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Abstract 

 
The Vorticity Confinement (VC) method has been 

presented for rotorcraft flows. Although the basic 
ideas are somewhat different than conventional CFD, 
there is some commonality with a number of well-
known computational methods, such as shock 
capturing.  

The main goal of VC is to efficiently compute 
complex high Reynolds number incompressible flows, 
including blunt bodies with extensive separation and 
shed vortex filaments that convect over long 
distances. Almost all of the vortical regions in these 
flows are turbulent.  This means that, for any feasible 
computation, they must be modeled. The remainder 
of the flows is irrotational and is defined once the 
vortical distributions are. Furthermore, these vortical 
regions are often very thin. 

For these reasons, the basic approach of VC is to 
efficiently model these regions. The most efficient 
way to do this appears to be to develop model 
equations directly on the computational grid, rather 
than to first develop model partial differential 
equations (pde’s) and then attempt to accurately 
discretize them in these very thin regions. 

These goals are easily achieved in the large 
number of flows where the essential features of the 
main flow are not sensitive to the internal structure of 
thin vortical regions. Then, VC can easily be used to 
capture these regions over only a couple of grid cells 
and to propagate them, essentially as nonlinear 
solitary waves that “live” on the computational lattice. 
Flows with these features that are treatable with the 
present state of VC include many rotorcraft flows. 
These involve complex geometries that can be easily 
“immersed” in uniform Cartesian grids using VC.  
These flows also include vortex filaments which can 
convect, with no numerical spreading, even over 
arbitrarily long times, and which can merge 
automatically with no requirement for special logic.   

Preliminary results, some of which are presented, 
suggest that very large computer savings can be 
achieved, even with the simplest form of VC. 

 
1.Introduction 
 

There are a number of features that make the 
computation of rotorcraft flows a very different and 
much more difficult problem compared to fixed-wing 
aircraft flows. 

(1) The most obvious is the tip vortex. This 
vortex convects away from a conventional aircraft 
with little interaction and does not have to be treated 
accurately. For example, most CFD methods can be 
used for its treatment, in spite of the fact that they 
may dissipate it significantly. By contrast, the rotor tip 
vortex convects closely past the following blade and 
has a strong influence on the induced flow, and 
hence lift. Also, it may impinge on the blade, resulting 
in blade-vortex interaction (BVI) noise. If conventional 
CFD methods are used, on feasible grids, the 
dissipation will lead to inaccurate induced flow, and 
hence loading and BVI noise. Finally, unlike aircraft in 
cruise, the tip vortex is not steady, even in a 
coordinate system rotating with the rotor in hover. 
This is because of the influence of the body. 

(2) The rotorcraft body, together with the tail 
rotor, is a much more complex configuration than an 
aircraft. Fitting a curvilinear grid to the surface is 
difficult and, for reasons stated below in (3), may not 
be necessary or even consistent with the treatment of 
the wake of the body. 

(3) The rotorcraft is a blunt body, shedding a 
large, turbulent wake. It is very different from a 
streamlined airplane fuselage/wing, which has little 
separation in normal conditions. The larger scales in 
the turbulent wake may be computed with 
conventional CFD, but the effect of the smaller scales 
must be treated with an approximate model equation. 
This wake, together with the tip vortices, subjects the 
body to strongly fluctuating flow, very different from 
that of a cruising aircraft. These conditions, together 
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with the approximations in the turbulent wake, make 
it unlikely that a RANS type turbulent boundary layer 
(TBL) model can be tuned to give the highly accurate 
drag predictions desired in fixed wing aircraft. For 
these reasons, we feel that accurately fitting the body 
with a curvilinear grid and using a finely tuned TBL 
model may not be consistent with the coarse-grained 
treatment and level of approximation of the rest of the 
flow field: For example, the strong vortices in the 
wake are not fitted with a grid but are “immersed” in a 
smooth, Cartesian type. A consistent treatment of the 
body would also involve immersed surfaces, resulting 
in a much simpler geometry setup and flow 
configuration. This should give force predictions with 
no less accuracy than if a body fitted grid were used, 
because of the other approximations in the complex, 
turbulent flow. 

(4) A final, but not so obvious, point involves the 
goal of the computation: Fixed wing aircrafts are 
designed to operate close to a design point, and a 
goal is often to minimize drag for that single condition, 
which requires high accuracy in the drag computation. 
By contrast, a rotorcraft is subject to a very wide 
range of flight conditions, and adequate performance 
over this range must be assured. This means that the 
emphasis should be on performing a very large 
number of more approximate computations for these 
conditions. These simulations could help avoid 
problems often seen in the flying prototypes, such as 
tail-shake in the Comanche and the disastrous vortex 
ring state in the V-22. 

The points described above emphasize the need 
for a method quite different from aircraft CFD. A very 
large number of simulations is needed, where each 
should have an accuracy only commensurate with 
that of the turbulent wake, to be consistent and 
should be as simple and efficient as possible. Toward 
this goal, computing any unnecessary details should 
be avoided. These details will turn out to be the time 
averaged internal structure (IS) of the TBL, the IS of 
the small vortical scales in the turbulent wake (as in 
any LES) and also the IS of the tip vortex. 

By avoiding the computation of these details, 
which in any case are turbulent, model dependant, 
and strongly subject to numerical effects, it will turn 
out that the effects on the large scales are still 
computed with consistent accuracy, and more 
accurate model-independent results would not be 
possible anyway because of the wake. In this way, a 
very large improvement in computational speed can 
be achieved. 

In this paper, first, the basic method used,  
“Vorticity Confinement” (VC), will be briefly described. 
There are a number of papers that have more 
descriptions which will be referred to. Then, some 
previous results that are relevant to rotorcraft flows 

will be briefly reviewed. These include helicopter 
body flows that involve a Cartesian grid 
incompressible solver (SAGE). These previous 
results also include rotor flows that involve coupling 
the above solver to a surface fitted compressible 
solver (“TURNS”) near the blades. 

The goal of our current research involves 
development of a “minimal” solver that will have the 
same accuracy as the above coupled one but will be 
simpler and faster. The main approach here is to 
represent the rotor blades as lifting lines, which move 
through the same Cartesian grid as is used for the 
body. Then, the entire “inner” part of the flow 
(rotor/body) is computed on a simple uniform 
Cartesian grid (a coarser “outer” grid is used to 
extend the computational domain). Preliminary 
results of these efforts are presented, which 
demonstrate on the ability to adequately resolve the 
wake, even on a coarse, uniform grid. 
 
2. Approach 
 

The approach involves employing a new finite 
difference algorithm on a uniform Cartesian grid (or a 
small number of nested grids). This algorithm 
“captures” the small vortical scales and, effectively, 
results in a simple implicit model for them. The 
regions modeled, as stated, include tip vortex cores, 
boundary layers, and small scales in the blunt body 
wake, which are all turbulent and must be modeled in 
any case. In our approach, however, we do not 
formulate a model partial differential equation (PDE) 
and then attempt to discretize it on the grid. Instead, 
the modeling is directly on the grid. This allows the 
thin regions to be captured over only several grid 
cells in the cross section, as opposed to 10-20 to 
accurately solve a turbulent model PDE (even then, 
the result is, of course, only an approximation). 

There are a number of requirements on these 
implicit models, including mass and (approximate) 
momentum conservation. For the boundary layer, 
these also include ensuring a correct total vorticity, by 
enforcing a zero velocity (no-slip) boundary condition. 
Then, when the layer separates, it will have the 
correct effect on the flow. This requires that the 
boundary layer, as well as the other small scales, 
remain small even when convected over long 
distances. 

Some of these features stated above are similar 
to that of vortex lattice (panel) methods. However, in 
our method (Vorticity Confinement), the vortical 
features are not carried by markers but represented 
on a grid, as in conventional CFD. This gives the 
flexibility of the conventional CFD methods. An 
analogy could be made: comparing our method to 
vortex lattice method is like comparing shock 
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capturing that uses a smooth grid where shocks can 
automatically merge, etc., with shock fitting methods 
that require sets of markers to define each shock. 

Both traditional methods have drawbacks and 
advantages for treating thin vortical regions: panel 
methods are economical, but, except for very simple 
cases, require complex logic – such as for 
vortex/body interaction, including separation, and 
vortex merging and reconnection. CFD methods are 
very flexible, as long as there is not much of grid 
adaptation, in that they allow any changes in topology 
of the vortical regions. However, they represent a 
very inefficient model of the thin vortical regions, 
requiring a number of thin grid cells and extensive 
grid adaptation, which is expensive since the real 
flows to be treated are unsteady. 

The basic features of the method described in the 
next section, Vorticity Confinement, combine the 
advantages of both of the above traditional methods 
but avoid most of their disadvantages. 
 
3. Vorticity Confinement 
 

The original version of Vorticity Confinement 
(“VC1”) has seen a number of uses (Refs. 1-27). This 
paper will concentrate on its use in rotorcraft 
aerodynamic computations. The basic features and 
formulation are described in this section: It consists, 
basically of a term added to the discretized 
momentum equations, which is non-zero only in 
vortical regions. Its use as a boundary layer model is 
quite simple and effective and results will be referred 
to. For rotor tip vortices it also has proven to be 
effective. Here, the fact that it closely conserves total 
momentum results from the rapid rotation of the 
vortex, since it is not written in an explicitly 
momentum conserving form. A preliminary 
computation (Ref. 9) involving coupling to the 
“TURNS” code has shown good agreement with 
experiment, and will be reviewed in this section. As 
explained in Sec. 2, a new simpler, more efficient use 
with lifting lines is currently being developed. Some 
preliminary results will be presented at the end of this 
section. Comparisons of the completed version with 
experiment will be reported in a subsequent paper. 

A second version, “VC2”, has recently been 
developed, which explicitly conserves momentum. 
This has been described in a number of recent 
papers (Refs. 14, 15, 20) and will not be discussed 
here. Rotor computations are currently being 
developed based on it. Preliminary results appear to 
give tip vortex trajectories close to those of VC1. 
These will also be reported in a subsequent paper. 

Along with these rotor computations, uses of VC1 
for flow over bodies “immersed” in a uniform 
Cartesian grid will be presented for validation. The 

rest of this section is close to Section 3 of Ref. (9), 
and is included for completeness. 

 
3.1 Basic Concept The basic idea behind Vorticity 
Confinement is to develop a set of difference 
equations on a fixed grid (typically uniform Cartesian) 
that fulfill the above requirements. This implies that 
the equations must be an accurate discretization of 
the Euler pde’s in the outer irrotational regions, but 
reduce to a set of difference equations (as opposed 
to finite difference approximations of pde’s) in the 
vortical regions, where flow quantities vary by O(1) 
over a few grid cells. Further, to allow separation, 
reattachment, merging, etc., the vortical structure 
cannot be specified. Instead, the structure must relax 
to the desired profile as it convects.  

The above requirements mean that there should 
be two basic parameters in the method: a length 
scale and a time scale. These are directly related to 
the grid cell size and time step of the computation, 
i.e., the resulting vortical profile should be a few grid 
cells wide and the relaxation should take place over a 
small number of time steps. Of course, if relevant, 
more complex models (including, for example, 
boundary layer dynamics or long-term viscous 
spreading) can be implemented which would involve 
more parameters. These are currently being 
formulated for cases with separation from smooth 
surfaces. 

Some of the basic ideas are demonstrated for the 
advection of thin pulses in 1-D in Ref. (2), where the 
pulses are essentially treated as discrete solitary 
waves which propagate indefinitely without changing 
shape. 
 
3.2 Formulation The simplest formulation of Vorticity 
Confinement involves, for general unsteady 
incompressible flow, adding two terms to the 
discretized momentum conservation equations in a 
primitive variable formulation, which are similar to the 
diffusion and nonlinear anti-diffusion term for the 
advecting short pulse discussed in Ref. (2). These 
terms are inherently multidimensional and Galilean 
invariant, depend only on local variables and vanish 
outside the vortical regions. 

The governing equations with the Vorticity 
Confinement terms are then a discretization of the 
following equations: 
 

0=⋅∇ qr  
 

( ) ][/)( 2 sqPqqqt
rrrrr εµρ −∇+∇−∇⋅−=∂  
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where qr  is the velocity vector, p pressure, and ρ , 
density, and the two terms in brackets are the 
confinement terms. The two numerical coefficients, 
ε  and µ , control the size of the convecting vortical 
regions or vortical boundary layers and their 
relaxation rate to a quasi-steady shape. 

There are many possible forms for the second 
Confinement term. The simplest one seems to be  
 

ωrr
×= ns ˆ  

where 
 

η
η

∇
∇

=n̂  

 
and the vorticity vector is given by  
 

qrr
×∇=ω  

 
The scalar field, η , is defined in two ways: 
 

η  =

 :        "Field  Confinement"

 :     "Surface  Confinement"F

ω⎧
⎪
⎨
⎪
⎩

r

 

                           (F: distance from surface) 
 

The simplest implementation of Vorticity 
Confinement, for convecting vortices, is called “Field 
Confinement”. A simple modification; “Surface 
Confinement”, for boundary layers, will be described 
in the next section. 

For Field Confinement, the unit vector, η̂ , points 
towards the local centroid of the vortical region, and 
the confinement term serves to convect vorticity back 
towards the centroid as it diffuses away. This 
convection increases the diffusion term and a steady-
state distribution automatically results when the two 
terms become balanced (for any reasonable values 
of µ and ε). Additional discussions of the formulation 
can be found in Refs. (1, 3, 4, 6, 14). 

An important feature of the Vorticity Confinement 
method is that the extra terms are limited to the 
vortical regions: both the diffusion term and the 
confinement term vanish outside those regions. 
Another important feature concerns the total change 
induced by the correction in mass, vorticity and 
momentum, integrated over a cross section of a 
convecting vortex sheet or filament. It is shown in 
Refs. (1, 3, 4, 6, 14) that mass and vorticity are 
explicitly conserved and momentum is closely 
conserved. Extensions of the method, described 

below in Refs. (5,14,24), allow it to also explicitly 
conserve momentum. This has no observable effect 
on most results, except for cases involving long-term 
convection of vortices in a low velocity field. Then, 
the momentum conserving extension is easily 
implemented to ensure accurate trajectories. 

In general, computed flows do not depend 
sensitively on the parameters ε and µ, for a range of 
values. Hence, the issues involved in setting them 
are similar to those involved in setting numerical 
parameters in other standard computational fluid 
dynamics schemes, such as artificial dissipation in 
many conventional compressible solvers which 
capture shocks. The main effect of varying ε and µ, 
within a range, is to vary the vortex core radius, 
which is approximately equal to µ /ε (Refs. 1, 6). 

The reason for this lack of sensitivity is that, for 
example, if a vortex core is close to axisymmetric, the 
velocity outside the core is not sensitive to the 
vorticity distribution or core size, as long as the radius 
is kept small and prevented from becoming large due 
to numerical effects. This is a well-known property of 
axisymmetric, parallel vortices. It means that their 
mutual interaction will also be independent of the 
structure, as long as they are separated. Since 
merging, etc. takes place on convective time scales, 
this is also not sensitive (Refs. 1, 14). This lack of 
sensitivity to ε was also demonstrated for a rolling-up 
vortex sheet computation in Refs. (3, 6) where ε was 
varied by a factor of 4 and the result remained close 
to experiment, while for ε = 0 the result was much too 
diffusive. This was also shown in Ref. (8) for dynamic 
stall. Similar considerations apply to thin boundary 
layers. (This is analogous to the artificial shock 
thickness effects that depend on the dissipation 
parameter). 

In addition to the solitary wave-like features of the 
vorticity distribution for free convecting vortices in 2D 
and 3D (convection with fixed shape), two studies, 
Refs. (1, 4), demonstrated the ability of convecting 
3D vortex filaments, initially in the form of rings, to 
merge and reform. A comparison of these results 
(Ref. 1) with measurements from an experiment, 
published in Ref. (4), showed a very close agreement. 
This demonstrated that the basic computational 
concept of relaxing to a quasi-steady vortical state 
through the action of the diffusion and nonlinear 
terms automatically allows realistic vortex filament 
reconnection while at the same time preventing 
spreading due to numerical effects. This is true even 
though a coarse grid was used where the vortex 
cores were only ~3 grid cells in diameter. It has been 
shown numerically that vortical solutions to the 
discretized equations are qualitatively close to those 
predicted for the continuum ones, even though the 
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vortical regions are only a few cells thick. Roughly 
speaking, the confinement terms seem to be 
convecting discretization errors into the vortex center.  
 
3.3 Solid Surface Modeling with Uniform Cartesian 
Grids The application of Vorticity Confinement to 
fixed vortex sheets representing solid surfaces in a 
non-conforming regular Cartesian grid with no-slip 
boundary conditions has been presented in Refs. (2, 
9-12, 19, 23, 25). This represents a very simple, 
economical way to treat complex bodies since it does 
not require body conforming or adaptive grid 
generation and can use a fast Cartesian grid set-up 
and flow solver. The steps for this method are 
delineated below: 
  • The geometry of the body or free surface is 
specified in a conventional way - such as by the 
coordinates of a set of points on the surface. 
  • From this set of points, a smooth function is 
computed on each point of a regular Cartesian 
computational grid. The value of this function, )(xF v

, 
is the (signed) distance of the grid point to the 
defined surface. Thus, the “level set” of values of xv  
such that )(xF v

= 0 implicitly defines the surface over 
which the flow is to be solved. This F = 0 surface can 
be complicated and even move according to 
dynamical equations. 
 •The flow over the F = 0 surface is computed time-
accurately in a sequence of time-steps. This involves 
confining vorticity to the (fixed) F = 0 surface, as well 
as the convecting vortical regions. 
 
3.4 Properties of Converged Solution At convergence, 
v

 is forced to zero inside the body. Since q q∇⋅
v

= 0 
everywhere, there is then no flow through the body 
surface and vorticity is confined to thin regions on the 
body surface and thin regions which separate and 
convect with the flow. These regions are 2~3 grid 
cells thick, independent of the grid cell size h or 
number of grid points in the overall problem (in the 
fine-grid limit when h << radius of curvature). Further, 
since the computed velocity has zero divergence, if 
the separation locations are accurate, (as at edges or 
in regions of strong adverse pressure gradient), the 
computed velocity field will be at least first-order 
accurate in the grid cell size both away from 
convecting vortices and the body surface. The first-
order error is due to the thickness of the computed 
vortical regions: simple perturbative corrections to 
bring the solution to second-order accuracy can be 
formulated within the framework of the method by 
considering the error as a displacement-thickness 
effect. This procedure should be simpler for many 
cases than resorting to the generation of a body 

conforming grid or adaptive high order refinement. 
However, for blunt body flows with separation the first 
order accuracy should be more consistent with the 
accuracy of the computation of the separating 
vorticity. 

 
4. Results 

 
4.1 Overset Grid Computation of Rotor/Wake Flow 
The rotor wake was computed for a two bladed case 
for which there is experimental data on the wake 
trajectory (Ref. 28). This rotor/wake system flow 
problem is solved by a simple overset procedure 
involving a Cartesian grid for the wake convection 
and a blade-fitted C-grid for the rotor flow near the 
blades. The inner C-grid region used the 
compressible, “Euler/Navier-Stokes Solver, TURNS 
(Ref. 29), to obtain the blade flow and circulation 
distribution. The background Cartesian grid uses an 
incompressible solver with Vorticity Confinement. The 
action of the inner solver is to generate the rotor lift 
distribution in response to the inflow generated by the 
convected wake. The two grids exchange information 
by interpolation. The inner C-grid flow is interpolated 
onto the Cartesian grid while the boundary values on 
the outer surface of the C-grid are interpolated from 
the Cartesian grid, according to the local 
characteristic directions. 

Computed vorticity contours (with a lower limit of 
25% of maximum vorticity magnitude) of the shed 
wake of a two-bladed rotor are shown in Ref. (30) 
These contours are not shown here but are almost 
identical to those of our present studies, discussed 
below and shown in Figs. (15, 16). The important 
features are that the vortex cores are captured in only 
a few grid cells. It is seen that the rotor tip vortex 
maintains its identity and that it behaves 
appropriately, showing correct radial contraction. 
Comparisons of measured and computed tip vortex 
trajectories are quite good, and it is known that this is 
a prerequisite to obtaining the correct loading. 

It should be mentioned that the VC1 Vorticity 
Confinement method was used for this computation, 
without modification or adjustable, case dependent 
parameters. 

 
4.2 Computation of Fuselage Flow The first objective 
for this computation was to quantify the model used 
for treating body surfaces in Cartesian grids: in 
particular, the ability to accurately predict surface 
pressure distributions. First, predicted flow was 
compared to the exact solution for a Cauchy 
Riemann flow about a two-dimensional circular 
cylinder. This is reported in Ref. (30). Then, the 
computation of convecting viscous flow over an 
ellipsoid was computed and compared with 
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experiment. This is reported in Refs. (13, 23). After 
this, computations of flow over a test case helicopter 
fuselage were done and predicted surface pressures 
at various streamwise stations compared to wind 
tunnel data. Then, the computation of flow over a 
complete Apache helicopter, including rotor, fuselage 
and wake was computed. Flow around a circular 
cylinder was also computed using both VC1 and VC2. 
Finally, the effects of vorticity shed from the pylon on 
a Comanche helicopter were computed and 
compared (by Ted Meadowcraft Ref. (31)) to 
measured values. 

 
4.2.1 Computation of Flow over ROBIN Fuselage The 
new extrapolation procedure was evaluated for flow 
about the ROBIN fuselage (without a rotor), for which 
extensive wind tunnel pressure data exist (Ref. 32). 
The fuselage shape is mathematically defined by 
super-ellipse equations, which are given in Ref. (32). 
Computations were done for an angle of attack, 

 and Reynolds number of . The 
regular Cartesian grid used for these predictions had 

 cells, and each of the two 
computations required 2.5 hrs on a PC (Intel Pentium 
II, 266MHz).  

o0=α 6105.4 ×

( 5648192 ×× )

In general, the surface pressure predictions also 
agree well with a panel method and “Navier-Stokes” 
predictions (Ref. 33). By contrast, the panel method 
cannot treat general separating flows and the 
“Navier-Stokes” method, for general bodies, requires 
a lengthy procedure to generate body conforming 
grids that require very long computational times. We 
conclude that Vorticity Confinement can serve as the 
basis of a simple, efficient method for accurately 
modeling the flow about body surfaces.  
 
4.2.2 Computation of Complete Apache Helicopter in 
Forward Flight The same overset procedure 
described in Section 4.1 was used for computing flow 
over an Apache Helicopter in forward flight. These 
calculations were performed for an Apache–A 
helicopter fuselage with a four bladed rotor. The 
treatment of the body surface was as described in 
Section 3.3. Two computational cases, ascending 
and level forward flight, are presented. These 
solutions were also presented in Ref. (30). The level 
flight solution illustrates the vortex merging property 
of the basic method. The (inner) blade fitted C-grid 
had 120x26x24 cells and the background Cartesian 
grid had 162x108x54 cells. The computation required 
2.5 hrs/revolution on a CRAY YMP.  

The tip vortices are visualized by the iso-surface 
of vorticity magnitude in Figures 1-4. In these pictures, 
the contour level of vorticity magnitude is set to 30% 
of the maximum vorticity magnitude. A short movie 

which shows the developing of the tip vortices can be 
viewed at www.flowanalysis.com. 

 
4.2.3 Circular Cylinder The computation of flow 
around a circular cylinder has been done using both 
the Vorticity Confinement method presented here 
(VC1) and a newer formulation (VC2). Reynolds 
number was 3,900 in both cases. A coarse, uniform 
Cartesian grid 181x121x61 was used with an 
immersed boundary for the cylinder that was only 15 
cells in diameter.  The results presented here are 
from the VC2 study, although the VC1 formulation 
shows no significant difference (results for the VC1 
formulation can be found in Ref. (7)).  Both VC 
formulations compared very well with each other and 
with experiment. VC serves as a very simple way to 
model Reynolds number effects in this case. 
Increasing ε smoothly increases instabilities and 
energizes smaller vortical scales. Values of ε and µ 
used were 0.325 and 0.15, respectively. 

Vorticity magnitude iso-surfaces are shown in 
Figure 5, where the iso-surface magnitude has a 
value of 25% of the maximum.  Plots corresponding 
to computed average streamwise velocity along lines 
behind the cylinder are shown in Figure 6 and RMS 
streamwise velocity fluctuations are presented in 
Figure 7.  The lines where the measurements were 
taken are shown in Figure 8.  Good agreement with 
experiment is seen.  The pressure distribution on the 
cylinder surface also compares very well with 
experiment data, as can be seen in Figure 9. The 
important point here is that only by adjusting one 
parameter, ε, which was constant throughout the field, 
the computed results agreed closely with experiment 
for all six curves plotted in Figures 6 and 7. Additional 
comparisons with experiment at different Reynolds 
number will be required to calibrate the Reynolds 
number dependence of this parameter. It must be 
emphasized that the instabilities and chaotic behavior 
that result when ε is increased are only from three-
dimensional effects, as in physical turbulence, and 
are not due to numerical instabilities: Extensive 
studies have been done over a much wider range of ε 
values than that studied here for flows in 2-D, where 
no instabilities were expected.  These only showed 
stable flow.  These studies involved vortices 
shedding from a two-dimensional cylinder with pairing.  
Other studies involved isolated, shed wing-tip 
vortices in three-dimensions.  
 
4.2.4 Comanche Helicopter The flow about a realistic 
helicopter body (Comanche) was computed.  
Rotating shanks were included in the computation 
since they could have a significant effect on the flow 
behind the pylon.  However, the resolution of the 
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shank geometry should be consistent with that of the 
vortices which they shed, which are spread over only 
about 4 grid cells.  Accordingly, a simple analytic 
representation was used for the shanks (as opposed 
to the main body, which was represented by surface 
points).  The shank and body definitions were then 
used to compute the geometry—defining level set 
function for the flow computation. 

A simple uniform Cartesian grid was used in the 
computation, which had 288x64x128 in the 
streamwise, horizontal and vertical directions, 
respectively. Figure 10 shows the pressure 
distribution on the body surface at one time.  It can 
be seen in Figure 11 that strong concentrated 
vorticity is shed form the pylon.  This will cause 
strong pressure fluctuations on the tail, which is seen 
in the experiment. In fact, a 5-per-revolution 
oscillating pressure was computed that corresponded 
closely to flight test data.  Although only 3 revolutions 
were computed and more are required to get better 
statistics, good agreement in the comparison of 
power spectra can be seen in Figure 12. This 
computation was preformed on a PC (Intel Pentium II, 
266 MHz, 256 MB RAM) and required 6 hours per 
revolution.  These Comanche results were initially 
shown in Refs. (4, 12, 30).  The flight test power 
spectra in Figure 12 are also shown in Ref. (31).  
(The power spectrum results were computed by Ted 
Meadowcraft of Boeing, Philadelphia.) 

 
4.3 Blade Vortex Interaction (BVI) The ability of VC to 
economically simulate propagation of concentrated 
vortices for BVI has made possible a recent 
parametric study of two-dimensional BVI cases (Refs. 
16, 17). This study also utilized a compressible 
version of Vorticity Confinement.  In these papers, it 
is also demonstrated that there is excellent 
agreement between the computations and 
experiment. 

 
4.4 Lifting Line Representation We are starting a 
project that involves representing the rotor blades as 
lifting lines. These do not have a grid associated with 
them, but move through the Cartesian grid. This is, of 
course, consistent with the treatment of the shed 
wake vortices and the body surface. The latter, as 
explained, is treated as a boundary “immersed” 
vertical layer that can separate. This treatment of 
rotors should allow a much faster and simpler 
computation than the rotor method described in 
Section 4.1. There, the “TURNS” code had to be 
coupled to the Cartesian grid and velocities 
interpolated between the grids, both ways, each time 
step. 

For the lifting line (LL), in a vortex lattice method, 
the Biot-Savart would, of course be used, based on 

the current values of the circulation at each span 
station. This could, perhaps, be implemented here as 
an additive velocity, but there is a much simpler way:  

Since we have a grid on which the equations of 
motion are solved, the effects of a moving vortical 
region can be obtained by adding an acceleration (to 
the grid nodes) near each blade. This would appear 
as a jet, however, and we believe that the resulting 
vorticity created would be spread over too large a 
region if no other terms were employed. However, we 
have Vorticity Confinement, which is very effective at 
keeping bound vorticity close to the surface. Hence, 
we can use the same method to keep the vorticity 
generated around the current position of the LL 
confined to the desired, (thin) region. Thus, every 
time step, the flow velocities must be interpolated to 
the LL position, and, based on their values, the 
circulation computed and the added acceleration 
imposed. There are two possibilities for the 
circulation, either to use a look-up table, based on 
separate computations or experiment, or to use a 
one-way interpolation to a blade-fixed grid near the 
actual blade, and perform a computation on this 
“coarse” grid once every number of time steps. This 
number can be large for computational economy, at 
least for hover. 
 
4.4.1 Rotor wake computation As a first step, we fix 
the circulation and examine the ability of Vorticity 
Confinement to capture the tip vortices which tend to 
spiral downward. A lightly loaded 2 bladed rotor was 
simulated with a uniform Cartesian grid of 
128x128x128 cells. The computing time was about 3 
hours per revolution on a PC (Pentium 4, 2.0 GHz, 
1GB RAM). The vortices remained compact, spread 
over only ~4 grid cells (at the 25% contour vorticity 
level). The 25% iso-surface is shown in Figure 13 
from a perspective and in Figure 14 from a side view. 
The contour (down to 25% of maximum magnitude) 
with the computational grid is shown in Figure 15. 
The contraction and downward motion of the vorticity 
are about as expected.  A set of contour plots, which 
shows the development of the rotor wake, are shown 
in Fig. 16. 

A very important feature of this computation is 
the instability, which results in two consecutive spirals 
eventually wrapping around each other. This is seen 
in wind tunnel experiments. 

Another point concerns numerical issues: As the 
number of the blades is increased, or the downwash 
is decreased, (for example, by decreasing the 
loading), the distance between the spiral turns 
decreases. There is, of course, a limit where there 
will not be a sufficient number of gird cells between 
the turns, and there will be an interaction that is a 
numerical artifact. The limiting spacing before these 
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artifacts appear and whether they degrade the 
accuracy of the computation are being studied. 

A rotor wake from a 4 bladed rotor is also 
presented as shown in Fig. 17. The flow condition 
and computational setup are the same as the above 
2 bladed rotor case. A very interesting result is that 
the interaction results in a set of disjoint, concentric 
rings, not quite the spiral of Figure 14. However, this 
should be a weak effect because the actual spiral 
angle would be small. In fact, sets of concentric rings 
have been widely used in the past with the Biot-
Savart law as a model for the spiral in vortex filament 
simulations because they can easily be computed. 
Quantitative comparison with data is currently being 
done.  
 
4.4.2 Full Lifting Line Code In parallel to the wake 
studies, a full code has been developed that uses a 
separate module to solve for the loading based on 
the local LL flow, rather than specifying it. This 
module is currently based on the TURNS code with a 
body-fitted grid for an actual blade model. It is only 
used as an input for the loading on the LL, as 
explained. A convergence history of the loading after 
a small number of iterations can be seen in Figure 18. 
 
5. Conclusion 
 

The Vorticity Confinement (VC) method has been 
presented. Although the basic ideas are somewhat 
different than conventional CFD, there is some 
commonality with a number of well-known 
computational methods, such as shock-capturing.  

The main goal of VC is to efficiently compute 
complex high Reynolds number incompressible flows, 
including blunt bodies with extensive separation and 
shed vortex filaments that convect over long 
distances. Almost all of the vortical regions in these 
flows are turbulent.  This means that, for any feasible 
computation, they must be modeled. The remainder 
of the flows is irrotational and is defined once the 
vortical distributions are. Further, these vortical 
regions are often very thin. 

For these reasons, the basic approach of VC is to 
efficiently model these regions. The most efficient 
way to do this appears to be to develop model 
equations directly on the computational grid, rather 
than to first develop model partial differential 
equations (pde’s) and then attempt to accurately 
discretize them in these very thin regions. 

These goals are easily achieved in the large 
number of flows where the essential features of the 
main flow are not sensitive to the internal structure of 
thin vortical regions. Then, VC can easily be used to 
capture these regions over only a couple of grid cells 
and propagate them, essentially as nonlinear solitary 

waves that “live” on the computational lattice. Flows 
with these features, that are treatable with the 
present state of VC, include blunt bodies with 
separation from edges and other well-defined 
locations. These configurations include complex 
geometries that can be easily “immersed” in uniform 
Cartesian grids using VC.  These flows also include 
vortex filaments which can convect, with no 
numerical spreading, even over arbitrarily long times, 
and which can merge automatically with no 
requirement for special logic.  Flows that involve 
separation from smooth surfaces, and which depend 
on the turbulent state of the boundary layer, require 
more detailed modeling, including parameter 
calibration. This is an area of current investigation. 

By contrast, a large amount of effort has been 
expended over a number of years by a large number 
of workers to develop and calibrate turbulent pde-
based models for conventional eddy viscosity-based 
CFD schemes, such as RANS and LES.  These 
schemes can be quite complex and can require very 
fine grids.  The important point is that VC, even in its 
simplest “zeroth order” form with constant coefficients, 
on a coarse grid, can capture most of the main 
features of high Reynolds number flows.  This is 
mainly because VC involves, in addition to a positive 
eddy-type viscosity, a negative one that does not 
diverge, but automatically saturates.  This allows a 
much simpler turbulence modeling approach.  Further, 
arguments (presented in Ref. (14)) show that just 
such a negative viscosity should be required: Even 
with no numerical dissipation issues, to accurately 
simulate a filtered field, in certain regions of the flow, 
a term should be added to the Euler equations that 
acts like such a negative dissipation with saturation. 

Preliminary results, some of which are presented, 
suggest that very large computer savings can be 
achieved, even with the simplest form of VC. 
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8. Figures 

 
Figure 1. Top view of the computed vorticity iso-
surfaces for the Apache helicopter.  

 
Figure 2. Side view of the computed vorticity iso-
surfaces for the Apache helicopter.  
 

 
 
Figure 3. Top view of the computed vorticity iso-
surfaces for the Apache helicopter.  

 
Figure 4. Side view of the computed vorticity iso-
surfaces for the Apache helicopter.  
 

 
Figure 5. Vorticity Isosurface for Flow over Cylinder 
with Vorticity Confinement. 
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Figure 6. Mean Streamwise Velocity Profiles. 
Symbols are Experimental Data. 

 
Figure 7.  Streamwise RMS fluctuations. Symbols are 
Experimental Data. 

 
Figure 8.  Measurement Positions For Circular 
Cylinder 

 
 
Figure 9. Time-averaged Pressure Coefficient 
Distribution on the Cylinder Surface. (Circles Denote 
Experimental Data of Norberg (1987)) 
 
 

 
Figure 10. Interpolated surface pressure on the 
surface of the Comanche fuselage with rotating 
shanks 
 
 

  
Figure 11. Computed Vorticity Isosurfaces for the 
Comanche Fuselage with Rotating Shanks 
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Figure 12.  Comparison Between Computation and 
Flight Test of Power Spectrum of Pressure 
Fluctuations at Tail 

 
Figure 13. 2-Bladed Rotor Wake Vorticity Isosurface 
(perspective view) 

 
Figure 14. 2-Bladed Rotor Wake Vorticity Isosurface 
(side view) 
 
 

 
Figure 15. 2-Bladed Rotor Wake Vorticity Contours 
with Computational Grid 
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Figure 16. Development of Tip Vortices 
 
 

 
 

(a) Perspective View 
 

 
 

(b) Side View 
 

Figure 17.  4-Bladed Rotor Wake Vorticity Isosurface 
 

 
Figure 18. Loading Convergence History Curve 
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