with the
order as a compromise between how effectively the pro-
cessors can be used and how fast the problem needs to
be solved as the order increases,

To sum up: We present parallel fast Floguet analy-
sis, apply it to models with as many as 430 states and
then present a comprehensive set of comparative data
. 1o demonstrate 1ts practical utility. The computations
are done on a MasPar MP-1, architecturally a Single-
Enstruction-Multipie-Data or SIMD massively paral-
lel computer with 8192 processors. Unlike sequential
computing, parallel computing is architecture depen-
dent, as such the preceding development would need
adaptations to other architectures. Nevertheless, the
potential practical utility of this developroent should
motivate further research on these adaptations and
other applications of paraliel computing. All in all,
there is broad agrecment on “the inevitability of the
eventual success and widespread use of massively par-
allel processing technology” (Ref. 10); alsosee Ref. 11
And only the barest beginnings have been made in de-
veloping and applying paratiel computing concepts and
methods to rotoreralt acroelasticity (Ref. 6). There-
fore the present work should provide a uselul reference.

Classical and Fast Floquet
Theories

Paralle] fast Floquet analysis, based on the fast
Floquet theory, predicts trim and stability of single-
rotor as well as multirotored models of rotorcraft. It
is presented here primarily with reference to a single-
rotor model with ¢} blades, The extension to multiro-
tor models is straightforward and not explicitly elab-
orated. The only restriction is that each rotor has
identical blades. Compared to parallel Floquet analy-
sis {Refs. 6 and 7), which is based on classical Flogquet
theory, there are changes such as interval of integration
and formulation of forces and moments in predicting
trim, and generation of the eigenvalues and eigenvec-
tors of the F'I'M and mode identification in predict-
ing stability. These changes bring in considerable sim-
plicity to the algorithm with significant benefits: sim-
pler mode identification and dramatically reduced run
time. To help explain these features we hegin with a
mention of predicting periodic-response and stability
of a linear system by applying classical Floguet the-
ory, then take up briefly parallel Floguet analysis and
finally come to parallel fast Floquet analysis.

Classical Floquet Theory

We consider a linear periodic-coeflicient system
with & x 1 state vector x(¢), whose equations of mo-
tlon can be written as

(1) = AE) x(1) + G (£) (1)

where the state matrix A(t) and the forcing function
or input vector G(t) are 2w-periodic, and are of di-
mension N x N and N x 1, respectively. The N x N
state transition matrix ¢(t) is the fundamental solu-
tion matrix of the matnx differential equation

d=Ag, 0<L<2r (2)
with initial condition ¢{0} = ¥ The FFT'M is given
by (27} and its eigenvalues, zp, determine system

stability (Ref. 1). The modal damping and frequencies
are given by

1
o = — In ey (3a)
2
! 1 _y [ im{z)
e 5 A 4 N Rt t',{- 1 Si
& 27 e () G (Re(zk) (3b)

For the complete or nonhomogeneous Eq. (1), the
initial conditions that yicld periodic forced response,
that is, x(0) = x(2x), are given by (Ref. 1)

[T~ 6(2m)] (x(0) — xp{0)) = (xu(27) = %5(0))  (4)
where xp(2m) is the non-periodic solution at & = 2
for any arbitrary initial state xg(0).

[n general, roloreraft systerns are governed by non-
lincar periodic-coeflicient equations and can be repre-

sented as

x = G(x,¢t)

—
w3
I
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The initial conditions to generate periodic response ave
obtained by applying a Newton-type iteration. Specif-
ically, for the k-th iteration, Eq. {4) reads:

x(Mper = xp(Or+x[T- 05(271')];:1
(xp(2m) —x2(0)); (6)

where ¢p(27) converges to FTM, and [I — ¢(2m)]" ! is
the Jacebian or partial derivative matrix @ and y is the
Newton damping parameter. Here after, the Jacobian
matrix (Jacobian, for short) and the partial derivative
mabrix (PDM) are used interchangeably.

With the role of unknown control-input vector ¢ ex-
plicitly shown, the equations governing the rotoreraft
motions can be written as

X = G(x, ¢, t) (7}

Then the initial condition x(0) that yields periodic re-
sponse will satisfy

x (2w, %x(0)) — x{0} =0 {8)

where x{2m, x(0)) represents the state at { = 27 with
initial state x(0). Beside the initial conditions for peri-
odic response, we also compute the control-input vee-
tor ¢ such that the periodic response satisfies the trim
equations of force and moment balance. Symbelically,
the trim cquations are represented as

f(x,¢}=10 )]
Equations (8) and (9), which represent the response
periodicity and desired  flight conditions, respec-
tively, are nonlinear algebraic transcendental equa-
tions. Combined, they can be expressed as

£(s) = 0 (10)

where s = [x, ¢/” is the augmented-state vector of

state variables and control inputs.

Thereflore, the trim analysts boils down to the gen-
eration and solution of Eq. (10). This is done by
formulating a shooting strategy with damped Newton
iteration (Ref. 2). Thus, the initial conditions that
yield the periodic response and the unknown control
inputs thai satisfy the required flight conditions are

improved according to
{ x(0) } { x5(0) }
¢ bt ¢ .
| 2 -1 @ o
’ - P40

{ xl;‘(?ﬂ’){; x(0) } (11)

where § is the error in satisfying Eq. (9); that is,
F{x,c) = &, and & is the Jacobian matrix. Further-
more, the submatrix @y, converges to the F'T'M.

Trim with Fast Floquet Theory

In classical Floquet theory, the Jacobian is gener-
ated by integrating the equations of motion through

one complete period 2x. However, lor a Q-bladed
rotor with identical blades, the I'T'M can be gener-
ated by integrating the equations of motion through
AT = 2¢/Q. The basis is that at ¢ = AT, the first
blade is in exactly the same position that was occupied
by the second blade at v = 0. Therefore, the state
transition matrix for the time interval from % = AT
to ¥ = 2AT 1s identical to the one in the time in-
terval from 3 = 0 to ¥ = AT except that the blade
indices need to be permuted. This shows the feasibil-
ity of finding the transition matrix between any two
time instants that differ by AT from the transition
matrix from 9% = 0 to ¥ = AT and the permutation
matrix P (details to follow). Therefore, the general
relation between any two time instants ¢ = nAT to
W= (n -+ 1JAT" can be expressed as (Refs. 7-9)

P x{(n+ DAT] = G(AT)P x[nAT)
n=0,1,..,Q~1 (12)

From Fq.(12), one can write

Px(AT) = PH(AT)x(0) (13a)

P x(2AT) = [PH{AT)])* x(0) (13b)

POx(QAT) = x(27) = [PHAT)? x(0)  (13¢)

which leads to
p(2m) = [PH(AT)]? (14)

This i1s a crucially important equation that connects
the I'TM ¢(27) with ¢(AT). Therefore, we need to
compute G(AT) instead of ¢p(27) since the (J-th power
of [PH{AT)] gives the FTM. The practical utility of
Fq. (14) is keyed to the fact that the eigenvalues zz of
¢(27) arc related to the eigenvalues 7 of [PH(AT)] by
the relation zp = ?? Since the modal damping levels
and frequencies are found by taking the logarithm of
zp, 1t 18 not really necessary to raise the eigenvalues
Zr to the (2-th power. Instead we take the logarithm
of ¥, and simply multiply it by Q. Therefore, the
modal damping and requencies are found from the
cigenvaiues Zp of [Po(AT)]:

7 = — I |Z]

s

£ = E,Q arg({?y) = ;Q—Leufi (lm(ik)> (15D)
2 2 Re(Z:)

As scen from Eqgs. (14} and (15), [P$(AT)] has one-

to-one equivalence to the FTM, hence it 1s referred to

as the eguivalent ¥TM (ET'TM).

In trimmed flight, the blades experience periodic
variations in the sectional angle of attack as well as
in the air velocity components, which i turn produce
periodic variations in rotor forces and meoments. For
a rotor with identical blades, the contribution of each
blade to the rotor forces and moments will be the same
at a given azimuthal position since each azimuthal po-
sition has its own pitch and air velocity. Thercefore,
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the period of oscillations of these forces and moments
depends on the number of biades in the rotor. Thus,
for a Q-bladed rotor, it is required to rotate through
27 /@ radians so that it has a blade in all azimuthal
positions instantaneously. Thus, the variation of trim
forces and moments in one period (27 radians) can be
described completely in 2v/Q radians of rotor rota-
tion. Therefore,

Cp Cr

Cd _ Gd

o 1 G (16)
Crm $=0 Crm = 2w /0

Similarly, the inflow forcing functions are influenced
by the blade sectional lift, which also can be described
completely over 27 /() radians. Therefore, for inflow or
wake states, the periodicity condition is satisfied when

$ i)
P=0 I y=2m/Q

However, in the case of blade stases, the rotor has to
rotate through 27 rad for each blade to pass through all
azimuthal positions. Thus, one complete rotor revolu-
tion is required to describe the trimmed blade states.
In other words, one complete revolution is required to
check for periodicity of the biade states. Nevertheless,
it is possible to ascertain periodicity of blade states in
27/} rad of revolution since the trajectory followed
by all the blades is the same as they go through one
revolution with a phase shift of 20/Q rod between the
paths of each blade. Therefore, the states of an arbi-
trary g-th blade at an azimuthal position ¥ = 2%/
will map onto the initial states of an identical (¢ -+ 1)-
th blade at ¥ = 0. {The blade states can include dis-
placements, velocities, angular displacements, angular
velocities and blade-fixed acrodynamic states.) Thus,
for the periodicity of blade states, we have

(17)

= I";x,

(18)

where x, i the Ny x | vector of blade states delined
as

xbw Y=0

=2/

(19)

In Eq. (18), Py is the QN x @, permutation matrix
and 18 given by

P
Xp = l_xbiade 1y Eplade 2y ) Xblade QJ

c L, 0o --- 0 0
¢ o 1 --- 0 0
Pp= | + s (20)
6 o0 o0 - 0 1,
I, 0 0 --- 0 0

where ¥ ts the Ny x Ny unit matrix.
Now, combining the blade states and the inflow
states, we write

(21)

{x}y')q:’.?‘n/Q =P {x}l,bq =10

where the N x N permutation matrix P is given by

(o I, ¢ ... 0 0 0§ ]
¢ 0 %L --- 0 0 0
P = Do e : (22)
o o6 0 ... 01 0O
I, o ¢ --- 0 0 0O
|0 0 0 - 0 0 I, |

and I, is the unit matrix of size N, x Ny. In sum-
mary, Eqgs. (16—21) show that the rotor trim forces,
momenis and periodic responses can be described m
the interval 27/Q. Therefore, BEq. (11), which im-
proves the initial conditions that guarantee the perl-
odic response as well as the unknown control inputs
that satisfy the required flight conditions is medifed

as (Refs. 7 and 9)
CINNED
S < v
-1
®,-PF @

Py B0
{ xE(Af[‘)gPXE(U} } (23)

Moreover, the matrix PT® ), converges to [P $(ATY].

Parallel Fast-Floquet Analysis

Trim

Now we present a parallel fast-Floquet algorithm
of helicopter trim — parallel shooting based on the
fast Floquet theory — and consider a system with NV
structural and aerodynamic states and with ¢ number
of control setiings or inputs. A noteworthy feature is
that in each iteration cycle, while the sequential algo-
rithm generates (N +¢)? elements of the Jacobian one
clement at a time, the parallel algorithm generates all
{N+c)? elements once. Conceptually, we solve (N+¢)?
times as fast on (N + c)* processors as on a single
processor, Lo facilitate a better appreciation of this
significant feature of the developed parallel algorithm,
it is expedient to begin with the algorithmic details of
sequential shooting based on the fast Floquet theory.

Sequential Fast Shooting

The sequential sneoting algorithm centers on L.
(11) and has the following seven instructions:

1. Assume N 4 ¢ = M arbitrary starting or initial
values of the augmented vector s; that s, NV x|
initial state x(0) and ¢ x 1 control-input vector ¢.

2. Form the permutation matrix P of size N x N
according to Fq. (22).

3. Perturb the M initial values one intlial value al
@ tme by a small amount ¢, i =1,2,..., M and
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form M + | vectors of starting values:
€1 1] 0
€2 0
R “ ,S+ . ,"‘,5+ . 35{24)
0 0 €u

4. Integrate nonlinear Eq. (7) M + 1 times for the
M + 1 vectors of starting values through a time
interval AT = 27/€ and generate the solution
vectors:

yi o= { x(%l) } where i = 1,2,.. .. M
Sd-ey

wdy={ ¥G0 (25)

The vector é represents the trim error in satisfying
Eq. (9). Moreover, the subscripts s and s+¢;, re-
spectively, indicate the differences in the starting
values; that is, one solution vector with starting-
value vector s and M solution vectors with Af
vectors of perturbed starting values.

3. Yorm M columns of the Jacobian matrix ¢ using

-
{y y} : i=1,2,..., M or equivalently

€;
P -P By .
P = 2€
[ By, @22] (26)

where PT® ) converges to Po(AT).

6. Generate the error vector Ef. Specificaily, at the
k-th Iteration counter

o { x(Af‘[‘);Px{O) }*‘ 27)

where x{AT) 1s the solution vector at the end of
2w /Q) period and é is the trim-error veclor corre-
sponding to the initial-condition vector s.

7. Improve the solution with Newton damping pa-
rameter x:

gFhl o gk X(IflEk (28)

The instructions 3—7 are repeated till the convergence
of contre! inputs and periodic responses.

Parallel Fast Shooting

According to Egs. (2428}, each instruction is
applied to a large number of input data and the oper-
ations on these data are independent. The parallel fast
shooting algorithm exploits this independency so that
all the processors execute the same instruction but on
different data. Given this background, we present the
parallel algorithm with seven instructions in the for-
mat that is implemented.

94.6

1.

Assume an arbitrary vector of starting values for
trim results of periodic responses and control in-
puts s = {8 52 - SMJT. Then form a matrix of
size M x (M +1) by replicating (M +1) times the
vectors s, that is,

&1 81 §y S1
59 59 o 8n 52

(29)
Sp0 Sy 0 SAM SM

. Following Eq. (22}, form the N x N permutation

matrix P in such a way that each element of P is
stored in one processor.

For the M x M submatrix (excluding the last col-
umn of the matrix in Eq. (29)), perturb along
the leading diagonal by a small amount ¢;, 7 =
1,2,..., M, and generate the M x (M 4 1) matrix
of initial conditions:

Sy -+ €1 $ 81 51
59 S+ €9 - Sz 57
L Sm Sar T SyM ot e sy
r 1 2 M M4l
5 87 o & S}W
sh 83 o s MM
= . . ) ) (30}
! 2 M M1
L -‘)M SM e SM SM

This instruction is sketched schematically in Fig.
1. As shown therein each data element of an ar-
ray (e.g., 51) is associated with one processor (de-
picted by a box} and all the processors execute
the same instruction on their own data element.

. Using the above M x (M + 1) masbrix of initial

conditions, integrate Eq. {7} in parallel and gen-
crate the sclution matrix Y at the end of period

¥ = 2w /0

, M1
vy o ) y};l
i 2 M +
Yo Y2 - W ¥
Y = . )
. 3 Mo M4l
Y Yu o Ym Y
_ |9 M M1 .
S [yl YRyt y] (31

According to instruction 3, the integration of
aquations of maotion begins at ¥ = 0 and proceeds
through an interval ¢ = AT with a finite number
of azimuthal positions as integration sieps. As
shown in Iig. 1, this operation is represented by
a series of parallelepipeds, one below the other
with each one representing an azimuthal position;
Yo =0 — Py = g+ Ath — 0~ Wby, = /().
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Figure 1 Schematic of Parallel Fast Shooting.

Canverged soiution

Moreaover, each box of the parallelepiped repre-
sents one processor assecialed with one data ele-
metl. The details ol operation al each azimuthal
[)()Sif;l()l] involve paraliel computations associated
with the equations of motion and trim. ‘There-
fore, we emphasize that computations of the er-
ror in satisfying B, {9) and the (M -+ 1) sets of
itegrations for the M x (M 4 1) malrix of initial
conditions are carrvied out in parallel and that each
element ol the solution matrix Y is compuled by
In other words, M (M -+ 1} proces-
sors are used to generate M{MW 4 1) clements of
the mabrix Y.

one prodessor.

5. Form the Jacobian matrix @ according to Eq.
(26).

. Estimale the error using Eq. (27).

7. Inprove the solution following Eq. (28).

The ipstructions 37
of trim results.

are repeated tiill convergence

Stability

Por large systoms, the t‘sg,mmnalvsm for stabaiity
results s not the domirant issue 1n the rua fime of
[ast-Floguet analysis. The QR method for cigenanal-
ysi1s takes much less run time. In fact, compared with
the run tirne for trim analysis, the eigenanalysis hardly

takes 1% of the total run time. Given this background,
we generate the stability results such as the modal
damping levels and frequencies from the eigenvalues
of the matrix [qu(/.\T)}; see Bqs, (ES&L) and (15h).
As seen from Eq. (15b), the frequency is determined
from the inverse arctangent function, which results in
multipie values. To help predict she frequencies and
thereby identify all modes, we follow the method of
Ref. 4 with some modifications that result from re-
placing the F'TM hy [PH(ATY]; see By (28). Specid-
ically, we first compum—‘ the eigenvectors of the ma-
trix [Pp{AT)]. Then for each eigenvector, say x;, the
complex ratio of the derivative #; and the state
corresponding to the most dominant component is ob-
tained; for details sce Ref. 4. The imaginary part of
this ratlo with a suitable correction, which is an inte-
ger multiple of ), closely approximates the frequency
of the mode. In this study, an LAPACK eigenvalue
subroutine DGEEVY for real unsymmetrie matrices is
used to compute the eigenvalues and elgenvectors of
the matrix [PH(ATY] (Ref. 12).

Computational Reliability

Predicting trim and stability is demanding, in-
volving nonlinear differential equations of motion cou-
pled with algebraic-transcendental equations of trim.
Even for relatively small-order systems, the computa-
Lions are intensive in that repeated operations like in-
tegrations, incarvinations for Newton improvement and
iterations with 1mproved starting values are required.
Some of these operations grow quadratically with the
order; therefore, for large models, the computations
beeome extensive ag well. Given the complexity and
extent of the computations, a means of quantifying
Lheir reliability is requived.

As seen from Eqs. (26) and (28), the Jacobian deter-
mines the improved values of trim in the correspouding
iteration cycle, and [P@(AT)] is its submatrix in the
final converged cycle. Moreover, the frequencies, mode
identification and damping levels are derived from the
eigenvalues and cigenvectors of the matrix [P@(ATY)].
Thus, generating the Jacobian and eigenanalysis of the
malnix [P{ATY] s crucially important to prediciing
trim an 'sl,a.i)ilitv Accordingly, we use three relin-
bility parameters; the first one concerming the Jaco-
bian in Newton ltemhlorh and the other two concerning
the cigenvalues and eigenpairs of [PS{ATI] that cor-
respone to the modes of interest. For completeness, a
brief account of these relinbility parameters 1s given in
the sequel; this also kelps present the numerical results
subsequently.

The first reliability parameter is the condition num-
ber of the Jacobian @ and is given by

(Sl

[ma‘{ etgenvalue of ®7 ﬁb]

Cond.(®) = (32)

T
[rmiin. cigenvalue of @7 ®)>
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Simitarly, let x and y represent the right and left eigen-
vectors of the matrix [P@{AT)] corresponding to its
eigenvalue A; that is,

[PAH(AT)]x = Ax and [PH{AT) Ty = Ay {33

By definition, the condition number of X and the resid-
ual error for the eigenpair {X, x) are, respectively, given
by

Cond.(A) = |yTx|™! (34)

_ P AAT)]x = ]
l1Ax]

(35)

For additional detatls sce Rel, 13,

Parallel Performance

Under ideal conditions in the problem and al-
gorithm, parallelism with p processors reduces the
pniprocessor run time by a factor of p, and the ‘hest’

Lhese pro

wsors could do has been extracted. The par-
allel performance metrics collectively provide a mea-
sire of how well the actual conditions in conpleting
the jolr approximabe the ideal. The lack of standards
on the munber, use and interpretations of these metrics
is well recognized and has been receiving increasing
atlention {g.g. Rels. 10 and 14). Following the Lter-
ature {eg., Refl 15), we use four such mefrics. The
first one s & directly measured quantily and the easi-
est to mterpret: the growth of vun time with the order
and number of processors, The parallel run time is the
elapsed Lime from the start of the parallel computation
Lo the end Ll all the computations are comyleted. The
otner three e specdup, sequential fraction and effi-
clency, which are derived [rom the measured run time,
number o processors used and predicted uniprocessor
run Lime. We emphasize Lhad memory boltlenccic pre-
vents direct measurernent ol uniprocessor ran tirmne for
farge models since massively parallel computers, par-

ticularly SIMD systoms, represcnl an assemblage of

thousands of relatively small computers (Rell 10).

Speedup 5, measures how a paraliel algorithm run-
g on poprocessors compares with itsell running on
one processor. Thus, if ¢ represents the parallet run
lime on 4 processors, speedup s delined as

< p {36)
Simitacty, efliciency £, measures how cffeclively the
processors are used; iy other words, how busy they
are kept relative (o each other:

Ly = (l <1

7
For example, an efficiency of unity means we are “gel-
ting to the best” that the processors can do {Refl 14).
Hois taportant Lhat the results of S, and &, be in-
terpreted moa relative sense. These two sets of results
stmply provide a means ol compromising between how

(37)

last the job needs to be completed and how the pro-
cessors are kept busy.

Under the widely used assumptions that the prob-
lem can be divided into completely sequential and par-
atlel parts and that the overheads such as those due
to interprocessor communication are negligible, the
uniprocessor time ¢; can be expressed as (Refs, 10,
14 and 15)

by =11, + 1, {38)

Since only the parallel part can be speeded up, the run
time with p processors 1is
= b, 4+
P
The above equation is used to predict the uniprocessor
run time £ {= ;, +1,,}. Basically, the same job is
run for different values of p, the corresponding parallel
run fimes {, are measured, and then 4, and ty, are
computed by a least-square approach. It is convenient
bo express ¢y, and ¢, in terms of dimensionless serial
fraction f, which hy definition is:

by, = ftyoand 4y, = {1~ i {40)

Now, the parallel run time 4, in 1q. (39) can be ex-
pressed as

(39)

‘ (1)t
t, = 1) 4 ———— 4
P J‘ p -t » ( 1)
ad the speedup in Eq. {36) takes the form
, L
SP = f + 1;[ {42)

Or, equivalently, serial fraction [ can be expressed 1n
terins of speadup 5, and number of processors p:

L=1/5,
i 1/p
After normalizing the uniprocessor run time to unity
and differentiating speedup 5, with respect to parallel
fraction (1 — f), we goi

which shows the dominant influence of the pacallel
fraction on speedup. Although p takes on only 1nteger
values and the serial fraction is not strictly indepen-

(43)

dent of the number of processors, an instructive result
follows from diflerentiating 1/ /5, with respect to p

(15)

T'he above equation clearly shows that the serial frac-
Lion is an indirect measure of efficiency. Asg elaborated
subsequently on the basis of numerical results, the se-
riad fraction [, which is basically problem dependent,
is a very small murnber in FPloguet analysis and gener-
ally deereases with increasing order. Thus, Bq. (45)
shows thal any approciable deviation [rom lincarity in
the 1/ f,-versus-p curve is an indication of the loss of
parallelism {Rel. 15).
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Modeling and Formulation

Structural Dynamics

We use both ngid flap-lag and elastic flap-lag-
torsion models of multibladed rotors resting on rigid
or stationary supports. The rigid blade representa-
tion describes a rotor with rigid blades exscuting flap
and lag degrees of freedom. The elastic flap-lag-torsion
representation includes flap, lag and torsion degrees of
freedom. The equations of flap bending, iag bending
and torsion are based on Hamilton’s principle with a
second-order ordering scheme. The spatial dependence
is treated by a Galerkin scheme using the uncoupled
nonrotating mode shapes corresponding to a uniform
cantilever beam. The Galerkin-type integrals are cal-
culated numerically. For additional details on these
equations of moticn, see Ref. 7.

Aerodynamics

The airfoil asrodynamics 1s based on the ONERA
dynamic statl models of lift, drag and pitching moment
{Refs. 16 and 17), and the downwash dynamics is
based on a finite-state three-dimensional wake model
(Ref. 18}, Consistently upgraded wake modeling is
used, in which the number of radial shape functions
for each harmonic is fixed 1n a predefermined manner.
Moreover, the airfoil theory includes the effects of re-
versed flow and large angles of attack, and the wake
theory accounts for the finite number of blades {Ref.
18).

Results

We present dala on run time and other parallel-
performance measures as well as on computational re-
liability. Fhese data are used to compare parallel fast
Flogquet analysis with three other analyses: parallel
analysis based on classical Floquet theory (Ref. 6) and
sequentizi analyses based on classical and fast Floquet
theories {tefs. § and 7). The run-time data include
run thme and its variation with the number of states
and processors; they are directly measured quantities.
tn addition to run time, the parallel-performance data
also include speedup, efficiency, sequential and paral-
lel fractions, and the rate of change of efficiency with
respect to the number of processors; they are com-
puted from Lgs. (36), (37), (43) and (45), respectively.
Similarly, the computational-reliability data comprise
the condition number of the Jacobian in Newton iter-
ation in the converged cycle, the eigenvalue condition
numbers and the residual errors of the corresponding
cigenpairs, computed from Fas. {32), (34) and (35),
respectively.

The run time refers to the elapsed time in predicting
trizn and stability of isolated retors in trimmed flight.
We consider both rigid flap-lag as well as elastic flap-
lag-torsion models with dynamic stall and wake; in

each case three- and four-bladed rotors with identi-
cal blades are treated. The model order is increased
by increasing the number of wake harthonics, acrody-
namic elements per blade and the number of modes
(for the elastic blade model only). For example, for
the rigid-blade model, the order varies from 94 for a
three-bladed rotor with five asrodynamic elements per
blade and & first-harmonic wake distribution to 430
for a four-bladed rotor with 10 elements per blade and
a wake distribution with 19 harmonics. The results
are addressed with respect to the number of states
or the order of the model, and the number of blades
(€ = 3 or 4) per se is not explicitly mentioned: how-
ever, it 1s accounted for in computing the number of
states. The bulk of the results in Pigs. 2—8 is based
on the simpler rigid flap-lag model (Figs. 2-5, 7 and
8) with only a passing reference to the elaslic Aap-iag-
torsion model (Fig. §), which corroborates the results
based on the simpler model. The computalions are
done on a massively parallel MP-1 system with 8192
processors. For a model of fixed order, the number
of processors are selected automalically by the com-
piler system. In some cases, the number of proces-
sors ig stipulated through a program directive; such
cases are mentioned explicitly. I not stated other-
wise, the results refer to a rigid flap-lag model with
dynamic stall and wake for the following parameters:
p=03vy=5 Pr=115 we =114, 0 =005, a=
6.28, Ca, = 0.0079, Cp = 0.00375, and f = 0.01; any
deviation is so stated explicitly.

Figure 2 shows a comparison of run times from two
parallel analyses based on classical- and fast-Floquet
theories; that is, parallel Floguet analysis of Ref. 8
and parallel fast-Floquet analysis of the present study.
The model order varies from 94 to 430. Throughout,
paratiel fast-I"loquet analysis provides nearly a Q)-fold
reduction in run time. As for the specifics of the run-
time variation, both the parallel analyses show jump-
type increases around M = 128, 192, .-, efc., and
neatly constant variation within the intervals 64 <
M < 128, 129 < M < 192 for relatively small order
models and linear variation with a small slope within
the intervals 193 < M < 256, 267 < M < 384 for
relatively large order models. The jump-type variation
and the linear variation within certain intervals is due
to the virtualization of arrays larger than the physical
processor-element array (the actual number of proces-
sors available) and the subsequent increase in the num-
ber of memory layers used. In MasPar, the processors
are arranged in a 64 x 128 two-dimensional mesh grid.
When the dimension of a variable array exceeds 64, the
additional data of the variable arvay are stored in dif-
[erent memory layers. The total number of memory
layers utilized increases with increasing model order,
which in burn increases the communication overhiead in
accessing data stored in different layers. As an exam-
ple, lor M = 301, the number of memory layers created
is 15 (number of layers in the 2-direction x number of
layers in the y-direction; that is, 301/64 x 301/128

94.9
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Figure 2: Run-Time Variations for Trim and Stability
from Parallel Analyses Based on Classical and Fast-
Floguet Theories.

leads to 5 x 3 on the MasPar MP—1 with a 64 x128
array). For M = 430, this number increases to 28 (=
T x 43

Figure 3 shows a comparison of run times for se-
quential and parallel analyses, both based on the fast-
Floquet theory. The sequential code is run on a VAX
4320 mainlrame computer. Admittedly, the run times
are from two different machines and a direct compari-
son between them is not meaningful. However, of con-
siderable significance is the growth of run time with
the order since this growth roughly indicates the feasi-
bility of the sequential and paralicl fast-Floquet codes
for comprehensive analyses that requirte models with
thousands of states. In Fig. 3a, the order varies from
04 to 189; the corresponding run time varies from 6
hours 45 minutes to 2 days, L1 hours and 12 min-
utes. Indeed, the run time grows helween quadrabi-
cally and cubically with order (= M*"), and thus, the
resulis are limited to relatively small-order models (94
< M < 169). Despite this limitation, Fig. 3a does
demounstrate that it is not practical to treat models
with thousands of states by the sequential fast-Ploquet
code. Recall that compared to classical Floquet the-
ory, the fasi-Floguet theory brings in nearly Q-fold
reduction in run times in both the sequential and par-
allel approaches.

Figare 3b shows both the sequential and parallel
run times versus order, which varics from 94 to 430.
The parallel run Lime varies maore or less hnearly with
a very small slope, although some of the firer de-
tails such as jumps of the type observed in Fig. 2
are masked by the scaling adopted along the ordinate.
Thus, Fig. 3b shows the feasibility of treating models
with thousands of states by the paralicl fast-Floquet
cocle and thereby the potential practical utility of the
parallel fast-Floquet approach in comprehensive anal-
yses.
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Figure 3: Run-Time Variations for Trim and Stabiiisy
from Sequential and Paralle] Analyses Based on the
Fast-TFloquet Theory.

450

Figure 4 shows the speedup S,, which is the most
widely used parallel-performance measure (Ref. 10).
As seen therein, the speedup increases with the order
for 94 < M < 376 and decreases for 376 < M < 430.
Compared to the predicted uniprocessor run time, the
parallel run time is dramatically reduced. Ior exam-
ple, for M = 376, the speedup is 2000; that is, for
the same parallel code, the predicted uniprocessor run
time is 2000 times the observed parallel or multipro-
cessor run time. Overall, as seen from Fig. 4, the effec-
tiveness of parallelism increases with increasing prob-
lem size or model order, and the decrease in speedup
for M > 376 is perbaps associated with increased over-
head such as that due to interprocessor communica~
tions. For a more complete understanding of speedup,
it 1s necessary to study the corresponding number of
processors and the variation of run time with the or-
der. This is done in Fig. 5 for the rigid-blade model
and in 'ig. 6 for the elastic Aap-lag-torsion model.

Figure 5 shows speedup, efficiency and run time ver-
sus the number of processors for four models of order
M =94, 262, 376, 430. In the massively paralle] MP-
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I computer with 8192 processors, we can solve a prob-
lem with 1024, 2048, 4096 and 8192 processors. The
model order and number of processors are identified
in the figure. As expected, for a model of fixed or-
der and with increasing number of processors, while
the speedup increases, the efficiency and run time de-
creases. Similarly, with a fixed number of processors,
the speedup, efficiency and run time increase with in-
creasing order. As an example, for a model of order
376 and with 2048 processors, the speedup and effi-
ciency are 1147 and 56%, and the run time is 2 hrs, 44
mins and 32 secs (= 9872 secs). Tor the same model,
the run time can be reduced by nearly 26% (= 2518
secs) by doubling the number of processors but with
reduced efficiency; that is, the efficiency comes down
to nearly 38%. These figures should be interpreted in
a relative sense of trade ofl between how fast is fast
enough and how busy the processors are kept. Figure
5 also shows that using a large number of processors
for relatively small problemns results in severe under-
utilization; for example with M = 96 and p = 8192,
efficiency E, = 25% and the run time remains virtu-
ally constant for p > 2048 This reflects the fact that
the problem is not large enough to exploif reasonably
the available computing power. Figure 6, based on
the elastic flap-lag-torsion model, essentiaily corrob-
orates the results in Pig. 5, which 13 based on the
rigid flap-lag model, except that speedup, efficiency
and run time are higher for a fixed value of the num-
ber of processors. Stated otherwise, compared to the
rigid blade model, the number of concurrent computa-
tlons is much more extensive and thereby the available
computing resources are used more effectively.

The last two figures demonstrate the dominant in-
fluence of serial fraction f (or equivalently paralicl
fraction 1-f} on speedup and efficiency and thereby
on the overall effectiveness of parallelism. Figure 7
shows f and {1 - f} versus the order and Fig. 8 shows
the variation of 1/F, with p. To help present these
duta and appreciate their significance, we revisit Iqs.
(43-45). For example, Eqs. {43) and (44} show that
the speedup i1s bounded by 1/f no matter how many
processors are used, and that it grows quadratically
with the number of processors. Similarly, Eq. (45)
shows that the rate of change of 1/E, with respect to
the number of processors is equal to f, thus provid-
ing a measure of the connection among the number
of processors, serial fraction and efficiency; also, see
comments following Fiq. {45). Figure 7 shows thai se-
rial fraction f generally decreases with increasing order
but is accompanied by some localized variations. Tor
example, serial fraction f, which 18 close to (.0008 for
M = 94, decreases to 0.0004 for M = 376. Thus, the
upper bound of S, increases from 1250 for M = 94
te 2500 lor M = 376. The increasing degree of par-
allelism with decreasing f is well reflected in Iig. 8,
which shows that the linearity of the 1/FEp-versus-p
curve Increases with mcreasing order. Stated othes-
wise, the decrease in sertal fraction f with increasing
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model order means increasing degree of parallelism and
increasing linearity of the 1/ Ep-versus-p curve. Thus,
in summary, Figs, 7 and § demonstrate the fact that
the shooting method by the fast Floguet theory 1s tai-
lored to parallelism, the higher the model order, the
better the degree of parallelisin,

Table 1 gives a sample of the computational rclia-
bility parameters for all four types of analysis - se-
quential and parallel analyses based on classical and
fast Floquel theories. The results are based on the
rigid Hap-lag model with dynamic wake. For a given
problem size or model order, the condition number of
the Jacobian in the converged cycle, cigenvalue con-
dition number of the lag-regressive mode and residual
error ol the corresponding cigenpair are shown. We
mention in passing that the eigenvalue condition num-
her of the lag-regressive mode often corresponds to the
maximum value of the cigenvalue condition number.
The condition numbers of the Jacobian are acceptable
and the cigenvalue condition numbers are close to the
ileal value of uaity (Refs. 2 and 13). Moveover, the
residual errovs of the eigenpairs ave indeed negligible,
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Figure 7: Variations of Sequential and Paraliel Frac-
tions with the Order for Trim and Stability from Par-
allel Fast-Floguet Analysis,

Overall, the computational reliability figures of all four
analyses are comparable,

Concluding Remarks

The parallel fast Floquet analysis exploits the
fast-Floguet theory and paralielism to predict drim and
stability of targe helicopter models (¥ > 100). It ap-
plies to single-rotor and multiroter medels, each rotor
having identical blades. Its computational reliability is
compared with three other analyses: sequential anal-
vsis based on classical and fast-Floquet theories and
parallel analysis based on classical Floguet theory; the
reliability figures are comparable. Both parallel anal-
yses based on classical and fast-Floquet theories are
nearly identical with respect to parallel-performance
metrics of speedup, eflciency and parallel fraction.
However, the fast-Floguet theory brings in an addi-
tional J-fold reduction in run time.

With Increasing model order, while the run time
lor parallel fast-Ifoquet analysis remains nearly con-
stant, the corresponding sequential run time even with
the fast-Floquet theory is much longer and rapidly in-
creases.  Purthermore, the parallel fast-Floguet anal-
ysis should prove to be more clective to multirotor
models owing to the necessity of finding a common
period, which in turn should bring in a higher-than-
Q-told reduction in run time.
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To sum up: The parallel fast-Tloquet analysis dra-
matically increases the saving in run time and demon-
strates its feasibility tc models with thousands of
states, and thereby its applications to comprehensive
and design analyses offer promise.
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Table 1: A Sample of Computational Reliability Parameters for Flap-Lag Stability with
Dynamic Wake.

S: sequential; P parallel

System 1 Gondition number | Eigenvalue condition Residual error
Order, of the Jacobian number for Lag of the corresponding
N +¢ matrix for the Regressive Figenpair,
converged cycle, mode damping, Classical (Fast)
Classical (Fast) Classical (Fast) Floguet Theories
Ftoquet Theories Floguet Theories
107 (5) 562.79(592.83) 1.17658(1.1768) 1.4621-13(2.688E-14)
107 (P) 803.27(628.78) L17658(1.1709) 1.508E-13{2.150E-13)
136 (S) 560.17(603.88) 1.17638(1.1792) 2.033E-13(3.155E-14)
136 (P) 598.62(629.79) 1.17638(1.1789) 1.786E-13(3.642E-13)
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