
PAPER Nr. : 62

A NEW APPROACH IN HEUCOPTER REAL-TIME
SIMUlATION

G. Lehmann
C.-H. Oertel
B. Gelhaar

Deutsche Forschungsanstalt fiir
Luft- und Raumfahrt

Institut fiir Flugmechanik
Braunschweig, FRG

FIFTEENTH EUROPEAN ROTORCRAFT FORUM
SEPTEMBER 12- 15, 1989 AMSTERDAM

A NEW APPROACH IN HELICOPTER REAL-TIME
SIMUlATION

ABSTRACf

G. Lehmann
C.-H. Oertel
B. Gelhaar

Deutsche Forschungsanstalt fur
Luft- und Raumfahrt

Institut fur Flugmechanik
Braunschweig, FRG

Nowadays system simulation is an important task in the development procedure of new and
improved helicopter systems. In addition to the typical off-line and non-real-time simulation of
the system, special requirements on real-time computation speed exists for flight simulators. A
further application of real-time simulation is the so called 'hardware in the loop simulation' where
real components like new closed loop controllers are tested under realistic conditions.

In the past a lot of companies have designed and built special purpose simulation computers
which are very powerful but expensive. The progress in computer science shows a trend to
distributed systems where multiple processors are running in parallel to improve the performance
dramatically.

At the DLR Institute for Flight Mechanics a computer system, based on the TANSPUTER
which was developed by the British !NMOS company, was built up to get the real-time simulation
capabilities for the ROTEST model rotor.

1 DEMANDS UPON SIMULATION

At date simulation is a necessary step in the evaluation and design process of new concepts
and systems. The complexity of the models used for simulation can vary from a very simple design
to large and complex structures, depending on the goal and the system under simulation, [1]. Fig.l
depicts a block diagram of a typical helicopter simulation for basic research purpose where a
visual system is not required, [2]. The main objective here is to simulate the flight mechanics
under various flight conditions. The frequency range of interest is limited to up to the first
flapping mode.

But the increasing demand of optimized vehicles also addresses the high frequency
components in the helicopters frequency characteristic. Fig. 2 shows the bandwidth which must be
considered if all effects are intendet to be modelled in a simulation program. If we assume, that
generally simulation also includes the tasks without true real-time requirements, one can identify
the following two ordering schemes for simulation in the field of helicopter research and
development:

complexity of simulation model:

- isolated flexible blade for stress and frequency estimation
- main rotor with arbitrary blades combined with simple down wash models
-as above but with improved down wash models (incl. free wake)
-complete helicopter system with tail rotor, engines and drag and mass model of the fuselage
-as above but with additional simulation of avionics etc. {full scale cockpit)
-coupled rotor-flexible fuselage models for dynamic properties

62-1

computing time demands:

- more or less complex models of parts of a helicopter for design optimization (no real-time)
-more or less complex models of complete helicopters for pilot training (Basic, up to Class III,

real-time)
-hardware-in-the-loop simulation for verification of real parts as controllers and flight control

computers (real-time).

UT: INP
- c on trois
-P arameler

L_

. ·.•· ··.·
~~ONTROL SYSTEM

. ·.·•··.· .. • .. ··

FEEDBACK•
. SYSTEM .

~ ·····~AIN HOT{)k·
.\. · .··•··

f-. TAIL ROTOR

I-f. FUSELAGE

c. EMPENAGE

_.., ENGINE

Fig. 1. Block diagram of a helicopter simulation.

Aeromechanic Oscillajion

Drive System/ Fuel Control
I

Short Period Oscillation

Phugoid

0.001 0.01 0.1

f-----..

Frequency

Fig. 2. Frequency characteristic of helicopter dynamics.

~
I ;EQUATIONS OF

•.··)dOTI9N

t

OUTPUT:
-Time H is lory

alues -Trim V

1 10 Hz 100

Actual simulators are very individual and they cover the full range of the, naturally incomplete
list above. It is difficult to exactly define a simulator and therefore to draw the line between
varieties. In addition, the demands (can) vary with the progress of system development and thus
the improvement of the simulation model is a steady process. On the other hand the modern
computer technology offers a wide range of different systems which are more or less suited to
match the performance of the individual user. A significant disadvantage of most typically used
systems is the almost fixed performance. For a growing simulation model it is necessary to order

62-2

an overdimensioned computer, and it often happens that after two or three years this system is
unable to match the actual performance requirements. A new system is necessary followed by all
related and well known modifications in hardware, software, and system management.

As the DLR Institute for Flight Mechanics, Braunschweig, decides to build up a simulation of
the model rotor test rig (ROTEST), the highest frequencies as depicted in Fig. 2, should be
addressed. In the past the model rotor has covered a wide range of different test objectives like
performance, acoustics, and active control technologies (HHC: Higher Harmonic Control). The
potential of the capabilities grows with every test period. But in modern helicopter systems more
and more computer based augmentation of dynamic characteristics of the rotor system like
narrow band disturbance rejection, lead-lag damping and tip path plane stabilizing, is an essential
part of improvement. It is evident that such parts must be tested under realistic conditions before
they can be adapted for wind tunnel tests. These demands led to the design and evaluation of a
completely new real-time simulator concept for hardware-in-the-loop simulation, which is the
subject of this paper.

2 MODEL DESCRIPTION

The ROTEST model is a four-bladed rotor with elastic blades (without flap and lag hinges)
with 4 meter diameter. It can be used with different sets of blades, one being a 2.5 scale of the B0-
105 main rotor blades. The rotor blades are equipped with strain gauges to measure the elastic
flap, lag, and torsion motion. Additional sensors are used to measure the blade root pitch angle
and the pitch-link forces and shaft bending moments. In the fixed frame a six component balance
is instrumented to measure the net rotor forces and moments. The normal operating speed of the
model is 1050 rpm to match the same blade tip Mach number as the full scale version. The
simulator model must cover these conditions.

For the first evaluation a 24 degree-of-freedom model was chosen. Each blade dynamic is
described in a modal formulation with three flap modes, two lead-lag modes, and one torsion
mode, which leads to the well known equation of motion for the i-th eigenmode:

(1)
where

v; is the eigenfrequency,

nzi • is the generalized mass, and

F; is the generalized external force.

The q; 's are the generalized co-ordinates of the eigenmodes which are normalized to unity

blade tip deflection. The eigenmodes are evaluated with a finite element method [3], and adjusted
by modal measurement. For the calculation the blade was modelled by 40 coupled beam elements.
Special emphasis was taken on the blade torsion, because this degree-of-freedom is forced by the
aerodynamics and essentially by moments of inertia from the blade root pitching. Especially in the
case of HHC this contribution is not negligible. The control inputs are directly given by a
harmonic series applied at the blade root because ideal transfer functions for the actuators and
the swashplate are assumed. The net forces and moments of the complete rotor are calculated
with the inertia forces and moments which are caused by the mode deflections and the
aerodynamic forces.

The amount of computation mainly depends on the complexity of the right hand side of
equation (1). We implemented the blade element formulation with nine different elements, that
means, the span of the elements decreases from the root to the blade tip in such a manner that
each element describes the same disc area during a rotor revolution, Fig. 3. The computation of
the aerodynamic forces at each element is based on a fully nonlinear model with special ez, ex and

eM tables depending on the local Mach-Number in x and z-direction. Fig. 4 depicts the
relationship between the conventional formulation and the coefficients used in the real-time

62-3

simulation. Note, that V:, in Fig. 4 is the speed of sound, which only depends on the air conditions
(pressure, temperature). More informations about this new formulation of the aerodynamic
coefficients can be found in [4). The tables of coefficients are defined in the range -O.l5<Max<0.9

and -O.l<Maz<O.l6, Fig. 5. A table-look-up procedure with a linear interpolation algorithm is
implemented to give the actual coefficients for arbitrary Mach-Numbers within this range.

1-------2 m --------+l

element 1

0.0 0.22

Fig. 3. Blade discretesation of the model rotor.

element He1

-y 1-r.
2

2 "J= ~ +r_. H J-1
ei

1

2
£X = (q cos a + 0J sin a) Ma

2
Fz= sp/2fls A

Fig. 4. Definition of aerodynamic coefficients (Example forMa= 1).

A lot of emphasis was put on the calculation of the downwash distribution over the rotor disc.
Because the well known linear inflow variation formulated by different authors does not achieve a
sufficient estimation of higher frequency components in the downwash distributon, the Mangler­
Squire model, [5), is used in the simulation program. The original derivation of the Mangler
formulae is based on a typical pressure distribution as depicted in Fig. 6. Baskin et al. [6) have
shown that the Mangler equations are also achieved with an undistorted wake model when an
average is taken over all blades and one rotor revolution. This means, that local effects like blade
vortex interaction or a dependency on the number of blades can not considered by this model.
Nevertheless this model leads to a good first estimation of the downwash velocities in the most
important range of trimmed flight conditions.

In a real-time simulation a continuously time discrete computation of the dynamic balance has
to be performed. That does not allow any iteration processes where the amount of computation
steps depends on the convergency of a formula. In the case of helicopter simulation one must
avoid a thrust-downwash iteration which is common practice in most non-real-time programs.
Here we use a dynamic inflow model for the mean value of the down-wash which is formulated as
a first order filter. Filter input is the actual mean velocity which balances the aerodynamic forces

62-4

from the blade element calculation. Then the filter output is valid for the next simulation step. A
validated model for estimation of the time constant is still subject of research, [7]-[9]. We chose
0.1 s, which gives a smooth convergency after a step input in the blade pitch.

0.8

0.6

1 0.4

0.2
N
u 0.0

-0.2

-0.4

....____ Aix o.o

Fig. 5. Lift coefficient vs. M3,c and Maz.

0.8

i 0.6

!J.p
pvc;. o.4

0.2

0

0

~ = 15/8 I.J1-x2
'

pvc;.

/ 1\
I

v
/

/
/

0.2 0.4 0.6 0.8

x=r/l? --

1

Fig. 6. Mean value of Mangler pressure distribution.

As mentioned above the new simulator has to cover the real-time conditions given by the
ROTEST. This model operates with 17.5 Hertz rotor revolution. Tile frequencies of the model
range up to the second lead-lag mode which lies above the 5/rev. This is more than 90 Hertz. It is
well known that, in an accurate time integration procedure, the step width depends on the highest
frequency in the model and on the stability of the integration algorithm. Basic research was
conducted on integrating the equations of motion on a parallel processing system in real-time,
[10]. Finally a one step predictor -corrector procedure was chosen which operates with 6 degree
step size or 60 steps per revolution, so that the highest frequency component is evaluated with 12
steps per period. But in terms of computation steps per second one has 60*17.5 Hertz equal 1050
Hertz. So it is necessary to calculate the complete mathematical model described above in less
than 952 i<S.

Before we show how this can be solved, it is necessary to give some information about the
newest computer technology, because a successful realization of the discussed simulation goes
hand in hand with the knowledge about this technology.

3 OCCAM AND TRANSPUTER

3_1 Philosophy

A system in the 'real world' can be described as a set of processes which work in parallel and
exchange information between them. These processes are local and exchange their information
only with neighbouring processes. A good approach for numerical simulation would be, to have
the same set of information exchanging processes on a computer, too. This kind of mapping of
communicating parallel processes in the real world to communicating parallel processes in the
computer would provide a consistent relationship between the real world model and the
realization in the numerical world inside the computer. Unfortunately traditional computers do
not match the basic requirements of this approach i.e.

62-5

- parallelism I quasi-parallelism
- communication
- locality

in a sufficient manner. In addition, most of the traditional languages are not developed to do this
job. Although most computers allow parallel communicating processes on one machine or even
two, their operating systems, schedulers, semaphore-techniques etc. are the bottleneck for real­
time simulation. They need a lot of code and a lot of time, because these computers have been
optimized to do one job at a time. Parallelism has been introduced by software overhead to these
machines, but the basic concept of the machines has not really been influenced by realtime
simulation requirements.

I Floaling poinl uniU
Performance : 1'800/20 MHz 1'800/30 MHz

Bandwidth internal RAM 80 MByte/s 120 MByte/s

32 bit
Bandwidth external RAM 26.6 MByte/s 40 MByte/s

Control System
Services Processor Link speed per direction 800 kByte/s 800 kByte/s

I Timers I --1 LinkO '~ Interface ~
On Chip RAM

External RAM

4 kByte

4 GByte

--j ~inkl e~ ~ 4k bylesf-- Interface
Ram rl Link2 t- ~

Mem.Ctrl External' 1- Interface!-
32 ! Memory ~ Link3 !-~ ADO... Interface I l f f-

32 Bil Bus n er ace

Fig. 7. Architecture of a TRANSPUTER TSOO.

For example, although a VAX 8600 is a very fast computer, it would not produce sufficient
throughput if running, say 1000, parallel processes, communicating to each other. The machine
has been designed for doing one job fast, and all the supported real-time systems and parallel
programming tools can only do their job by software overhead. But the machine itself is a single
task machine. Even special simulation machines only fulfil some numerical requirements by
optimizing special hardware parts like table look-up, or special word lengths for integer
computation, but not the structural requirements.

What we need for fast real-time simulation of complex systems is:

a) significant improvement of performance by having a lot of physical computing units,

b) moderate price of the units because we need a lot of them,

c) a good balance between performance, memory capacity and communication capability
of each computing unit.

d) configuration capability of the units in order to have a consistent model,

e) a language allowing a simple and clear description of the configuration and
communication of such multi-processor systems.

The requirements a)- d) are fulfilled by the TRANSPUTER, a new processor which has been
developed by !NMOS, funded by the European ESPRIT project. The high level language
OCCAM, which has been designed by the same company, focuses on the requirement e).

62-6

3.2 TRANSPUTER

The TRANSPUTER (Fig. 7) is a Von Neumann machine with a built in floating point unit
and 4kB on-chip RAM. It has been optimized to run OCCAM programs. Two special features
make it an ideal machine for parallel processing:

- Hardware scheduling: All scheduling between processes is done in hardware. No operating
system to schedule processes is needed. All this is done inside the transputer and is complete
transparent to the programmer. Scheduling takes only some microseconds if, e.g. a process
becomes ready to run.

- Communication links: Each transputer has four bidirectional serial 20 Mbit/s links, each
working with a separate link engine using DMA. To send, e.g. 1000, words via a link to
another TRANSPUTER, the user only has to start the transfer and nothing else. If the
receiving TRANSPUTER is not ready to receive the message, the sending process is
descheduled automatically until the message has been received. Even if the processor is
sending and receiving on all four links simultaneously with full speed, the internal bandwidth
guarantees, that the CPU's work goes on. As we will see later, the hardware links correspond
to logical channels between OCCAM processes.

- Peiformance: Fig. 8 shows some benchmarks of the TRANSPUTER and its competitors. The
Whetstone benchmark is a typical sequential program. So the TRANSPUTER doesn't work
in the parallel world it has been designed and optimized for.

T800/20 T800/30

single length double length single length double length

add 350 ns 350 DS 233ns 233ns
sub 350 ns 350 ns 233ns 233ns
multiply 650 ns 1050 ns 433ns 700 ns
divide 950ns 1700 OS 633ns 1133 ns

10 MIPS and 1.5 MFI..OPS 15 MIPS and 2.25 MFI..OPS

Whetstone- results
processor clock Whetstones/sec

single length
INTEL 80286180287 8MHz 300k

IMS T414-20 20MHz 663k

NS 32332132081 15MHz 728k

MC 68020/68881 16n2MHz 755k
Fairchild Clipper 33MHz 2220k

I IMS I80!!.,20 20M Hz :4000k

I IMSTB00-30 30M Hz 6000k

ROLMHAWK32 1500k

V AX11n80 with FP A 1083k

MVli with FP A 925k

Fig. 8. Whetstone performance of different processors [from 11].

62-7

3.3 OCCAM

The basic concepts of OCCAM have been proposed by Hoare, (12]:

- at runtime, a process is loaded and fixed on its processor,

- at runtime, processes can not be created, i. e. all processes of the system exist when the
program starts, whether they do anything or not,

- processes only work with local memory,

- a process communicates to another via any kind of communication network.

OCCAM provides the following language elements to achieve the above rules :

- processes
- constructs

procedures
- communication .

Processes may consist of other processes. The atomic process is SKIP which does nothing. The
assignment (f.e. a: -b) is a process, too. The constructs WHILE, FOR, IF etc. are well known from
other languages. But there are some additional new constructs like SEQ, PAR and ALT.

What it looks like in OCCAM

SEQ
process_x
process_y
process_z

PAR

What it does

The processes behind the SEQ

construct will be evaluated sequentually

one after the other.

OCCAM is a format related language.

The scope of a construct covers all
following constructs or processes with

an indentation of two or more spaces.

SEQ
-"""process A

/""" The PAR construct works on the following

process 1

process_ 2

process_ 3

SEQ

/processB

ALT

process_ 4

process_ 5

process_ 6

channel 1 ? x
process_a

channel 2 ? y
process_b

Fig. 9. OCCAM language constructs.

62-8

processes A and B . Both are sequential

processes, containing processes 1 .. 6.

1. A and Bare computed in parallel.

2. If A orB i.e. process 1..3 or
process 4 .. 6 reaches a point where

it becomes unready to run (waiting
for communication), it is suspended.

If this process becomes ready to run
at any time, it is continued by auto­
matic rescheduling.

Either process _a or process _ b is
evaluated depending on whose guard
is true first, when the program reaches
the ALT construct. A guard is a receive

command on a channel. The guard is
true when reception is complete.

Fig. 9 shows what constructs in OCCAM look like and what they do. These are the important
basic language elements to formulate sequential, parallel, or alternative processes. OCCAM is a
format related language, i.e. a construct works on all following processes which are indented more
than the construct itself.

3.4 Communication

The most important feature of OCCAM is the communication between processes. Two
processes communicate if one process sends a message on a channel and another receives a
message on the same channel.

First process: channelname message. to. send
Second process: channelname ? message.to.receive

If both processes above work in parallel, they communicate if both reach their send respective
their receive point. If one reaches this point first it waits until the other one reaches its respective
point. Of course both processes are de-scheduled automatically by the processor if another
process is ready to run. This is done in microseconds. The channel 'channelname' is a logical
channel, connecting two processes. Fig. 10 gives the rules of the process-channel concept of
OCCAM.

ch: channel

p: process

Fig. 10. OCCAM's process-channel concept.

3.5 1RANSPUTER-Networks

• Processes contain the activities in OCCAM

• Channels are bi-directional data links between two processes

• Processes exchange data via channels.

• A connection is established between two processes if
a process sends and another process receives on the
same channel

• There is no explizit synchronisation between processes.
Synchronisation is done implizit by the channel protocol.

If several processes run in parallel on one machine, of course they can only run quasi-parallel.
If it is nessesary to run these processes faster, they can be placed on several 1RANSPUTERs.
Without modifying the source code of the program the same processes can run, each on a
different 1RANSPUTER, by connecting the hardware links of the 1RANSPUTER and placing
the logical channels on physical links. All placing is done outside the source code. Therefore a
system of hundreds of processes can be tested numerically on one machine and then be placed on
a lot of 1RANSPUTERSs in order to improve the performance. Fig. 11 gives an example for
placing channels and processes.

It should be noted that, if all communication between the processes has been defined and it
has been shown that the program runs without deadlock, the processes can be modified and
developed independently. The programmer modifying the process only has to be aware, not to
change the interface (e.g. channels and channel protocols) w.r.t. to the rest of the program, The
first step in developing an OCCAM program is therefore to evaluate a communication model

which represents the problem's structure. After this, the different processes are evaluated.
1RANSPUTERs can be connected in different network structures. Because each problem has

an optimal network structure, one has to decide, which structure provides the best 'fit' to the
dedicated requirements. Basic structures are, for example :

62-9

data flow processing
2-D-Euler
minimum distance
between 2 processors
problems with feedback

-- > pipeline
--> grid

-- > hypercube
--> tree

etc. Fig. 12 shows some of these structures.

A pip line structured problem:

intermediate results

Input

X

Solution with one Transputer:

3 quasi-parallel processes

communicating via logical

channels

TRANSPUTER

X

---1-1 Pl

Solution with several TRANSPUTERS:

Output

y

y

X Transputer 1-----1 Transputer 1----1 Transputer
P1 P2 P3

Fig. 11. Example for different hardware solution for the same process model.

y

Tree (binary) Grid (two-dimensinal) n-Cube (n=4)

Fig. 12. Three possible network structures for TRANSPUTERs.

62-10

4 DESCRIPTION OF THE REALIZED SYSTEM

4.1 Selection of a munerical integration method

The mathematical model of a technical system is defined, in general, by a set of partial
differential equations. By describing the movement of the rotor system with elastic blade bending
modes, a set of coupled ordinary differential equations is derived. This initial-value problem can
be formulated with difference equations and is solved by integrating the equations of motion in
the time domain. Therefore, a suitable numerical integration algorithm is required. Some points
have to be considered with the choice:

- realtime application
This excludes all algorithms with variable stepsize, because all output signals have to be
generated with equally spaced time steps. The required calculation time for one integration step
has to correspond with the fixed stepsize.

- change of input signals during the running of the program
All predictor-corrector methods of higher order use results which belong to the past, i.e. to a
period before the jump in an input signal occured. Thus, all changes of the input signals are
filtered. This is not desired. It can also be shown, that these methods are less stable, compared
with other algorithms, when they are applied to the highly nonlinear simulation of the rotor
system.

- numerical stabiliJy, accuracy and parallel processing
The numerical integration of the initial-value problem for an ordinary differential equation by
finite differences is a sequential calculation. This means, that the approximation to the solution of
an ordinary differential equation, obtained by methods like Runge-Kutta, evolves one point at a
time. The solution at each new mesh point is a prescribed function of the values of the solution at
certain previous mesh points. The Runge-Kutta algorithm bas one great disadvantage. It needs
four evaluations of the aerodynamical function for one integration step. A predictor -corrector
algorithm is able to handle changing input and output signals in a quarter of that time. Its
operation is shown in Figure 13. This first order predictor-corrector algorithm therefore seems to
be best suited for the parallel processing in real-time applications. Its numerical stability is very
good, but its integration error exceeds that of Runge-Kutta. Nevertheless one can obtain
sufficient agreement of both methods, [10].

input at step (k) x(k)

extrapolate predictor: xP(k+l)

function evaluation:
x(k+l) = rrx•(k+l)]

interpolate corrector: x(k+ 1) J

output at step (k+l) x(k+l)

Fig. 13. Principle of the integration procedure.

62-11

4.2 Description of the parallel running tasks

The distribution of the mathematical description into parallel running processes is a result of
the chosen integration algorithm and the possibility, of splitting the simulation into local physical
effects. The distribution is done in two ways:

. tree-like structure
Each rotor blade can be modelled seperately. Therefore, four processes can run in parallel,

each containing the integration algorithm and the function evaluation. Describing the complete
aerodynamical effects of the blade, the function evaluation time is much larger than the linear­
combination time associated with any given integration algorithm. Since local physical
evaluations are carried out, each part of the blade can be described in parallel to the other parts.
The TRANSPU1ER is provided with four links. In a tree-like structure one link is needed for the
connection to the upper level and three links can be used for the leaves.

This knowledge, combined with some runtime examinations, leads to splitting the blade into
nine elements, that means nine processes, of which always three are evaluated on one
TRANSPUTER. E.g. from the 'AERO'- TRANSPU1ER in Fig. 14, one is always describing the
tip part, one the middle part, and one the root part of the blade. The numerical integration
algorithm is run on the 'ROOT'- TRANSPU1ER. Since all local physical effects are summarised
on this TRANSPU1ER, it represents the connection of the blade to the rotor head. Thus, the
tree-like arrangement of the TRANSPU1ERs in Fig. 14 represents the physical structure of the
rotor. This leads to another advantage: On all twelve 'AERO'-TRANSPU1ERs the same
program can be run. The same applies to the four 'ROOT'-TRANSPU1ERs.

realtime I/0:

--~------

I

one blade -----+ f

~~~~=EIJ~JID I 

l-----------------~ 

Fig. 14. TRANSPU1ER network for the real-time simulator. 

-pipeline structure 
The above mentioned summanzmg of the forces and moments on the 'ROOT'­

TRANSPU1ER can be done while the 'AERO'-TRANSPU1ERs evaluate the function. This 
takes approximately the same amount of time. Thus the function evaluation at the mesh point k 
runs in parallel to the summarizing of the forces at the time step (k-1). The consequent 

62-12 



continuation of this idea leads to Fig. 15. At any given moment k on the horizontal axis (time­
axis), quite a lot of preparatory work and work which belongs to older mesh points is done. 
(Figure 15 just shows the main tasks of the TRANSPUTER network.) On the other hand, if one 
follows the information flow which belongs to any given mesh point k, dark line in Figure 15, the 
pipeline structure of the information processil)g can be seen. The following advantages are 
gained: 

-the sequence 'predictor-function evaluation-corrector' can be repeated at a high frequency, this 
determines the resulting stepsize, 

- for one integration step just one data transmission in each direction between the TRANS­
PUTERs is necessary. This point is very important in speeding up calculations through parallel 
processing. 

PITCH: input of pitch angles from controller 

calculate pitch angle 

AERO: local aerodynamics 

local rotor inflow 

ROOT: differential equation and integration 

forces and moments at blade root 

THRUST: forces and moments at rotor head 

PITCH: output of forces and moments 

Fig. 15. Time diagram of the simulation main tasks. 

one cycle 
i.e. 952 microseconds 

= 6 degrees 

approximately 15 degrees 

\ ___ 

. 

~=== 

i' 

time 

This method involves some disadvantages. The high frequency integrating satisfies the 
requirements of the system dynamics. But the time delay associated with the pipeline gives a 
phase lag between input (blade pitch) and the rotor reactions. The delay is small, about 1 ms or 9 
degrees rotor azimuth. In the case of 5/rev this value increases to 45 degrees. There are two 
methOds of considering this effect in a correct way. First, a model of a virtually digital data 
acquisition system can be implemented where the time delay is considered as a part of the related 
transfer function. Or, second, the computation must be accelerated. This will be possible very 
soon because the new version of the TRANSPUTER works at 30 MHz. Nevertheless two points 
have to be considered: 

1.) The observer wants to see input and output signals which belong together. Therefore, input 
signals which act as output signals as well, e.g. the pitch angle, have to be kept until the 
responding output signals are calculated. Then they may be sent to the output system. 

2.) A special view has to be given to the output signals which are gained on the upper levels of 
the tree structure and subsequently are fed back to the bottom leaves of Figure 14. This 
effects just one signal, describing the rotor inflow. Since it is filtered by a lowpass, only a 
time constant has to be modified. 

62-13 



With reference to Figure 14 and Figure 15, the simulation of the rotor system can be split up 
into several tasks which are related to the executing TRANSPU1ERs: 

'AERO': - local pitch angle and local rotor inflow 
- local evaluation of the aerodynamics for three parts of a blade 

'ROOT': - integration algorithm for one blade 
-velocities of a blade 
- forces and moments at the blade root 

'PITCH': - pitch angle and differentiation of pitch angle for all blades 
- communication with controller, if connected 
- harmonic analysis for controller 

'THRUST': - summarizing forces and moments of all blades 
- Mangler downwash model - global part of calculation 
-working up input signals 
- communication with 1/0 system 
-generation of real-time events with internal timer 

In Fig. 16 and 17 some results of the simulation model are plotted. Fig. 16 shows the case of a 
step response at hovering coditions where the collective pitch was suddenly increased by one 
degree. The plot gives the time history of the blade tip deflection, the thrust and the mean 
induced velocity. A typical steady state flight codition ati-<=0.3 is shown in Fig. 17. Here the blade 
pitch angle, tip deflection and the corresponding hub reactions Fz, Mx and My are plotted over 

three rotor revolutions. The numerical accuracy of the real-time model was compared with a 
conventional simulation on a mainframe computer, coded in FORTRAN. The results are in 
agreement by more than five digits, if the identical model was implemented. 

fl. degne 
17 8.5 

9.5~ 

7.5~;:::::=========: 
zup '~~vc== 
xup -!~f\/\MI\N 

-2.5L____ 

;;; 5oog*'tt~=======~ 
4000 

3000 ~===::::::~~;:::=~ 

~17 ~i:~cz: 
0 100 200 300 ms 500 

Fig. 16. Rotor response to collective step input. Fig. 17. Rotor components ati-<=0.3. 

62-14 



4.3 I/0 systems 

The 1/0 system works as the interface between the simulated model and the real world. 
Normally the ROTEST is operated by specially trained personel. The control inputs are set 
manually while the instruments and displays are observed for correct (or better: expected) 
reaction of the model. The same procedure is implemented in the simulator. From a PC the five 
control parameters tunnel speed, shaft tilt, and collective and cyclic pitch can be manually 
adjusted. The simulator reaction can be seen on oscilloscopes (32 channels) or, with enhanced 
features, on a realtime graphic support. Here, up to six selectable signals can be displayed, either 
as discrete value 'distribution' in the time domain, or as distribution at a given azimuth step in the 
space domain. Thus makeing it possible to look at e.g. blade deformation, blade loadings, velocity 
distribution etc. Fig. 14 can only sketch these possibilities. Another way of data reduction is the 
harmonic analysis of the signals. This is performed optionally by the 'PITCH'-TRANSPUTER 
associated with small additional penalty of delay ( < 0.2 ms). The algorithm implemented here is 
based on a recurrent calculation of the cross correlation as derived in [13]. 

5 HARDWARE 

In the previous four chapters we have described the model and the performance of the 
simulator. At this point the hardware expense should be mentioned. Fig 18 shows a basic module 
with one T800 and one megabyte memory. This module contains all parts of a computer, and has 
its performance listed in Fig. 7 and Fig. 8. For realisation of the simulator we have connected 18 
modules like this in a way shown in Fig. 14. At least one additional module is used in the PC for 
software development, one module forD/A controlling and four are used in the realtime graphics 
support. Four of the basic modules can be placed on one card, Fig. 19. So it is possible to house 
all the computing power, inclusive the 1/0, in a 19" cabinet as shown in Fig. 19. The power 
consumption is less than 80 Watts. For software development a standard PC/AT is very suitable. 

Fig. 18. Basic module (100mm x 42mm) with T800 and 1 Mbyte memory. 

62-15 



Fig. 19. Complete simulation computer including digital and analog I/0 and power supply. 

6 APPLICATIONS 

The first application of this simulator was the testing of a new HHC-controller, which works in 
the frequency domain. It is a enhanced version of the system described in [13]. The controller is 
based on a TRANSPU1ER, too. Therefore a connection to the simulator can be easily performed 
via a TRANSPU1ER-Link. At date a different controller, working in the time domain, is in 
development. With the simulator a powerful test bed is provided to check this system under 
realistic conditions without the cost and risk of a wind tunnel test. 

But not only the true real-time applications with hardware-in-the-loop can be addressed. The 
implemented rotor model reflects the conditions of the R01EST model rotor. It is now possible 
to change physical parameters of the model in real-time while the system is running. The 
parameters can be selected by an optimisation algorithm. Thus an optimisation process can be 
·handled as a conventional regulator option. 

For future application it is possible to enhance the system capabilities in order to simulate a 
complete helicopter. Therefore further modules can be added to simulate the parts fuselage, tail 
rotor etc. as depicted in Fig. 1. On the other hand, a real helicopter operates at a lower frequency 
range as the model rotor (scale 1:2.5). So it is possible to extend the mathematical model without 
loss of real-time conditions. Nevertheless, much more complex models can be taken in 
consideration than it was ever possible in the past. The computing power we need to run in real­
time grows with the complexity of the model and thus no physical limitations are obvious today. 

7 CONCLUSIONS 

It was shown that a new technology leads to a new design in real-time simulation. The 
consistent mapping of real world processes into a corresponding hardware-software system based 
on TRANSPU1ER and OCCAM provides a clear and, this is the most important feature, easily 
extendable data processing structure with real-time capabilities. The hardware expense is as low 

62-16 



as possible. Programming of the processes is done in a high level language (like Pascal or C) 
which incorporates the constructs for parallel programming. Because the software development is 
independent of the amount of processor modules in the target system, only the logic and physics 
of the real world processes must be met by the program. 

The computing speed is an additional and independent degree of freedom, which can be 
modelled by the network structure and the amounts of computing elements. The discussed real­
time simulator clearly s110ws a lot of advantages in performance, modular design, and expense. 
The only disadvantage at date is that there are only four links available. Thus possible network 
structures are restricted. But this limitation will be dropped with the next generation of 
TRANSPUTERs. 

1) H. Huber, P. Krauspe, The Role of Simulation. Helicopter Aeromechanics. AGARD 
Lecture Series No. 139, Braunschweig, 2-3 May 1985 

2) P. Saager, W. v. Grilnhagen, Real Time Helicopter Simulation. INFAUTOM International 
Symposium on Simulation, Toulouse (France) 2-3 March 1989 

3) W. v. Grilnhagen, Bestimmung der gekoppelten Schlagbiege-, Schwenkbiege- und 
Torsionsschwingungen filr beliebige RotorbWtter mit Hilfe der Finite-Element-Methode. 
DFVLR-IB 154-80!21, Braunschweig, 1980 

4) B. v. d. Wall, Verfahren zur Berechnung der instationaren Luftkrafte in der 
Hubschraubersimulation. DFVLR IB 111-87/38, 1987 

5) K. W. Mangler, H. B. Squire, The Induced Velocity Field of a Rotor. R.&M. No. 2642, 1950 

6) V. E. Baskin, eta!., Theory of the lifting airscrew. Moscow, 1973, NASA TT F-823, 1976 

7) D. M. Pitt, D. A Peters, Theoretical Prediction of Dynamic-Inflow Derivatives. Sixth 
European Rotorcraft Forum, Paper No. 47, Bristol1980 

8) T. N. Chen, W.S. Hindson, Influence of Dynamic Inflow on the Helicopter Vertical 
Response. NASA TM 88327, 1986 

9) S, Houston, Identification of a 3 DOF Body/Coning/Inflow Model in Hover. HTP-6 System 
Identification Worl<shop. March 21-25, 1988, Bedford. 

10) C.-H. Oertel, Untersuchungen zur Echtzeitsimulation eines Hubschrauberrotors auf einem 
Parallelrechnersystem. Diplomarbeit am Institut filr Regelungstechnik der TU 
Braunschweig, Braunschweig 1988 

11) IMS T800 TRANSPUTER. !NMOS 72 TRN 117 02, April 1987 

12) C. A. R. Hoare, Communicating Sequential Processes, Comm. ACM 21 CS). 666-677 (1978) 

13) G. Lehmann, R. Kube, Automatic Vibration Reduction at a Four-Bladed Hingeless Model 
Rotor- A Wind Tunnel Demonstration. Proceedings of the 14th ERF, Mailand, Paper No. 
20,Sept. 1988 

62-17 



 
 
    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 1 to page 1
     Mask co-ordinates: Left bottom (9.88 271.66) Right top (47.42 570.01) points
      

        
     0
     9.879 271.6634 47.419 570.0079 
            
                
         1
         SubDoc
         1
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     19
     0
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 3 to page 3
     Mask co-ordinates: Left bottom (545.20 279.30) Right top (585.81 568.50) points
      

        
     0
     545.1987 279.2981 585.8058 568.5003 
            
                
         3
         SubDoc
         3
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     19
     2
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 4 to page 4
     Mask co-ordinates: Left bottom (553.46 241.14) Right top (596.95 559.38) points
      

        
     0
     553.4634 241.1363 596.9498 559.3778 
            
                
         4
         SubDoc
         4
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     19
     3
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 5 to page 5
     Mask co-ordinates: Left bottom (1.98 261.14) Right top (46.49 559.86) points
      

        
     0
     1.9783 261.14 46.49 559.8627 
            
                
         5
         SubDoc
         5
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     19
     4
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 6 to page 6
     Mask co-ordinates: Left bottom (553.46 261.89) Right top (595.96 564.32) points
      

        
     0
     553.4634 261.8912 595.9615 564.3195 
            
                
         6
         SubDoc
         6
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     19
     5
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 7 to page 7
     Mask co-ordinates: Left bottom (2.97 268.63) Right top (46.59 567.99) points
      

        
     0
     2.9738 268.6304 46.5898 567.9947 
            
                
         7
         SubDoc
         7
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     19
     6
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 8 to page 8
     Mask co-ordinates: Left bottom (559.15 272.65) Right top (595.70 560.13) points
      

        
     0
     559.1489 272.6513 595.701 560.1289 
            
                
         8
         SubDoc
         8
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     19
     7
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 9 to page 9
     Mask co-ordinates: Left bottom (-1.98 263.87) Right top (52.38 585.07) points
      

        
     0
     -1.9767 263.8679 52.3814 585.0743 
            
                
         9
         SubDoc
         9
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     19
     8
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 10 to page 10
     Mask co-ordinates: Left bottom (550.26 255.86) Right top (595.70 574.95) points
      

        
     0
     550.2579 255.857 595.701 574.9473 
            
                
         10
         SubDoc
         10
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     19
     9
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 11 to page 11
     Mask co-ordinates: Left bottom (5.93 242.12) Right top (42.50 574.20) points
      

        
     0
     5.93 242.1247 42.4981 574.2027 
            
                
         11
         SubDoc
         11
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     19
     10
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 12 to page 12
     Mask co-ordinates: Left bottom (-3.95 364.68) Right top (19.77 842.04) points
      

        
     0
     -3.9533 364.6773 19.7666 842.0395 
            
                
         12
         SubDoc
         12
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     19
     11
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 12 to page 12
     Mask co-ordinates: Left bottom (547.53 283.63) Right top (592.01 564.32) points
      

        
     0
     547.5334 283.6344 592.0082 564.3195 
            
                
         12
         SubDoc
         12
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     19
     11
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 13 to page 13
     Mask co-ordinates: Left bottom (6.94 239.79) Right top (45.58 567.76) points
      

        
     0
     6.9359 239.7882 45.5786 567.7556 
            
                
         13
         SubDoc
         13
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     19
     12
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 14 to page 14
     Mask co-ordinates: Left bottom (556.19 276.60) Right top (590.76 556.18) points
      

        
     0
     556.1852 276.6028 590.7616 556.1773 
            
                
         14
         SubDoc
         14
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     19
     13
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 15 to page 15
     Mask co-ordinates: Left bottom (3.97 273.94) Right top (53.60 556.81) points
      

        
     0
     3.9701 273.9403 53.5968 556.8123 
            
                
         15
         SubDoc
         15
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     19
     14
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 16 to page 16
     Mask co-ordinates: Left bottom (556.19 278.58) Right top (590.76 556.18) points
      

        
     0
     556.1852 278.5786 590.7616 556.1773 
            
                
         16
         SubDoc
         16
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     19
     15
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 17 to page 17
     Mask co-ordinates: Left bottom (9.90 285.24) Right top (48.53 564.54) points
      

        
     0
     9.9042 285.2429 48.5305 564.5409 
            
                
         17
         SubDoc
         17
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     19
     16
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 18 to page 18
     Mask co-ordinates: Left bottom (-1.98 272.65) Right top (18.77 840.69) points
      

        
     0
     -1.9758 272.6513 18.77 840.6912 
            
                
         18
         SubDoc
         18
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     19
     17
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 18 to page 18
     Mask co-ordinates: Left bottom (551.25 277.59) Right top (595.70 561.12) points
      

        
     0
     551.2457 277.5908 595.701 561.1168 
            
                
         18
         SubDoc
         18
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     19
     17
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 19 to page 19
     Mask co-ordinates: Left bottom (11.90 274.58) Right top (50.55 562.05) points
      

        
     0
     11.8953 274.578 50.5549 562.0471 
            
                
         19
         SubDoc
         19
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     19
     18
     1
      

   1
  

 HistoryList_V1
 qi2base





