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Abstract 

An approach to aeroelastic stability analysis of hingeless rotor blades in hover is presented which combines a 
geometrically exact beam theory and a three-dimensional finite-state dynamic inflow theory, using the Cp-
Lambda finite-element multibody code. The aeroelastic system is solved by an efficient numerical integration 
scheme, and the lead-lag damping is determined from the time response results. The method is validated by 
application to a two-bladed hingeless rotor without precone, and a remarkable agreement with reference results 
is observed, in dependence of the number of finite inflow states. Then, results are obtained with positive and 
negative precone angles, showing the effect of these variations on lead-lag stability. 

 

1. INTRODUCTION 

Hingeless rotors, such as those used in many 
rotary-wing aircraft applications, may suffer from 
dangerous instability problems due to aeroelastic 
coupling phenomena, especially with regards to the 
lightly damped in-plane lead-lag motion. The 
present paper illustrates a numerical study of the 
aeroelastic stability of a relatively simple hingeless 
blade in hover conditions making use of state-of-
the-art modelling tools. These allow fine predictions 
of the behavior of the rotor system, which are first 
compared with the results obtained by other 
methods published in the literature and then 
presented for different cases as reference data for 
further studies and applications. 

The aeroelastic stability analysis of rotorcraft blades 
is a multidisciplinary nonlinear problem in which a 
structural model of the blade must be strongly 
coupled with an unsteady aerodynamic load model. 
The structural model may use a moderate- or large-
deflection blade model. Nowadays, given the 
progress in computational methods, the large-
deflection approach, with no restrictions on 
displacements and rotations, is favored by many 
analysts. The structural modelling fidelity is crucial 
in aeroelastic analysis, as shown by the results in 
Refs. 1–3, where the dependence of the aeroelastic 
behavior on the beam geometry and cross-sectional 
elastic couplings is discussed. 

The aerodynamic model may consider classical 
two-dimensional aerodynamics, vortex theory, and 
dynamic inflow theory. While the former is often 
unable to effectively model the three-dimensional 
effects which significantly impact the rotor 
aeroelastic behavior, the latter two approaches are 
often employed in view of accurate results. 
However, the computational cost of vortex theories 
which are originally developed from propeller 
analysis, is often high.[4,5] A convenient alternative is 
represented by the coupling of the two-dimensional 
thin airfoil theory with finite-state dynamic inflow 
models. The best known representative of the latter 
was developed in Ref. 6. This theory has been used 
extensively in aeroelastic analysis of hingeless 
rotors blades.[7–9] Indeed, Ref. 9 presents a recent 
study considering the inflow modelling effects on the 
aeroelastic stability of hingeless and bearingless 
rotors by using a large-deflection beam theory. The 
study shows that, at low advance ratios, the 
predicted damping values are affected by the type 
of wake used in the simulations, while this 
phenomenon fades out at higher advance ratios. 

The present study employs a multibody system 
dynamic approach. This is widely used as a 
fundamental design tool in many engineering 
disciplines, such as aerospace, automotive and 
wind energy. Within this approach, any arbitrarily 
complex-topology mechanism can be modeled by 
combining different flexible or rigid elements with 
the use of several mechanical joints (such as 
revolute, prismatic, planar, etc.), actuator elements, 
force fields, control systems, etc. Therefore, the 
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simple model considered in this study can be easily 
embedded within a complex assembly representing 
a complete rotor, or even a complete rotorcraft 
vehicle. Recent examples of applications of this 
approach to the high-fidelity dynamic analysis of 
helicopter rotor assemblies are given by Refs. 10–
11, while Refs. 12–13 report on the modelling and 
simulation of complete rotorcraft vehicles. 

2. FORMULATION 

In this study a hingeless rotor blade with precone is 
considered, as shown in Figure 1. This system was 
implemented in the advanced aero-servo-elastic 
Cp-Lambda simulation tool. This is a nonlinear 
finite-element (FE) multibody code extensively 
employed in the analysis of rotorcraft and wind-
energy industrial systems.[10–17] 

Cp-Lambda provides a large library of structural 
elements such as rigid bodies, composite-capable 
beams and shells, cables, and joint models, which 
can be equipped with concentrated stiffness and 
damping, backlash, free-play and friction. In 
particular, the elastic beam model is based on a 
geometrically exact approach which allows 
arbitrarily large nonlinear displacements and 
rotations, as well as a complete cross-section 
inertial and stiffness coupling. 

Lagrange multipliers enforce the kinematical 
constraints in an optimized index-3 DAE 
(differential-algebraic equations) fashion.[18] Among 
the force fields that can be associated to body 

elements, aerodynamic forces are modelled 
according to a lifting-line approach based on 2D 
aerofoil coefficients. Inflow elements can be 
associated to rotors, such as the blade-element 
momentum (BEM) model based on the annular 
stream-tube theory with wake swirl, or the Peters–
He finite-state wake model.[6] For numerical 
robustness, the Cp-Lambda solver employs time 
marching schemes that enforce a tuneable 
algorithmic energy dissipation, thus providing a 
built-in filter for unresolved high frequencies arising 
from FE discretization. [19] 

A second modelling approach is also considered, by 
adopting a geometrically exact fully intrinsic beam 
formulation. This considers the equations of motion 
for the dynamics of beams written in intrinsic form, 
i.e. avoiding the presence of displacement and 
rotation variables.[20] This approach was used in 
Ref. 21, using a discretization based on 8 sampling 
points along the blade span and a quasi-steady 
Greenberg aerodynamic theory.[22] 

3. NUMERICAL STUDIES 

The system considered is a simple isolated, two-
bladed hingeless rotor with untwisted, isotropic 
blades. Each blade has been modeled as a uniform 
beam with center of mass axis, tension axis, and 
aerodynamic center axis coincident with the elastic 
axis. The rotor characteristics and the blade 
material and aerodynamic properties are listed in 
Table 1 (see Ref. 4 for further details). 

The discretization makes use of using 10, 3rd order 
elements, with a lifting line with 100 air-stations 
along the blade span, and a Peters-He inflow with a 
user-specified number of states, ranging from 1 
(uniform inflow) to 15. 

First the validity of the developed aeroelastic model 
was assessed by comparison with results provided 
in Ref. 4. There, a quasi-steady two-dimensional 
(QS-2D) aerodynamic model and a more complex 
three-dimensional vortex-lattice method (VLM) have 
been applied to the same structural blade in the 
context of a large-deflection beam theory. The 
steady-state blade tip deflections in the flap and 
lead-lag directions have been computed for a null 
precone angle, as a function of blade pitch. These 
resulted in two clearly distinct pairs of curves, 
shown in Figures 2 and 3, together with the results 
here obtained spanning 5 possible values of the 
Peters-He number of states (NOS), ranging from 1 
to 15. Also, the results presented in Ref. 21 are 
included. 

 
Figure 1: Schematic of a hingeless rotor blade with 
precone angle. 
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It can be seen that, for both the flap and lead-lag 
deflections, using a quasi-steady two-dimensional 
model leads to similar results. On the other hand, a 
clear trend towards convergence is observed when 
changing the Peters-He number of states from 1  to 
15. The convergence values do not fit the VLM 
results. However, these results are assumed 
sufficient to validate the static behavior of the 
developed model. 

For the same case, the dynamic behavior is 
appraised by comparing the normalized lead-lag 
damping values obtained by the different methods. 
The lead-lag damping has been obtained by 
inspection of the time response of the system when 
perturbed from the steady hover conditions. Here, 
the VLM results refer to the two modes exhibited by 
the two-blade rotor, namely the collective and 
differential modes, as an effect of the unsteady 
inflow generated by shed vorticity. However, both 
modes appear at the same frequency. 

Figure 4 shows the comparison with the methods 
presented here. The damping curves are shown 
starting from the origin and rising as the pitch 

increases. Here again, the quasi-steady two-
dimensional approaches lead to similar results, 
distinctly far away from those obtained by the VLM 
and the Peters-He results with NOS > 1, which 
appear in close agreement. Note that the quasi-
steady two-dimensional methods result in higher 
values than that of the unsteady three-dimensional 
methods. Also, as seen in the previous figures, the 
differences between the values obtained by varying 
the number of inflow states increase, albeit slightly, 
as the pitch increases. 

The next study concerns the same isotropic blade 
set at a positive precone angle of 0.05 rad, i.e. in 

Table 1: Rotor characteristics. 

Rotor solidity σ 0.06189 

Blade aspect ratio c/R 0.09722 

Non-dimensional fundamental 
lead-lag natural blade circular 
frequency 

ωv 1.30 

Non-dimensional fundamental 
flap natural blade circular 
frequency 

ωw 1.14 

Non-dimensional fundamental 
torsion natural blade circular 
frequency 

ωφ 3.00 

Ratio of blade cross-section 
polar radius of gyration and 
blade radius 

km/R 0.02778 

Ratio of principal mass radii of 
gyration km1/km2 0 

Lock number γ 6.308 

Blade airfoil lift-curve slope 
lc
α

 2π 

Blade airfoil passive drag 
coefficient 0dc  0.01 

 

  
Figure 2: Equilibrium tip flap deflection at different 
collective pitch angles and various numbers of inflow 
in the case of null precone. 
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Figure 3: Equilibrium tip lead-lag deflection at different 
collective pitch angles and various numbers of inflow 
states in the case of null precone. 
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the upward flap direction. Figures 5 and 6 show the 
tip steady-state flap and lead-lag deflections at 
varying pitch angles and for different numbers of 
inflow states. By comparing these plots with the 
results of the case without precone angle (Figures 2 
and 3), it is deduced that the positive precone angle 
decreases both the flap and lead-lag deflections. As 
before, a clear trend towards convergence is 
observed when increasing the Peters-He number of 
states from 1  to 15. 

Figure 7 shows the normalized lead-lag damping 
values found in this case. It is apparent that the 

effect of the positive precone angle changes the 
behavior of the damping, generating a region of 
instability. In fact, now at null pitch angle the 
damping is positive and increasing the pitch angle 
from the damping decreases, vanishing in the 
vicinity of a pitch angle value of 0.025 rad. Further 
increases in pitch lead to reach a minimum damping 
at about 0.050 rad, after which the stability 
boundary is attained again close to 0.080 rad. A 
pitch increase from this point induces a positive 
stability, with monotonic growth of the damping 
value. It can be noted that, for this case, all curves 
essentially predict the same stability boundary. 

 

Figure 4: Aeroelastic lead-lag damping at different 
collective pitch angles and various numbers of inflow 
states in the case of null precone. 
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Figure 6: Equilibrium tip lead-lag deflection at different 
collective pitch angles and various numbers of inflow 
in the case of positive 0.05 rad precone. 
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Figure 5: Equilibrium tip flap deflection at different 
collective pitch angles and various numbers of inflow 
in the case of positive 0.05 rad precone. 
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Figure 7: Aeroelastic lead-lag damping at different 
collective pitch angles and various numbers of inflow 
states in the case of positive 0.05 rad precone. 
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A different behavior is observed when the same 
isotropic blade set at a negative precone angle of 
0.05 rad, i.e. in the downward flap direction. Figures 
8 and 9 show the tip steady-state flap and lead-lag 
deflections at varying pitch angles and for different 
numbers of inflow states. Also in this case, a clear 
trend towards convergence is observed when 
increasing the Peters-He number of states. 
However, the negative precone angle increases 
both the flap and lead-lag deflections, compared to 
the null precone case. 

Similarly, the damping values are higher and 
therefore the system is more stable than the case of 

null or positive precone angle, as shown in Figure 
10. Indeed, the damping at zero pitch is positive and 
steadily grows as pitch increases. Again, relatively 
low values of the number of inflow states, such as 3 
or 6, is sufficient to predict the damping with a 
reasonable accuracy up to a pitch of 0.10 rad or 
higher. 

In order to further illustrate the changes in stability 
generated by pre-coning, a number of time histories 
for the tip displacements resulting from a 
perturbation in the steady-state hover conditions are 
included next. 

 

Figure 10: Aeroelastic lead-lag damping at different 
collective pitch angles and various number of wake 
states in the case of negative 0.05 rad precone. 
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Figure 9: Equilibrium tip lead-lag deflection at different 
collective pitch angles and various number of inflow in 
the case of negative 0.05 rad precone. 
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Figure 8: Equilibrium tip flap deflection at different 
collective pitch angles and various number of inflow in 
the case of negative 0.05 rad precone. 
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Figure 11: Stable tip flap deflection time histories at 
0.20 rad pitch and variuos number of inflow states in 
the case of null precone. 
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First, for the case of a null precone, Figures 11 and 
12 show the blade tip flap and lead-lag 
displacements in time at a pitch of 0.20 rad, i.e. in a 
highly stable condition. The curves corresponding to 
the full range of the number of inflow states are 
displayed. The asymptotic values, corresponding to 
those shown in Figures 5 and 6, are apparent. Also, 
the overestimation of the damping for NOS = 1 
(higher than 0.04) with respect to the cases of 
higher NOS (all about 0.03) clearly appears. 

Second, the case of a positive 0.05 rad precone is 
considered. Figures 13 and 14 show the blade tip 
flap and lead-lag displacements in time at two 

different pitch values, one in the unstable region 
and one in the stable region, characterized by equal 
absolute value of the damping coefficient. These 
are found at 0.05 rad and 0.095 rad, respectively. 
The initial perturbation (a tip dead load) has the 
same intensity in the two cases, but being applied 
on the same material axis, results in  a different 
loading conditions due to the different collective 
pitch. Only the results for NOS = 15 are shown. 
Although the absolute value of the damping is small, 
the graphs show a fairly clear divergent and 
convergent behavior, respectively. 

4. CONCLUDING REMARKS 

In this paper, the aeroelastic stability and response 
of an isolated hingeless rotor in hover has been 
investigated. A simple blade model, implemented 
within a state-of-the-art aero-servo-elastic 
simulation tool based on a consolidated and 
numerically efficient finite-element multibody 
dynamics formulation, has been considered, looking 
in particular at equilibrium tip deflections and at 
lead-lag modal damping values, as retrieved from 
the analysis of perturbed time responses. The 
model allows a user-defined number of states for 
the Peters-He finite-state wake model and the study 
reveals that the solution can be considered 
converged when using 15 states. 

The results relative to a null precone case appear 
very well correlated with three methods present in 
the known literature, suggesting that in this case a 

 
Figure 12: Stable tip lead-lag deflection time histories 
at 0.20 rad pitch and variuos number of inflow states 
in the case of null precone. 
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Figure 13: Tip flap deflection time histories at 0.05 rad 
(red, unstable) and 0.095 rad (blue, stable) for 15 
inflow states in the case of positive 0.05 rad precone. 
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Figure 14: Tip lead-lag deflection time histories at 0.05 
rad (red, unstable) and 0.095 rad (blue, stable) for 15 
inflow states in the case of positive 0.05 rad precone. 
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relatively low number of inflow states (between 3 
and 10) is sufficient for practical purposes. 

The effect of positive and negative precone has 
been investigated, showing the destabilizing effect 
of the former and the stabilizing effect of the latter. 
Indeed, in the case of positive precone, a region of 
lead-lag instability appears. Again, a relatively low 
number of inflow states is sufficient to capture the 
stability boundary. 

The present study is intended as a preparatory step 
in view of the analysis of more complex problems of 
industrial relevance, related to the aeroelastic 
design and verification of hingeless and bearingless 
rotors. 
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