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Abstract

Decentralized vibration control for active helicopter ro-
tor blades is proposed to reduce rotor-induced vibration
and to stabilize the rotor. The time-periodic behavior
of the rotor is approximated by a time-invariant system
in multiblade coordinates. Considering the rotor as an
interconnection of N subsystems, the approximation is
investigated in terms of subsystem interconnection er-
rors. A new decentralized vibration control method is
proposed which provides inherent robustness with re-
spect to uncertain subsystem interconnections and thus,
is appropriate to control the time-periodic system. The
internal model principle is applied to achieve hubload
compensation and hence a reduction of the rotor-induced
vibration. Subsystem stabilizing controllers are applied
for rotor stabilization. The control system is synthesized
based on decentralized optimal output feedback. Sev-
eral design examples for a BO105 helicopter rotor in for-
ward flight demonstrate the performance of the method
in achieving rotor-induced vibration reduction and rotor
stabilization.

Nomenclature

A,A system matrix

B,B input matrix

C, C sensor matrix

D feedthrough matrix

E disturbance matrix

F disturbance matrix, hub force

g scalar feedback gain

H Hamiltonian function

I identity matrix

J performance index

k vector of feedback parameters

K feedback gain matrix

M hub moment

n system order, index of harmonics

N number of subsystems or blades

Nψ number of azimuth angles

Q weighting matrix

r relative degree

R weighting matrix, rotor radius

T transmissibility

u input vector

w disturbance vector, deflection

x state vector, lagwise displacement

y output vector

β blade flapping angle

ζ damping ratio

η trailing edge flap deflection

λ disturbance pole

σ singular value

ψ azimuth angle

ω frequency

Ω rotor frequency

0 collective form

1c longitudinal cyclic form

1s lateral cyclic form

N/2 differential form

β out-of-plane flapping

c compensation

ζ in-plane lagging

m rotor blade index

p plant, pole

s stabilization, sensor

z zero

IBC individual blade coordinate

LMS lagging mode stabilization

LTI linear time-invariant

LTP linear time-periodic

MBC multiblade coordinate

RDRC robust disturbance rejection control

TEF trailing edge flap

Introduction

Rotor-induced vibration in helicopters is the oscilla-
tory response of the airframe due to periodically vary-
ing aerodynamic loads acting on the rotor blades. Due
to these higher harmonic aerodynamic loads, the rotor
blades execute a forced vibration and higher harmonic
loads are generated at the blade roots. These loads are
transmitted through the rotor hub to the nonrotating
frame only at harmonics which are multiples of NΩ –
the blade passage frequency. The transmitted hubloads
in their part excite the airframe structure resulting in
rotor-induced vibration at multiples of NΩ. In steady
flight, the rotor frequency Ω is known and deviations are
small. Consequently, also the frequencies of the higher
harmonic hubloads at multiples of NΩ are known. How-
ever, phase and amplitude of the hubloads are unknown
and vary considerably with the flight condition.

In unsteady flight, the transient vibration response de-
pends considerably on the damping of the system. Rotor
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stabilization is thus essential for active damping enhance-
ment of the weakly damped in-plane lagging motion.
Furthermore, rotor stabilization is important in order to
prevent ground and air resonances.

Active rotor control, in the past only hardly feasible
due to the lack of appropriate rotating blade actuation
systems, is recently becoming feasible due to the avail-
ability of solid state actuators. This allows on-blade ac-
tuation even under high centrifugal and out-of-plane ac-
celerations, e.g. to drive aerodynamic control surfaces
on the blade. Particularly trailing edge flaps located at
the outer part of the rotor blades seem to be suitable for
reducing rotor-induced vibration as well as for rotor sta-
bilization, see Enenkl at al. [12]. The higher harmonic
loads acting on the blades can be complemented by ad-
ditional loads generated by the deflection of the trailing
edge flaps. Provided that the trailing edge flap deflec-
tions are properly controlled, this reduces the hub loads
transmitted to the airframe and thus the rotor-induced
vibration at the airframe. Rotor stabilization for active
damping enhancement of the in-plane lagging motion
may be achieved when the feedback principle is applied.

Feasibility studies of using active materials for rotor
control motivated the development of actuation systems
as proposed by Barrett [2], Büter [3], Chopra

et al. [7, 6, 33, 22], Hagood et al. [10], Hall et
al. [37, 28, 29], Schimke et al. [34], and Straub et
al. [39, 40]. A focus has been put on trailing edge flaps
and hover testing has been reported for some actuation
systems, see Chopra et al. [20, 38], Hall et al. [14]
and Rogers et al. [31].

Regarding controller design, stabilization has been
proposed for single rotor blades by Ham [16], Kessler

et al. [18], Nitzsche [26], Narkiewicz [24], and
considering time-periodic systems by Wasikowski et
al. [5], Pandian et al. [27], Calico et al. [4]. Most of
the investigations were however restricted to rigid blade
motions. On the other hand, the conventional approach
for reducing vibration at NΩ is based on a quasi-steady
assumption, see Shaw et al. [35] and Hall et al. [15].
However, when the rotor-induced vibration problem is
approached by dynamic feedback control to overcome
the quasi-steady assumption, see Arcara et al. [1],
Rottmayr et al. [32], Dieterich [11] and Prechtl

et al. [30], rotor stability will be affected. The vibration
and stabilization problem can thus no longer be consid-
ered independently. Moreover, since rotor-induced vibra-
tion is due to the motion of the rotor as a whole, stabi-
lization can no longer be designed by simply considering
single blades.

The objective of this research is to develop an appro-
priate vibration control method for active helicopter rotor
blades in order to achieve simultaneously rotor-induced
vibration reduction and rotor stabilization. The result-
ing multivariable control system is required to possess
a simple feedback structure which provides physical in-
sight and may allow a certain degree of tuning during
flight tests. The controller has further to deal with the
time-periodic dynamical system behavior of a helicopter

rotor in forward flight. Moreover, we seek for robustness
of the control system with respect to uncertainties in the
plant model, a variation of the flight speed regime, and
small deviations of the rotor frequency Ω. Considering
the rotor as an interconnection of N individual subsys-
tems (rotor blades), a new vibration control method is
proposed based on decentralized control, for details see
Konstanzer [19]. The proposed method will be inves-
tigated based on open-loop and closed-loop simulations
of the time-periodic behavior of active helicopter rotor
blades with on-blade actuation by trailing edge flaps.

System Analysis

For vibration control, the dynamic behavior of active he-
licopter rotor blades may be described by a linear time-
periodic system. To simplify analysis, design and im-
plementation of a multivariable control system, a rep-
resentation by a linear time-invariant system is desired.
However, any time-invariant representation of a time-
periodic system can only be an approximation. A system
analysis is presented and the applied constant coefficient
approximation is discussed in terms of subsystem inter-
connection errors.

A single main rotor consisting of N identical rotor
blades is considered in forward flight. The rotor is
supposed to be fixed at the hub, thus neglecting the
influence of the airframe. The blades are modeled
as flexible beam structures, which perform a coupled
motion consisting of out-of-plane flapping, in-plane
lagging, and torsion. Trailing edge flaps [34] located
at the outer part of the rotor blades are considered for
aerodynamic on-blade actuation. The aeroservoelastic
behavior is modeled using the comprehensive analytical
model of rotorcraft aerodynamics and dynamics CAM-
RAD II [17].

Time-Periodic System
The dynamic behavior of active helicopter rotors may

be described by a time-periodic dynamical system lin-
earized about the periodic trim state. Linearization of
the nonlinear time-periodic rotor system at Nψ azimuth
angles considering small perturbations in the flapping,
lagging and torsional motion of the rotor blades as well
as in the deflection of the trailing edge flaps leads to a
linear time-periodic LTP system written in state-space
representation as [17]

˙̃x = Ã(ψ)x̃ + B̃(ψ)ũ (1)

ỹ = C̃(ψ)x̃ + D̃(ψ)ũ (2)

The state vector x̃ consists of the structural degrees
of freedom of the N individual rotor blades describing
the flapping, lagging and torsional motion of the
flexible blades. The control input ũ corresponds to
the trailing edge flap deflections and the output ỹ to
individual blade sensor signals of the N rotor blades.
The system matrices contain structural as well as
aerodynamic terms resulting from a perturbed motion
of the blades about the periodic trim state. Since the
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coefficients associated with the aerodynamic terms
vary with the rotor revolution, the system matrices
are periodic matrix functions of the reference azimuth
angle ψ. The linear time-periodic system describes the
aeroservoelastic behavior of the individual rotor blades
in the rotating frame. System analysis and controller
design may be performed in the rotating frame consid-
ering the dynamic behavior of the individual rotor blades.

Multiblade Coordinates
However, rotor-induced vibration is due to the motion

of the rotor as a whole. This motivates the transfor-
mation into multiblade coordinates MBC which describe
the motion of the rotor in the nonrotating frame [8].

The transformation is applied to the time-periodic sys-
tem given by Eqs. (1, 2). This leads to a linear time-
periodic system in multiblade coordinates

ẋ = A(ψ)x +B(ψ)u (3)

y = C(ψ)x +D(ψ)u (4)

where the state vector x = [x0, x1c, x1s, x2]
T and the

input vector u = [u0, u1c, u1s, u2]
T are in multiblade co-

ordinates consisting of collective, cyclic, and differential
form.

Table 1: Plant models

BO105 rotor fixed at hub (CAMRAD II)

Regime forward descent hover

TEF radial station rel. length rel. chord
actuators 0.6 ∼ 0.7R 0.1R 0.15

Hub load in-plane hub loads: yc = [Fx, Fy]
T

sensors out-of-plane hub loads: yc = [Fz,Mx,My]
T

On-blade lag displ. ys = [yζ0 , yζ1c
, yζ1s

, yζ2 ]T

sensors flap displ. ys = [yβ0
, yβ1c

, yβ1s
, yβ2

]T

State structural DOF consisting of
variables 4 × flapping, 2 × lagging, 1 × tors. mode

system order number of azimuth angles
n = 56 Nψ = 48

The output vector y contains hub load sensor outputs
yc and on-blade sensor outputs ys again in multiblade
coordinates. Details of the plant models investigated
are given in Tab. 1.

Constant Coefficient Approximation
Controller design may be applied for the time-periodic

system based on the Floquet-Lyapunov theory [4]. This
may lead to periodic controller parameters depending on
the flight condition. However, to simplify analysis, de-
sign and implementation, we are interested in the possi-
bility of an accurate constant coefficient representation
of the time-periodic system. For this purpose, the pe-
riodic matrix functions of the time-periodic system in
multiblade coordinates are expanded in Fourier series,
e.g. A(ψ) = A+

∑
∞

k=1 Ack cos kψ+Ask sin kψ, and by
neglecting the periodic terms, a constant coefficient ap-
proximation is obtained in terms of a linear time-invariant
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Figure 1: Impulse response due to a differential input
disturbance.

LTI system

ẋ = Ax + B u (5)

y = C x + Du (6)

where the state vector x = [x0, x1c, x1s, x2]
T consists

of the structural degrees of freedom of the N flexible
rotor blades in multiblade coordinates. The input
vector u = [u0, u1c, u1s, u2]

T consists of the trailing
edge flap deflections in multiblade coordinates and the
output vector y may contain hub load sensor outputs
yc as well as on-blade sensor outputs ys again in
multiblade coordinates. Representing the plant model
by a constant coefficient approximation in multiblade
coordinates allows analysis and controller design based
on linear time-invariant systems, thus making the
problem amenable to a wide range of multivariable
controller design methods.

Interconnection Error
Any constant coefficient representation of a time-

periodic system can only be an approximation. For a
constant coefficient approximation in MBC, the intercon-
nection of collective and cyclic forms is preserved whereas
the interconnection of differential and non-differential
forms is completely neglected leading to a considerable
interconnection error, as shown by the impulse response
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given in Fig. 1. Here, the response due to an impulse
disturbance applied at the differential input is observed
through the out-of-plane flapwise and in-plane lagwise
displacements in collective, cyclic and differential form.
The constant coefficient approximations in individual
blade coordinates LTI (IBC) and multiblade coordinates
LTI (MBC) are compared to the correct time-periodic
LTP system. For a differential impulse, the response
of all non-differential forms is neglected. Whereas the
interconnection of collective and cyclic forms is basi-
cally preserved, the interconnection of differential and
non-differential forms is completely neglected by the
constant coefficient approximation in multiblade coor-
dinates. This is the interconnection error introduced by
the constant coefficient approximation.

−1

0

1

y ζ 1 [m
m

]

LTP      
LTI (MBC)
LTI (IBC)

−1

0

1

y ζ 2 [m
m

]

−1

0

1

y ζ 3 [m
m

]

0 2 4 6 8 10
−1

0

1

y ζ 4 [
m

m
]

Rotor revolution

Figure 2: Impulse response for an input disturbance
in IBC.

Neglecting interconnections between multiblade forms
introduces false interconnections between the individual
rotor blades. This is shown in Fig. 2 where the im-
pulse response observed through the individual blades is
given due to an input disturbance applied to one individ-
ual blade. Whereas the time-periodic system contains
no interconnections between the individual blades, the
constant coefficient approximations introduce an inter-
connection error between the individual blades.

Control System Synthesis

Considering the rotor as an interconnection of N indi-
vidual subsystems (rotor blades), a new vibration control
method is proposed based on decentralized control. The
method accounts for the time-periodic system behavior
of a helicopter rotor in forward flight by applying a de-
centralized feedback structure. To reduce rotor-induced
vibration, robust disturbance rejection control is applied
based on the internal model principle of feedback control.
Rotor stabilization is addressed by individual subsystem
(blade) stabilizing controllers constructed from dynamic
compensators of known structure. To finally synthesize
a decentralized vibration control system for active he-
licopter rotor blades, robust disturbance rejection and
rotor stabilization are set into the framework of decen-
tralized optimal output feedback.

In the control of active helicopter rotor blades, the de-
centralized control strategy [36] is particularly appropri-
ate when individual rotating blade actuators and sensors
are used.

Since helicopter rotors consist of N rotor blades,
the application of decentralized subsystem controllers to
each rotor blade seems to be a natural approach. Since
all blades are identical, there is no reason for the sub-
system controllers to be non-identical which introduces
a considerable simplification into the control system.

However, when the motion of the rotor as a whole
is considered in multiblade coordinates, the system
becomes coupled. Decentralized control can provide
inherent robustness with respect to the interconnection
error introduced when the time-periodic system is
approximated by a time-invariant system.

Decentralized Optimal Output Feedback
The static output feedback problem is to find a static

output feedback matrix for a given linear time-invariant
system, so that the closed-loop system has some desir-
able characteristics. Static output feedback will allow us
to design controllers of any desired structure, e.g. fixed-
order dynamic output feedback compensators or decen-
tralized controllers.

Let the plant to be controlled be given by the following
linear time-invariant system

ẋ = Ax+Bu (7)

y = Cx (8)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm the
input vector, and y(t) ∈ Rp the vector of measured
outputs. The feedback law is determined by the output
feedbacks given by

u = Ky (9)

where K ∈ Rm× p is the matrix of constant/static
feedback gains to be determined by the design proce-
dure1.

Static output feedback is important in its own, but
also since many other problems can be reduced to it.
Fixed-order dynamic compensation of order q < n can
be reduced to the static output feedback case [25]

In order to design decentralized controllers as well as
dynamic compensators with prescribed structure using
static output feedback, a feedback structure formula-
tion allowing arbitrary output feedback structures is pro-
posed.

1The case of non-strictly proper systems including
feedthrough, i.e. y = Cx + Du instead of Eqn. (8), may
be put down to the strictly proper case by constructing
a strictly proper auxiliary system simply by omitting the
feedthrough. Suppose that a gain matrix K̃ has been deter-
mined for the auxiliary system. Then a comparison of the
auxiliary system ẋ = (A + BK̃C)x and the proper system
ẋ = (A + BK(I −DK)−1C)x yields

K̃ = K(I −DK)−1 or K = (I + K̃D)−1K̃ (10)

where the gain matrix K for the non-strictly proper system is
recovered from the gain matrix K̃ for the strictly proper auxil-
iary system.
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Definition 1 For the static output feedback law given
by Eqn. (9), the arbitrary feedback structure formulation
is defined as

K = Kp +

m∑

i=1

ti k
T Ui (11)

where Kp ∈ Rm× p denotes the matrix of prescribed

coefficients, k ∈ Rv × 1 the vector of v feedback pa-

rameters to be designed, and ti ∈ Rm× 1 and Ui ∈
Rv × p are vectors and matrices, respectively, which de-
termine the entry of the feedback parameters k into the
gain matrix K.

The linear quadratic regulator problem for decentral-
ized optimal output feedback DOOF can be stated as
follows, cp. [21]. Let the plant be given by Eqs. (7,
8) and the feedback law by Eqn. (9) and consider the
arbitrary feedback structure formulation of Definition 1.
Find a gain matrix K of arbitrarily specified structure
that minimizes an infinite horizon quadratic performance
index of the type

J =
1

2

∫
∞

0

(xT Qx + uT Ru) dt (12)

where Q and R are symmetric positive semidefinite
weighting matrices. The semidefiniteness assumptions
on Q and R guarantee that J is non-negative and lead
to a sensible minimization problem. The closed-loop sys-
tem equations are

ẋ = (A+B (Kp +

m∑

i=1

ti k
T Ui)C)x := Acl x (13)

The dynamical optimization problem may be con-
verted into an equivalent static problem. The symmetric
matrix X is defined by X = x(0)Tx(0). To solve the
static problem the Lagrange multiplier approach [13] is
applied which converts the constrained problem into an
equivalent unconstrained problem by defining the Hamil-
tonian H = tr (MX) + tr (FP ) where P is a symmetric
matrix of Lagrange multipliers to be determined. Setting
the partial derivatives of H with respect to all indepen-
dent variables M,P, k equal to zero yields the necessary
conditions for the solution of the decentralized optimal
output feedback problem given by the following theorem.

Theorem 1 Let the plant be given by Eqs. (7, 8) and
the feedback law by Eqn. (9) and consider the arbitrary
feedback structure formulation of Definition 1. Then
necessary conditions for the feedback gainK to minimize
the performance index of Eqn. (12) subject to the closed-

loop system constraint (13) are given by

0 = X +AclP + P ATcl (14)

0 = ATclM +MAcl +Q+ CTKTRKC (15)

k = −





m∑

i,j=1

(tTi R tj)UiCPC
TUTj





−1

m∑

i=1

UiCP (MB + CTKT
p R) ti (16)

K = Kp +

m∑

i=1

ti k
TUi (17)

Proof: see [19].

Robust Disturbance Rejection Control
In systems exposed to persistent external disturbances,

a controller is required which regulates the effect of the
external disturbances. In the rotor-induced vibration
problem, rotor blades are exposed to persistent higher
harmonic aerodynamic disturbances and the controller is
required to regulate the effect at the rotor hub.

The internal model principle of control theory defines
the necessary structure of a multivariable controller to
achieve closed-loop stability and output regulation (e.g.
disturbance rejection) in a system with deterministic dis-
turbance and reference signals. Further, the controller is
structurally stable or robust in the sense that output reg-
ulation occurs even in the presence of small perturbations
of the system parameters.

Simply stated, a controller is structurally stable only
if the controller uses feedback of the regulated variable,
and incorporates in the feedback loop an internal model
of the external signals (i.e. disturbance or reference sig-
nals) which the regulation is required to process.

Robust disturbance rejection control [9] applies the
internal model principle. Let the plant to be controlled
be given by the following linear time-invariant model

ẋ = Ax+Bu+Ew (18)

y = Cx+Du+ Fw (19)

ym = Cmx+Dmu+ Fmw (20)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm the
input vector, y(t) ∈ Rr the vector of outputs to be reg-
ulated, ym(t) ∈ Rrm the vector of measurable outputs,
and w(t) ∈ Rmd the vector of disturbances. The class
of disturbances acting on the plant are assumed to be
given by the following system

η̇ = Aη (21)

w = Cη (22)

The eigenvalues λ1(A), . . . , λp(A) ∈ C+ are called dis-
turbance poles and characterize the type of the consid-
ered disturbance, e.g. constant, sinusoidal, triangular,
polynomial-sinusoidal.

In the rotor-induced vibration problem, the uncon-
trolled hub loads are considered as disturbances w of
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sinusoidal type with frequency 4Ω and disturbance poles
λ1,2 = ±j4Ω.

In robust disturbance rejection, one is interested in
designing a controller so that the outputs y are inde-
pendent of the external disturbances w, i.e. disturbance
rejection is achieved. This leads to the requirement that
the transmission of the disturbances w to the outputs y
is zero in steady-state

lim
t→∞

y(t) = 0 ∀x(0), η(0) (23)

Furthermore, the closed-loop system is required to be as-
ymptotically stable and to possess robustness, i.e. distur-
bance rejection occurs for any perturbation in the plant
model as long as the closed-loop system remains stable.

Any linear time-invariant controller that solves the ro-
bust disturbance rejection control problem is given by
the feedback law

u = ys +Kcxc (24)

which combines the output ys of some stabilizing con-
troller and the state xc of the subsequently defined servo-
compensator which is necessary to achieve robust distur-
bance rejection.

Figure 3: General robust disturbance rejection con-
trol.

Definition 2 (Servo-Compensator [9]) The servo-
compensator for the plant (18) – (20) is a dynamic
compensator

ẋc = Acxc +Bcy (25)

with the inputs y ∈ R
r and the outputs xc ∈ R

n∗

(n∗ = rp) given by

Ac = blockdiag (Âc, Âc, . . . , Âc)
︸ ︷︷ ︸

r

Bc = blockdiag (B̂c, B̂c, . . . , B̂c)
︸ ︷︷ ︸

r

(26)

Âc
p×p

=








0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
−δ1 −δ2 −δ3 · · · −δp







, B̂c
p×1

=








0
...
0
1








(27)
where the coefficients δi, i = 1, . . . , p are defined by the
disturbance poles λi(A)

λp + δpλ
p−1 + · · · + δ1 =

p
∏

i=1

(λ− λi) (28)

The servo-compensator is a dynamic compensator which,
by definition (28), is in resonance with the external dis-
turbances acting on the plant. Therefore it represents
an internal model of the external disturbances according
to the internal model principle. Concerning the informa-
tion about the disturbances, it is sufficient to know only
the disturbance poles λi(A) which characterize the dis-
turbance type. It is not necessary to know E,F in the
plant model (18, 18) nor A, C of the disturbance model
(22). The controller is robust in the sense that perfect
disturbance rejection is achieved for any uncertainties in
the plant model as long as the closed-loop system re-
mains stable.

The simplest controller to achieve robust disturbance
rejection consists of the servo-compensator and a
static feedback gain matrix Kc, without any additional
stabilizing controller. Since the servo-compensator is
completely given by the knowledge of the disturbance
poles (28), the only unknown parameters are contained
in the static gain matrix Kc. The design problem is
therefore to find the gain matrix Kc. To achieve a
fast transient response, Kc is chosen to minimize a
quadratic performance index according to Eqn. (12).

Stabilization
The rotor-induced vibration problem will be addressed

by robust disturbance rejection control. Active damping
enhancement of the weakly damped lagging motion re-
quires additional stabilizing controllers. In the design of
a decentralized stabilization, we construct a stabilizing
controller from dynamic compensators of known struc-
ture. Once the structure of the compensators is deter-
mined, the remaining design problem is to find optimal
parameters for the compensators. Generalized second-
order filters are considered as candidates for dynamic
compensators with known structure, although any other
compensator may be applied, too.

For active damping enhancement, any stabilizing com-
pensator must provide the proper gain and phase char-
acteristics within the bandwidth of the control. The
concept of generalized second-order filtering [41] allows
the construction of frequency-shaped stabilizing com-
pensators based on the classical approach of gain-phase
stabilization. The generalized second-order filter is given
in transfer function representation by

F (s) = k
s2/ω2

z + 2ζzs/ωz + 1

s2/ω2
p + 2ζps/ωp + 1

(29)

Depending on the choice of the coefficients
k, ζz, ζp, ωz, ωp various filters with different gain-phase
characteristics can be realized from the generalized
second-order filter. Based on these basic filters, a
frequency-shaped stabilizing compensator can be con-
structed by simple series connection, e.g. a bandpass
filter and a non-minimum phase allpass filter may
be combined to target a certain mode and provide
the proper phase characteristics. Once the struc-
ture of the stabilizing compensator is determined,
the remaining parameters are then calculated within

6



the framework of decentralized optimal output feedback.

Decentralized Vibration Control

The synthesis of a decentralized vibration control sys-
tem for active helicopter rotor blades requires to set ro-
bust disturbance rejection and rotor stabilization into the
framework of decentralized optimal output feedback and
solve for the structured static output feedback matrix.

Let the plant to be controlled be represented by the
linear time-invariant system

ẋp = Apxp +Bpup +Epw (30)

ypc
= Cpc

xp +Dpc
up + Fpc

w (31)

yps
= Cps

xp + Fps
w (32)

where xp denotes the state vector of the plant, up the in-
put vector, w the vector of disturbances, ypc

the vector
of outputs to be regulated and yps

the vector of out-
puts amenable for stabilization. A linear time-invariant
plant model representing the aeroservoelastic behavior of
active helicopter rotors may be obtained by a constant
coefficient approximation of the time-periodic system in
multiblade coordinates.

Suppose the plant (rotor) consists ofN interconnected
subsystems (rotor blades) and is required to be stabi-
lized by N individual subsystem controllers. Let the i-
th subsystem controller be constructed from generalized
second-order filters given by

˙̂xsi
= Âsi

x̂si
+ B̂si

ûsi
(33)

ŷsi
= Ĉsi

x̂si
+ D̂si

ûsi
(34)

Now suppose the subsystems are identical as in the case
of identical rotor blades. Then there is no reason for the
subsystem controllers to be non-identical, thus

Âs1 = Âs2 = . . . = ÂsN
=: Âs (35)

B̂s1 = B̂s2 = . . . = B̂sN
=: B̂s (36)

Ĉs1 = Ĉs2 = . . . = ĈsN
=: Ĉs (37)

D̂s1 = D̂s2 = . . . = D̂sN
=: D̂s (38)

Transforming the individual subsystem controllers into
multiblade coordinates, the stabilizing controller forN =
4 subsystems (rotor blades) is given by

ẋs =







Âs 0 0 0

0 Âs −ΩI 0

0 ΩI Âs 0

0 0 0 Âs







︸ ︷︷ ︸

As

xs+







B̂s 0 0 0

0 B̂s 0 0

0 0 B̂s 0

0 0 0 B̂s







︸ ︷︷ ︸

Bs

us (39)

ys =







Ĉs 0 0 0

0 Ĉs 0 0

0 0 Ĉs 0

0 0 0 Ĉs







︸ ︷︷ ︸

Cs

xs+







D̂s 0 0 0

0 D̂s 0 0

0 0 D̂s 0

0 0 0 D̂s







︸ ︷︷ ︸

Ds

us (40)

where xs, us, ys are in multiblade coordinates. The
overall decentralized vibration controller consists of com-
pensators for robust disturbance rejection and stabiliza-
tion. In order to achieve robust disturbance rejection,
we apply the servo-compensator

ẋc = Acxc +Bcypc
(41)

upc
= Kcxc (42)

For stabilization, we consider the above composed sta-
bilizing controller

ẋs = Asxs +Bsyps
(43)

ups
= Csxs +Dsyps

(44)

Defining auxiliary inputs and outputs for the servo-
compensator, i.e. yc := xc, and for the stabilizing con-
troller, i.e. us := ẋs and ys := xs and applying the
overall controller to the plant using up = upc

+ups
yields

the expanded system





ẋp
ẋc
ẋs





︸ ︷︷ ︸

ẋ

=





Ap 0 0
BcCpc

Ac 0
0 0 0





︸ ︷︷ ︸

A





xp
xc
xs





︸ ︷︷ ︸

x

+





0 Bp
0 BcDpc

I 0





︸ ︷︷ ︸

B

[
us
up

]

︸ ︷︷ ︸

u

+





Ep
BcFpc

0





︸ ︷︷ ︸

E

w (45)

��
ys
yps

yc

��
� ��� �

y

=

��
0 0 I
Cps

0 0
0 I 0

��
� ��� �

C

��
xp
xc
xs

��
� ��� �

x

+

��
0
Fps

0

��
� ��� �

F

w (46)

	
us
up 
� ��� �
u

=

	
As Bs 0
Cs Ds Kc 
� ��� �

K

��
ys
yps

yc

��
� ��� �

y

(47)

where all unkown parameters are contained in the static
output feedback matrix K. The transient behavior in
terms of the deviation from the steady-state is governed
by

ẋ = Ax+Bu (48)

y = Cx (49)

u = Ky (50)
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where the structure of K depends on the choice of the
stabilizing controller and is represented by the arbitrary
feedback structure formulation given by Definition 1

K = Kp +

m∑

i=1

ti k
T Ui (51)

The controller parameters in K are then chosen in order
to minimize the quadratic performance index J leading
to the optimization problem for which the necessary con-
ditions are given in Theorem 1. This unconstrained op-
timization problem can be solved modifying the iterative
algorithm of Moerder and Calise [23] for decentralized
control. The algorithm is shown to converge to a local
minimum when starting from a stabilizing initial gain.
Depending on the respective design specifications, con-
straint requirements may be imposed on decentralized
optimal output feedback.

Including constraints, the optimization problem can
be solved by nonlinear programming algorithms with the
update of the performance index calculated from the so-
lution of the necessary conditions of the unconstrained
problem given in Theorem 1.

Design for Active Helicopter Rotor Blades

A case study for the design of decentralized vibration
control systems for active helicopter rotor blades is given.
Figure 4 shows the proposed control system consisting of
a disturbance rejection loop for hub load compensation
and N = 4 individual subsystem stabilizing controllers
for rotor stabilization. The performance of various con-
trol design examples is investigated with a focus on ro-
bustness of the controller when applied to the correct
time-periodic system. This will demonstrate the inher-
ent robustness of the decentralized control approach.

Figure 4: Decentralized rotor control system.

The control inputs are the trailing edge flap de-
flections ηi, i = 1, . . . , N . The hub loads represent
the outputs to be regulated where out-of-plane loads
yc = [Fz ,Mx,My] and in-plane loads yc = [Fx, Fy]
are distinguished. The stabilizing controllers further
require an additional individual rotating blade sensor
signal ysi

, which is assumed to be provided by a
lagwise acceleration sensor on the blade. Alternatively,

blade root load sensors may be applied to provide the
necessary individual blade sensor signal.

Hub load Compensation

In the rotor-induced vibration problem, the control ob-
jective is the compensation of the 4Ω-hub loads. This
is approached by robust disturbance rejection control
RDRC. The plant is represented by the linear time-
invariant system in multiblade coordinates where the in-
put u consists of the trailing edge flap deflections in
multiblade coordinates u = [η0, η1c, η1s, η2] and the out-
puts yc are the hub loads.

The 4Ω-hub loads generated in uncontrolled forward
flight are considered as disturbances w of sinusoidal type.
Applying the internal model principle to achieve robust
disturbance rejection leads to the servo-compensator

ẋc =










[
0 1

−(4Ω)2 0

]

0 0

0

[
0 1

−(4Ω)2 0

]

0

0 0
. . .










︸ ︷︷ ︸

Ac

xc

+










[
0
1

]

0 0

0

[
0
1

]

0

0 0
. . .










︸ ︷︷ ︸

Bc

yc (52)

where the blockdiagonal matrices Ac, Bc contain exactly
r identical blocks corresponding to the number of hub
loads to be compensated, i.e. r = 3 for the out-of-plane
loads yc = [Fz ,Mx,My] and r = 2 for the in-plane
loads yc = [Fx, Fy]. Since the servo-compensator is
completely given by the knowledge of the disturbance
type, the remaining design problem is to find a static
output feedback matrix Kc.

Decentralized optimal output feedback is applied
to calculate the optimal solution subject to perfor-
mance robustness with respect to tuning errors of the
servo-compensator. Furthermore, the control system
is required to possess robustness with respect to a
variation of the flight speed regime. The control system
designed for nominal high-speed flight is required to
possess closed-loop stability for low speed flight as
well for as hover flight encountered by a parameter
uncertainty constraint.

Out-of-Plane Hub loads A typical design example
for the compensation of the out-of-plane hub loads
yc = [Fz ,Mx,My] is given. The detailed parameters are
summerized in Tab. 2. Figure 5(a) shows the pole map
for the open-loop and closed-loop system and Fig. 5(b)
the maximum singular value plot for the input distur-

bance transmissibility, i.e. σ(Twyc
) with Twyc

= Yc(jω)
W (jω)

where the disturbances W are applied at the input.
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Table 2: Design example parameters for RDRC out-
of-plane

Obj Compensation of 4Ω out-of-plane hub
loads yc = [Fz ,Mx,My]

Plant BO105, 114 KTAS, TEF at 65% radius,
hub load sensors

Control Robust disturbance rejection controller
consisting of

• servo-compensator given by Eqn. (52)

• static output feedback matrix Kc

Weight Q = I R = 10−5I

Constr. Pole region Performance robustness

req. ζ = 0.25% T : 20dB below uncontr.

δ = 0.018 1/rev N = 1.3%

The effect of robust disturbance rejection control in
the closed-loop is the following: The 3-fold poles of the
servo-compensator separate from their open-loop values
λ = ±j4Ω. As a result, shown in the singular value plot,
the disturbance transmissibility becomes zero at 4Ω – a
transmission zero has been introduced. This provides
the required compensation of the 4Ω-hub loads since for
any disturbances acting on the system, no outputs will
be observed in the steady-state at frequency 4Ω.

The time response of the closed-loop system is shown
in Fig. 6. The response is given for the controller applied
to the time-invariant LTI system, i.e. the plant model
used for controller design, as well as the correct time-
periodic LTP system.

The transient behavior of the regulated and unreg-
ulated hub loads due to persistent 4Ω disturbances is
plotted as the control loop is closed. The regulated
hub loads decay rapidly with the unregulated hub
loads remaining almost unchanged. Trailing edge flap
deflections of about 2.5◦ are required to compensate
the out-of-plane hub loads. For the time-periodic
system, it turns out that perfect disturbance rejection
is still achieved for the 4Ω disturbances. However,
comparing the regulated hub loads for the time-
invariant and the time-periodic system, it is observed
that the action of the controller applied to the time-
periodic system generates static as well as 8Ω-hub loads.

In-Plane hub loads The compensation of in-plane hub
loads yc = [Fx, Fy] is different from the out-of-plane
case since in-plane hub loads are due to the in-plane
lagging motion which is weakly damped. This will make
the application of robust disturbance rejection control
without lagging mode stabilization insufficient in the in-
plane case.

Figure 7 shows the time response of the open-loop and
closed-loop system. In Fig. 7(a), the transient response
of the regulated hub loads is shown as the control loop
is closed whereas in Fig. 7(b) the impulse response for
a differential input disturbance is given. The impulse
response represents the situation of the control system
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Figure 5: Pole map and disturbance transmissibility
for RDRC out-of-plane.

in unsteady flight conditions, e.g. when the rotor blades
are affected by gust loads.

Whereas the transient response decays sufficiently
fast after the control loop is closed, the speed of the
impulse response is quite insufficient. Depending on the
frequency of occurance of gust loads, the rotor may
hardly remain in steady-state where the hub filtering
characteristics apply and the transmitted 4Ω-hub loads
are compensated by the controller. In unsteady flight,
the motion of the rotor blades is not periodic and all
frequencies are transmitted through the hub. However,
the servo-compensator provides hub load compensation
near 4Ω only. Therefore, compensation of in-plane hub
loads without additional lagging mode stabilization is
not very effective.

Rotor Stabilization
In the rotor stabilization problem, the control objec-

tive is the active damping enhancement of the aerody-
namically weakly damped lagging motion. The plant is
again represented by the linear time-invariant system in
multiblade coordinates. Input u and output ys consist
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Figure 6: Time response for RDRC out-of-plane.

of individual rotating blade actuator and sensor signals
both transformed into multiblade coordinates.

Considering the rotor as an interconnection of N sub-
systems (rotor blades), we require the stabilizing con-
troller to consist of N identical subsystem stabilizing
controllers as described. The individual subsystem sta-
bilizing controllers are constructed from the generalized
second-order filter given by Eqn. (29). A fixed bandpass
filter

Fbp(s) =
2ζbps/ωbp

s2/ω2
bp + 2ζbps/ωbp + 1

(53)

with parameters ζbp, ωbp is chosen to target the 2nd lag-
ging mode and to provide −20dB/decade roll-off for gain
stabilization of the higher (unmodeled) modes. In addi-
tion, two non-minimum phase allpass filters

Fi(s) =
√
g
s2/ω2

i − 2ζis/ωi + 1

s2/ω2
i + 2ζis/ωi + 1

, i = 1, 2 (54)

are applied with parameters ζi, ωi, g, i = 1, 2 being de-
termined to provide the proper phase characteristics for
phase stabilization of the 1st and 2nd lagging mode. The
two non-minimum phase allpass filters, connected in se-
ries, build the identical subsystem stabilizing controllers

Table 3: Design example parameters for RDRC in-
plane

Obj Compensation of 4Ω in-plane hub loads
yc = [Fx, Fy]

Plant BO105, 114 KTAS, TEF at 65% radius,
hub load sensors

Control Robust disturbance rejection controller
consisting of

• servo-compensator given by Eqn. 52

• static output feedback matrix Kc

Weight Q = HTH with xc = Hx R = 10−5I

Constr. Pole region Performance robustness

req. ζ = 0.25% T : 15dB below uncontr.

δ = 0.009 1/rev N = 1.2%

given by

˙̂xs =







0 1 0 0
−ω2

1 −2ζ1ω1 0 0
0 0 0 1
0 −4ζ1ω1 −ω2

2 −2ζ2ω2







︸ ︷︷ ︸

Âs

x̂s+







0
g
0
g







︸ ︷︷ ︸

B̂s

ûs

(55)
ŷs =

[
0 −4ζ1ω1 0 −4ζ2ω2

]

︸ ︷︷ ︸

Ĉs

x̂s +
[
g

]

︸ ︷︷ ︸

D̂s

ûs (56)

Transformation of the N individual subsystem stabi-
lizing controllers into multiblade coordinates following
Eqs. (39, 40) yields the stabilizing controller. Defining
an expanded system similar to Eqs. (45, 46, 47) leads
to a static output feedback problem where we have to
determine the structured static output feedback matrix
K = Kp +

∑m

i=1 ti k
T Ui written as

K =

������������
�

Âs 0 0 0 B̂s 0 0 0

0 Âs −ΩI 0 0 B̂s 0 0

0 ΩI Âs 0 0 0 B̂s 0

0 0 0 Âs 0 0 0 B̂s

Ĉs 0 0 0 D̂s 0 0 0

0 Ĉs 0 0 0 D̂s 0 0

0 0 Ĉs 0 0 0 D̂s 0

0 0 0 Ĉs 0 0 0 D̂s

� �����������
�

(57)

The parameters to be designed are contained in the vec-
tor k

kT =
[
−ω2

1 −2ζ1ω1 −ω2
2 −2ζ2ω2 g

]
(58)

Once k is determined, the parameters ζ1, ω1, ζ2, ω2, g of
the non-minimum phase allpass filters can be recovered
uniquely provided the signs of the elements in k are cor-
rect. Decentralized optimal output feedback subject to
inequality constraints is applied to calculate the optimal
solution, see Tab. 4.

The damping ratio is increased from 1−5% to 6−20%
for the 1st and from 0.5 − 1% to 3 − 6% for the 2nd
lagging mode. The behavior of the decentralized sta-
bilizing controller applied to the time-periodic system
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Figure 7: Time response for RDRC in-plane.

can be seen from the impulse response. Figure 8 shows
the lagwise displacement outputs in collective yζ0 , cyclic
yζ1c

, yζ1s
and differential yζ2 form due to an impulse

disturbance applied to the differential input. The re-
sponse involving the correct time-periodic LTP system
is compared to the response involving the approximate
time-invariant LTI design model. The damping enhance-
ment achieved with the LTI design model is actually real-
ized for the LTP system, thus justifying controller design
based on LTI systems.

The inherent robustness of decentralized control
with respect to the interconnection error becomes
evident, too. The open-loop response of the LTP
system is matched by the LTI system solely in the
differential output yζ2 , whereas the interconnection with
all non-differential outputs yζ0 , yζ1c

, yζ1s
is not included

in the LTI design model. However, the decentralized
stabilizing controller applied to the time-periodic system
provides excellent performance, see Fig. 8(b). The
non-differential outputs yζ0 , yζ1c

, yζ1s
decay as fast as

the differential output yζ2 , although the interconnection
was not included in the LTI design model. This
clearly demonstrates the inherent robustness of the
decentralized control approach with respect to uncertain
subsystem interconnections.

Hub Load Compensation and Rotor Stabilization
Finally, hub load compensation by robust disturbance

rejection control is applied with rotor stabilization by N
identical subsystem stabilizing controllers. This yields
the complete decentralized vibration control system.

The control objective in this case is to compensate
the 4Ω in-plane hub loads while providing lagging mode
stabilization in order to reach the steady-state sufficiently

Table 4: Design example parameters for LMS

Obj Damping of 1st and 2nd lagging mode

Plant BO105, 114 KTAS, TEF at 65% and lag-
wise displacement sensors at 55% radius

Control N identical subsystem stabilizing con-
trollers consisting of

• fixed bandpass with ζbp = 0.2, ωbp =
4.23/rev

• two non-minimum phase allpass fil-
ters

Weight Q = I R = 10−5I

Constr. Pole region Controller param.
req. ζ = .03, δ = .07/rev ζi ≥ .3, ωi > 0

Param. ζ1 ω1 ζ2 ω2 −g

initial 0.36 1.0/rev 2.2 5.8/rev 103

optimal 0.92 2.0/rev 1.2 2.5/rev 104

Damping 1st lag 2nd lag

uncontr. 1 − 5% 0.5 − 1%

contr. 6 − 20% 3 − 6%

Increase 400% 600%

fast as the rotor blades are affected by gust loads. In
Fig. 9, three design examples with different performance
robustness requirements are compared, see Tab. 5.

As a result of the non-collocated system behavior, a
decrease in damping is associated with robust distur-
bance rejection control. The higher the required perfor-
mance robustness, the lower the achievable active damp-
ing enhancement. The design example B represents a
balanced design which achieves moderate performance
robustness with sufficient damping enhancement. The
input disturbance transmissibility is ensured to stay 15
dB below the uncontrolled level within a 1% frequency
band while damping enhancement of about 400% for the
1st and 500% for the 2nd lagging mode is achieved.

The enhancement of the time response is shown in
Fig. 10. The speed of the impulse response, again shown
for a differential input disturbance, is increased substan-
tially compared to the case without lagging mode stabi-
lization. Thus, when the rotor blades are exposed to gust
loads, the rotor reaches rapidly the steady-state where
the 4Ω-hub loads are compensated. The trailing edge
flap deflections for hub load compensation with lagging
mode stabilization are comparable to the case of hub
load compensation only.

Similarly, a compensation of out-of-plane hub loads
can be achieved with simultaneous lagging mode or flap-
ping mode stabilization, for details see [19].

Conclusions and Perspective

The objective of this research has been to develop
a vibration control method for active helicopter rotor
blades in order to achieve simultaneously rotor-induced
vibration reduction and rotor stabilization.

The time-periodic behavior of the individual rotor
blades has been approximated by a time-invariant system
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Figure 8: Impulse response due to a differential input
disturbance for LMS.

representing the rotor as a whole. Considering the ro-
tor as an interconnection ofN subsystems (rotor blades),
the approximation has been investigated in terms of sub-
system interconnection errors.

A new vibration control method has been proposed
based on decentralized control which provides inherent
robustness with respect to uncertain subsystem inter-
connections and is therefore appropriate to control the
time-periodic behavior of active helicopter rotor blades.
The internal model principle has been applied to achieve
hub load compensation by robust disturbance rejection.
Rotor stabilization has been addressed by subsystem sta-
bilizing controllers constructed from dynamic compen-
sators of known structure. The synthesis of the decen-
tralized vibration control system is finally done introduc-
ing the framework of decentralized optimal output feed-
back.

The application to active helicopter rotor blades clearly
demonstrates that the time-periodic behavior of a rotor
in forward flight could be controlled by time-invariant
controllers. Furthermore, the design of such time-
invariant controllers can be performed based on a time-
invariant approximation of the plant model. Although
a considerable error, called the subsystem interconnec-
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Figure 9: Disturbance transmissibility for RDRC &
LMS in-plane.

tion error, is introduced by the approximation, the inher-
ent robustness of the proposed decentralized control ap-
proach allows controller design based on time-invariant
systems. This introduces a considerable simplification
into the control system and degrades the periodic con-
trol concepts proposed for vibration reduction and rotor
stabilization in the past. The control system is robust
with respect to a variation of the flight speed regime and
reliable with respect to the failure of a single subsystem
stabilizing controller. Active damping enhancement of
about 500% is achieved for the 1st and 2nd in-plane
lagging modes while a maximum out-of-plane hub load
reduction of 20 dB within a 5% frequency band can be
obtained.

The decentralized control approach is however based
on the availability of individual subsystem (rotating
blade) sensors which may not be required by standard
centralized control. The conceptually simple feedback
structure and the inherent robustness of decentralized
control has been achieved at the expense of additional
rotating blade sensors.
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