
1. INTRODUCTION

The active control of the helicopter rotor is a challenging task.
The objective is to use the response of transducers located on
the blades and on the fuselage to compute commands in order
to reduce the vibrations of the whole structure. As a first step
towards this objective, we have the identification of the rotor.
By identification, it is intended the modeling of the response
of the transducers to the command inputs. This task presents
unusual difficulties as the rotor in rotation is a periodic system
and moreover the vibratory environment is very noisy. At
ONERA, we have attempted the identification of a 3 bladed
rotor model in hover by different methods. Only one method
has given reliable results. This method will be detailed here.

2.   OVERALL DESCRIPTION OF THE EXPERIMENT.

The model, named EDY, is a 3 bladed rotor articulated in
flap. The diameter of the rotor is 1,65m. The blades are rigid
in the lead−lag direction. The blades pitch angles are
determined by the position of a swash plate. The swash plate
position is set by 3 hydraulic actuators. The rotor is mounted
on top of a relatively rigid and heavy body. For better
security, this body is fastened to the ground by means of rigid
struts.
A preliminary experiment (in hover) took place at ONERA in
the BRAVoS test rig in May 1999. The aim of the study was
to test the rotor model and try an identification in the time
domain. Of particular interest was the spectrum of the output
responses and the identification of the modes. During the
experiment, the rotational speed was set at 200, 400 or 600
rpm. The mode frequencies are reported in figure 1 as a
function of the rotational speed. In this figure, one can note a
"rigid flap" mode, the frequency of which is roughly equal to

the rotational frequency of the rotor. This is what is expected
for an articulated rotor. We have also a "flexible flap" mode
and 2 other body modes which are only detected by the
accelerometers placed on the non rotating structure. In
figure 1, the shaded areas correspond to high frequencies
where no measurements were possible because of the
acquisition frequency (Shannon condition) or simply because
the level of the response was too low. Several methods of
identification have been tried([1]....[4]). Only the one that will
be detailed later has proved to be reliable.
Though the experiment of May 1999 was largely satisfactory,
it also appeared that the bandwidth allowed for the output
responses was too limited. So in September 2000, another
experiment was performed in the same test rig. As for the
previous experiment, the excitation of the model is done by
means of the three actuators which set the swash plate
position. As these actuators were not designed for unsteady
work, they cannot be operated at a frequency greater than 100
Hertz, to avoid instabilities into the hydraulic system. This
condition is fulfilled by having the three input signals to pass
through a low−pass filter before they are transmitted to the
actuators. Nevertheless, the signals coming from the output
transducers are recorded at a much higher frequency. Only one
kind of identification has been performed. The method of
identification is the extension of an existing method by Mäkilä
(references [3] [4]) to the case of periodic systems. The
mathematical developments are presented in paragraph 4. The
present paper will show the new results for a unique speed of
rotation of the rotor as well as two tests to check for the
accuracy of the identifications. 
The model, as it is identified, cannot be used for the
development of a feed−back control loop by classical methods
because the parameters are much too numerous for Linear
Quadratic (LQ) or Linear Quadratic Gaussian (LQG)
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regulators. Nevertheless the identification can be used in LMS
(Least Mean Square) or IMC (Internal Model Control)
approaches and also for the design of a controller by trial and
error as in reference [5].

The rotational speed is 400 rpm in the September 2000
experiment. The 200 and 400 rpm cases have not been
considered this time and the outputs of the accelerometers on
the non rotating structure have not been recorded. The
maximum variation of the blade pitch angle is 1. degrees. The
mean pitch angle is 0. degree. The signals recorded during the
experiment may be arranged in 2 groups. The first group is
composed of signals coming from the rotor. We have for the
first group a total of 9 signals

            Transducer          Channel number

 Angle transducer on blade 1
 Angle transducer on blade 2
 Angle transducer on blade 3

               Channel   1
               Channel   2
               Channel   3

   Strain gauge at blade root,
                 blade 1
                 blade 2
                 blade 3

         
               Channel   4
               Channel   5
               Channel   6

Strain gauge, mid distance
from tip,
                 blade 1
                 blade 2
                 blade 3

           
  
               Channel   7
               Channel   8
               Channel   9

These 9 signals are coming from rotating parts of the
structure, they are radio−transmitted to the recording
apparatus. The radio transmission is done as follow :
The analog signal coming from a transducer is first discretized
at a very high frequency, it is then filtered by a low pass filter
whose cutting frequency is 1000 Hz. The digitized values are
transmitted by radio waves for recording and further
treatment. After the radio transmission, the signals are
discretized again and this time at a frequency of 5000 Hz. This
is a much higher than necessary frequency because the signals
cannot contain frequency components over 1000 Hz. The
reason for the use of such a high frequency will be explained
later.

A second group of signals comes from non rotating
transducers

             Transducer        Channel number

Displacement transducer on :
                actuator  a
                actuator  b
                actuator  c

             
          Channel   10
          Channel   11
          Channel   12

             Transducer        Channel number

          Input signal into : 
              actuator   a 
              actuator   b 
              actuator   c 

           Channel   13
           Channel   14
           Channel   15

      instantaneous rotational
                   speed

  
           Channel   16

The input signals are coming from independent random
generators and are thus uncorrelated. The signals are filtered
by analog low pass filters, the cutting frequency of these
filters is 100 Hz to avoid instability problems with the
hydraulic actuators. As the signals in the second group are in
the non rotating frame, they don’ t go through the radio
transmitter. They are directly discretized 5000 times by
second. The choice of 5000 Hz for the sampling frequency is
now explained :
The azimuthal position of the rotor blades must be defined.

This is done by having a rectangular signal of duration 500 µs

to be generated each time the blade number 1 passes at
azimuth zero, the reference azimuth. For a speed of rotation of
400 rpm, the azimuth of the blades has changed by 1.2 degrees

in 500 µs . At the frequency of 5000 Hz , we have a record

every 0.48 degree. Thus, the rectangular signal cannot be
missed. We have at least 2 points and at most 3 points during

the time interval of 500 µs. In any case, the phase error

introduced by the sampling is less than 0.48 degree and it can
be neglected. The total recording time is 540 s which
corresponds to 3600 rotations when the speed of rotation is
400 rpm. Nevertheless the speed of rotation varies by some
amount during the experiment and 3600 rotations is only an
approximate value. The rotational speed remains into the
interval 380 to 420 rpm. The high sampling frequency is
needed for the capture of the rectangular signal at azimuth
zero but the lot of data generated is unnecessarily large. Only
60 samples by rotation are saved for further analysis. This
corresponds to a final sampling frequency of 400 Hz and
allows a Fourier analysis of the signals up to 200 Hz.

During the experiment of May 1999, the signals coming from
the different transducers were recorded 15 times by rotation at
400 rpm. There was no need for a pre−sampling at high
frequency because the specially designed electronics was able
to react to the rising hedge of the rectangular signal. The
experiment, as done in September 2000, is easier to perform
and less prone to errors which may be introduced by custom
made electronics. It also allows higher frequencies to be
considered. Nevertheless, contrary to the May 1999
experiment, the azimuthal reference can only be obtained by
an "off line" processing of the rectangular signal at azimuth
zero.
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3. POWER SPECTRUM ANALYSIS OF THE
RECORDED SIGNALS.

The main purpose of the study is the identification of the
model in the time domain. In the time domain the analysis of
a structure with rotating parts is simpler. Nevertheless, much
knowledge can been gained by a more classical analysis in the
frequency domain.
3.1 Power spectra of the input signals and of the actuator
responses.
As was said earlier, the input signals are coming from
independent random generators and they are filtered to avoid
instabilities into the hydraulic command chain. The power
spectra of the signals which are actually fed into the hydraulic
actuators is presented in figure 3. The power spectra are not
exactly alike but there is no signal over 100 Hz (reduced
frequency 0.5)
Figure 4 (Channels 10, 11, 12) shows the response of the
hydraulic actuators. On all these channels the limitation in
frequency is evident but all the spectrums are different. This is
due to the fact that the generators, as well as the actuators are
alike but different apparatus.
Another remark may be done, on Channel 16, the
instantaneous rotational speed was recorded and the power
spectrum doesn’ t show picks excepted at very low
frequencies. Thus we can conclude that the body and blades
flapping modes, with relatively high frequencies, have no
effect on the rotor speed. Most probably the variation in speed
comes from the electric motor itself and its automatic speed
control.
3.2 Resonant frequencies of the model.
Figures 1 , obtained in May 1999, shows the evolution of the
resonant frequencies of the model as a function of the
rotational speed. In figure 1 one can note at 400 rpm a total of
4 resonant frequencies ( 6.7 Hz, 16. , 30. and 38 Hz). The
frequencies at 16. and 30 Hz have been seen only by the
accelerometers on the body. They will not appear in the
September 2000 experiment as we have no accelerometer this
time. Figure 4, obtained during the September 2000
experiment shows the averaged power spectra (disregarding
azimuthal position) of the channels 1 to 12 when the
excitation of the model is done by the 3 hydraulic actuators
fed by uncorrelated input signals. The variation of the pitch

angles are random with a maximum of ± 1 degree around a

mean angle equal to 0 degree. On the abscissa the normalized
frequency is recorded. For the normalization, the frequency is
multiplied by 2 and divided by the sampling frequency which
is here 400 Hz, as was explained previously. The highest
frequency which can be detected is thus 200 Hz. Frequencies
over 200 Hz would be a problem by effect of aliasing but as

was said earlier, the recording frequency is 5000 Hz before
sampling at 400 Hz. Thus a mathematical filtering is possible
before the 400 Hz sampling. In any case figures 3 , 4 and 5
show no frequency over 160 Hz. This is in agreement with the
fact that there is no excitation over 100 Hz.

On channels 1 to 9, three resonant frequencies are
conspicuous, at 6.66 Hz, 41.66 Hz and 122.71 Hz. At 6.66 Hz,
we have obviously the first rigid flap, the frequency of which
is equal to the rotational frequency of the rotor. The second
frequency, around 41 Hz, corresponds to the first flexible flap
which was detected with some uncertainty in the May 1999
experiment. Let us now speak of the third frequency at
122.7 Hz. This frequency appears on the response of the strain
gauges located at the blade root and to a lesser extent, into the
response of the strain gauges located at mid distance to the tip.
This frequency is entirely absent from the response of all the
other transducers, even from the angle−transducers. Thus, this
frequency corresponds to a mode of deformation of the blades.
This resonant frequency does not seem to have been
encountered so far.
The power spectra of the signals coming from the channels 10
to 15 also show that there is no excitation at frequencies over
120 Hz. Nevertheless we have a very large response on
channels 4, 5 and 6 at 122 Hz. So, according to the classical
theory of unvarying systems, this mode should be unstable or
close to instability. Of course, here the system is a periodic
one and it is possible, by modulation with the frequency of
rotation, to obtain excitations and responses outside the range
of frequencies of the inputs. Another and probably most
important source of excitation for the present rotor model is
the looseness in the mechanical parts setting the blades pitch
angles. This introduces shocks and then a large band
excitation which can be considered as a kind of input noise.
The frequency at 122 Hz may also be a third harmonic of the
first flexible flap generated by some non linear process.

4.  IDENTIFICATION OF THE MODEL.

4.1 Theory.
The rotor model is a periodic system, the method used for the
identification is presented below :
The identification is made by the method of Mäkilä
(references [3] and [4]) for discretized systems. This method is
restricted to the case of a single input / single output time
invariant system. The system is modeled as a finite impulse
response filter (FIR). The identified filter minimize the
difference between experimental and computed cross−
correlation functions of the input and output. Unstable modes
cannot be modeled. This, in fact, is a great quality of the
method because no spurious unstable modes can be introduced
in modeling the data.
The method of Mäkilä must be extended to the case of a
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multi−input / multi−output periodic system. 
This task is accomplished in 3 steps :
1) Extension to the case of a multi−input, single output time
independent discretized system.
2) Extension to the case of a multi−input, multi−output time
independent discretized system.
3) Extension to the case of a discretized rotating system.
4.1.1  Case of a multi−input, single−output system.

The system output y t is known at discretized instants

t . y t is a 1×1 scalar term and u t is a

p
�

1 column vector.

The inputs and the output are known at the same instants

t � 0 � � n

The auto−correlation functions � k,l and cross−

correlation functions � l  are also defined :

        � k,l � 1

n � 1 t � 0

t � n

u t � k uT t � l

        � l � 1

n � 1 t � 0

t � n

y t uT t � l

where by definition u t � 0 if t 	 0 and uT t is

the transpose of u t . The � k,l is a p
�

p

matrix, and � l is a 1
�

p line vector.

The identified output signal 
y t is defined as :


y t �
k � 0

k � N

a k u t � k

Where a k is a 1
�

p line vector and

k � 0 � � N  .

The correlation function 
� l between the computed

output 
y t and the inputs is also defined :

         
� l � 1

n � 1 t � 0

t � n


y t uT t � l

 or     
� l � 1

n � 1 k � 0

k � N

t � 0

t � n

a k u t � k uT t � l

This may also be written as :

               
� l �
k � 0

k � N

a k � k, l

Taking l � 0 � � M , M � 1 functions 
� l
can be defined. 

We must now determine the coefficients of the N � 1 line

vectors a k in such a way as to minimize the cost

function J .

                      J �
l � 0

l � M

� l � 
� l 2

The problem is the choice of the norm to be used for

� l � 
� l . The most natural choice is the spectral

norm because, for a multi−input / multi−output system , the

� l and 
� l are rectangular matrices.

Unfortunately, computation of a spectral norm would lead to a
strongly non linear problem. Here, taking advantage that the

� l and 
� l are line vectors, the Euclidean norm

will be used instead :

          J �
l � 0

l � M

� l � 
� l � l � 
� l T

The optimum is reached when the derivatives of J with

respect to the elements a k are equal to zero. This

optimum is a minimum because J is always positive and is

a second order function in all the unknown coefficients.

Let us have : A l � � l �
k � 0

k � N

a k � k, l

and J �
l � 0

l � M

A l AT l

If aij is the element on column j of the line vector

a i , we have :
�

�
aij

A l AT l � 2 A l
�

AT l
�

aij

� 2
�

A l
�

aij

AT l

The derivation of A l gives :
�

�
aij

A l � �
�

a i
�

aij

� i,l � � ligne j de � i,l

that will be written as : 

�
�

aij

A l � � � i,l j , �  

Finally we obtain :
�

J
�

aij

�
l � 0

l � M

� l �
k � 0

k � N

a k � k , l � i,l j, �
T � 0

This expression is linear in all the unknown coefficients

aij , writing it for all possible values of i and j , a

linear system is obtained. The coefficients aij , solution to

this system will minimize the cost function J .

The choice of N determines how far back in time we go to

estimate the output y t . The number M determines

the maximum shift in time in the computation of the cross−

correlation functions. It is natural to choose M � N .
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Application :The method, as it has been explained here is
applied to a simple system with two inputs and one output.

There is only two line matrices a k which are randomly

determined. The input sequences are also randomly generated

and the output is computed with the two a k matrices.

Some amount of uncorrelated noise is also added to the output
sequence.
The extended Mäkilä’s method is applied to the noise
corrupted output signal. In the computations the numbers

M and N are set to 5 , that is to say that 5 line matrices

are identified. It has been verified that the 3 last ones have
negligible coefficients in all cases. The inputs are supposed to
be known without errors. It is thus possible to compute the
output of the identified system. This signal can be compared
to the true output and the difference between both signals is
the remaining noise. It is then possible to compute the root
mean square value (rms) of the remaining noise signal and
make the ratio with the rms value of the uncorrupted output
signal. Three calculations have been performed with time
sequences of 1000 points, 3500 points and 7000 points and
with various amount of noise. The obtained results are
presented in the table below :

Sequence
1000p

Seq.
1000p

Sequence
3500p

Seq.
3500p

Sequence
7000p

Sequence
7000p

% of error
before
filtering

% of error
after
filtering

% of error
before
filtering

% of error
after
filtering

% of error
before
filtering

% of error
after filtering

5.60% 0.56%  5.80% 0.16% 5.81% 0.17%
11.30% 1.12% 11.60% 0.32% 11.62% 0.34%
28.21% 2.80% 28.95% 0.81% 29.03% 0.86%
56.42% 5.60% 57.90% 1.62% 58.06% 1.72%
112.80% 11.20% 115.81% 3.23% 116.11% 3.44%
169.30% 16.80% 173.71% 4.85% 174.17% 5.16%
282.10% 28.04% 289.52% 8.09% 290.29% 8.60%
338.50% 33.65% 347.42% 9.70% 348.34% 10.32%
394.90% 39.26% 405.33% 11.32% 406.40% 12.04%

As may be seen on the table, with a sequence of 1000 points,
the percentage of error is about 10 times lower after filtering.
For the sequences of 3500 or 7000 points the percentage of
error is about 33 times lower after filtering. This remains true,
even when the uncorrelated noise signal is very large, 4 times
more important that the true signal. 
As the principle of the method is correlation to sort out noise,
it is quite natural that results are better when the time
sequences are longer. In our case, 3500 points were sufficient.
The computations even show a very slight degradation of the
results for 7000 points. This may be due to statistical
variations in the input data.
For the september 2000 experiment the recording time

correspond to about 3600 rotations of the rotor. As will be
explained latter, it is this number which must be considered
for the application of the extended Mäkilä’’s method. Though
the number of inputs will be very large (180 inputs), one may
still hope a good filtering of the signals as the number of
points for the time sequences remains always superior or equal
to 3500.
4.1.2  Case of a multi−output system.
Let us suppose we have q outputs. The theory of the
preceding paragraph can be repeated. We can still define a
matrix A l with q

�
p dimensions instead of 1

�
p

dimensions. We have to minimize the function 

J �
l � 0

l � M

A l 2 with the problem of choosing a norm

for the matrix A l . The usual spectral or Frobenius
norms for matrices do not lead to simple computations. It is
thus proposed to determine the q

�
p matrices a k

line by line, that is to say to consider the system with q
outputs as q independent single output systems. The

problem is thus broken down into q independent problems
of the kind already treated in the preceding paragraph.
4.1.3  Case of a per iodic system.
It is a well established fact that a periodic system may be
considered as a time invariant system when the variables are
considered over one period. Let us make things more precise
for a discretized periodic system. In the usual state−space
formulation we have :

            x k � 1 � A k x k � B k u k
                   y k � C k x k  

The system is periodic with period N , they are only N

such matrices A k , B k and C k . When the

state equations are considered from one period to the next, one
can write :

x k � N � A’ k x k � B’ k

u k
u k � 1

u k � N � 1

for the following period we have :

x k � 2N � A’ k x k � N � B’ k

u k � N
u k � N � 1



u k � 2N � 1

We can note that the matrices A’ k and B’ k ,

which are obtained by a composition of the elementary

matrices A k and B k , are the same from one

period to the next. Still we have N such matrices
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A’ k and B’ k ( k � 1 � � N ) The

periodic system can thus be considered as N time invariant

systems allowing the computation of the outputs at azimuth

time k from one period to the next. All the commands

during the period must be considered.

5. APPLICATION OF THE EXTENDED MÄKILÄ’S
METHOD TO THE ROTOR MODEL

In the September 2000 experiment, the signals are discretized
60 times by period of the rotor. So, each output signal is
broken down into 60 signals. Because we have 3 independent
actuators, each one being also broken down into 60 inputs, the
total number of inputs is 180. For each channel, we have thus
to consider 60 systems with 180 entries. Taking as example a
strain gage on the blade, the identification is the determination

of the matrices ai . At a time n , the mathematical

representation of the output y, arranged into a vector y
with 60 elements, is given by the following formula :

y

n

� a0 u

n

� a1 u

n � 1

� �

Eq 1 � � ap u

n � p

The dimension of the vector u is 180 in our case. The

matrix a0
should be equal to zero or at least its norm

should be small because the transmission of the command into
the output signal is not instantaneous.
We have also to consider as many systems as we have output
signals.
Mäkilä’s extended method is a very powerful tool as it can
separate the measured signals between one part correlated
with the inputs and another not correlated part which is called
noise. As was shown in 4.1.1 the theory gives a linear system
which must be solved. The matrix part of the linear system
depends only on the inputs and so it is common to all the
outputs. The outputs have an action only on the second
member of the system. It is thus possible to make the
programming in such a way as to have all the outputs treated
together. This save a lot of computation time. The treatment
of an experimental case takes only a few minutes on a
workstation.
As the analysis is an identification in the time domain, the
result is a number of numerical matrices which may be used

for simulations but are not visually interpretable. 
We thus have two problems with an identification in the form
of equation (1). The first problem is how to display the result
of the identification and the second is how to check the
validity or accuracy of the identification. We will now address
these two problems.
According to equation (1), the result of the identification is a

series of matrices ai allowing the computation of vector

y when the time history of the inputs is known. The

vector y represents the time history of the output during

one rotation. Introducing y T the transpose of vector

y , it is easy to compute the time history of one selected

physical output ; For example, the series Y 0 � n
T

represents the time history of the signal y from the time

t � 0 to the time t � n .

Y 0 � n
T � y n

T , y n � 1
T , y n � 2

T , � � , y 0
T

The reconstructed signal can be compared to the original one
coming from the experiment. The power spectra of both
signals may be computed and displayed on the same picture.
The values of the resonant frequencies and the amplitude of
the power spectra at those frequencies are also easily
compared. 
The second problem is to test the value of the reconstruction.
The power spectra allow a comparison between amplitudes
but no phase information is available. Phase information is of
prime importance for active control. We shall give two ways
to compare the phase of the reconstructed signal with the
phase of the experimental one. This notion of phase makes
only sense for a fixed given frequency. So the comparison
must be done for all the frequencies in the range of interest.

5.1 First tool to check validity of the results. 
The first tool is a rather crude one but its interpretation is
easy. As it is well known, problems are occurring in active
control when the phase of a signal is not well enough
predicted. The worst situation is obviously when the predicted
signal and the actual one are completely out of phase, that is

to say when the phase difference between both signals is 180°.
In that particular situation, the true signal and the predicted
one have opposite signs. Disregarding any notion of
frequency, it is interesting to divide the predicted signal in two
parts. The first part (the "good" one), is when the predicted
signal has same sign as the true signal and the second part (the
"bad" one), is when the predicted signal has a sign opposite to
the sign of the true signal. The relative importance of both
parts gives a rough idea of the quality of the prediction. To
make things more precise, let us consider (see figure 2), two
sinusoidal signals with the same frequency. The solid red line
is the signal of reference and the large solid blue line is the
supposedly predicted signal. The second signal is time shifted
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in comparison to the the reference signal in red. The blue
signal is decomposed in two parts, the green dotted part and
the black dotted one. The green dotted part is equal to the blue
signal when this one has same sign as the red signal of
reference and is zero otherwise. The black dotted part is equal
to the blue signal when this one has a sign opposite to the sign
of the red signal of reference and is zero otherwise. So the
blue signal is equal to the sum of the green dotted ("good"
part) and black dotted ("bad" part) signals. The relative
importance of the two parts, the "good" and "bad" ones, is
directly related to the phase shift. For a reference signal which
is not mono−chromatic, it is still possible to make a power
spectrum analysis and compare the relative importance of the
two parts of the decomposition for any given frequency. Of
course, the sharp transitions, occurring in the two parts
resulting from the decomposition of the predicted signal,
introduce harmonics in the frequency analysis. This is why
this tool can only be a crude one. Nevertheless, as the
amplitude of the harmonics is less than the amplitude of the
fundamental, they will not bias too much the interpretation of
the results. The application of this test to the experiment is
presented in figure 4. On this particular example, the "bad"
part of the reconstructed signal is always negligible when
compared to the "good" part. This is gives us at least some
hope that unwanted instabilities may be avoided when the
active control feed−back loop is designed. We can also note
that for the 122.7 Hz mode, which is conspicuous on channels
4, 5 and 6, the identified signal has only half the energy which
is present on the experimental signal. This is not surprising
because we don’ t have excitation over 100 Hz as we have seen
in figure 3. The identified part has nevertheless the correct
phase. 
5.2 Second tool to check validity of the results. 
We will now introduce another tool for the analysis of the
results. This second tool is more precise than the first one but
the very convenient comparison with the power spectrum of
the experimental signal is not possible. Let us consider the
case of constant systems (no time variations). Particularly
when we have many inputs, it is not the detailed comparison
(in modulus and phase) of the measured and reconstructed
transfer functions for each input which is important. What is
important for active control, is the phase between the
experimental signal and the reconstructed one at each
frequency in the range of interest. There is one simple
function which gives such a result. It is the transfer function
using the reconstructed signal as output and the measured
signal as input. The modulus of such a transfer function should
be close to 1 and its phase close to zero for an excellent
reconstruction of the experimental signal. Of course,
important phase errors are not a problem when the signals are
very weak, that is to say for frequencies where the power
spectra are small. So the transfer function between the

reconstructed and experimental signal must be interpreted in
conjunction with the power spectra of the experimental and
reconstructed signals. The first tool may supply that kind of
information. Both tools are thus complementary.
For a periodic system the inputs are multiplied and the outputs
must be reconstructed according to formula (1) but the
analysis given by the second tool retains all its value. The
application of this test to the identification of the model is
presented in figures 5−a and 5−b.

6. COMMENTS ON THE RESULTS OF THE
IDENTIFICATION

The identification is made by the method of Mäkilä as
explained earlier.

The results are presented in figures 3−4−5. As we have 3
independent inputs, this case is very complex as far as the
computation is concerned. We have 3×60 =180 inputs for each
revolution of the rotor. The shortest time history of the input
necessary for a good identification of the outputs is 12
revolutions of the rotor. Then, 12 matrices with size 60×180
have to be determined for each output channel. In spite of the
difficulty of the problem, the results which have been obtained
are in fact very good. The power spectra of the experimental
and identified signals are presented in figure 4. On this figure,
the abscissas are the frequencies in reduced form, the value 1
corresponds to 200 Hz because the sampling frequency is
400 Hz. We have 12 channels in figure 4, the first 9 channels
are from signals coming from the gauges or angular
transducers on the rotor and the last 3 channels are for the
displacement transducers located on the actuators. This last 3
transducers are located into the non rotating frame and they
don’ t necessitate a periodic system analysis. Nevertheless a
time invariant system may also be considered as a particular
case of periodic system and the same analysis has been
applied to all the channels. Still , on channels 10, 11, 12 the
results are better because the system to be identified is
simpler.
As the 3 input signals have been registered, these signals are
used to compute the responses of the identified system. The
power spectra of the computed responses may be compared to
the power spectra of the measured responses.
Generally the two power spectra are in good agreement
though obviously not all the details are retained by the
identification. We still have to check the validity of the results
with the two tools at our disposal.
First, the reconstructed signals are divided into two parts. The
first part with same sign as the experimental signal and the
second part with a different sign. The power spectra of both
parts are presented in figure 4. As may be seen on this picture
the part with a sign opposite to the experiment (the "bad" part)
is barely visible. This is already a good indication of the
validity of the results. However, on channels 4, 5 and 6, the
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pick at 122 Hz is not entirely found and this is not surprising.
There is no input at this frequency as may be seen in figure 3
channels 13, 14, 15. The physical input, if any, must then be
the noise generated by the mechanical shocks in the command
chain. 

The quality of the results is confirmed by the second tool, the
transfer function between the reconstructed and experimental
signals (figures 5−a and 5−b). 
The frequency range of interest is from 0 to 100 Hz that is to
say from 0 to 0.5 in reduced form. In the frequency range of
interest, the phase of the transfer function is always less than
10 degrees. This phase is particularly small for the channels
10, 11, 12, that is to say for the actuators which are in the non
rotating part of the structure.
Let us now look at the modulus of the transfer functions. As
was explained earlier, this modulus should be equal to 1 if the
identification was perfect. As may be seen in figures 5−a and
5−b, we are far from that. On channels 10, 11 and 12, the
results are perfect up to 80 Hz (reduced frequency 0.4). These
transducers are in the non−rotating frame and up to 80 Hz
there is a good level for the inputs. Over 80 Hz the results
deteriorate. For the response on the strain gauges at mid−
distance from the tip of the blade (Channels 7, 8, 9), the
results are also quite acceptable in the frequency range 0−80
Hz. For the other transducers the variations of the transfer
function modulus are larger. Still, the modulus remains close
to 1 when the level of the response is important, that is to say
when we are close to the resonant frequencies. It is also
remarkable, in figure 5, that the modulus on all the channels,
remain always less or equal to 1. This means that the
identification predicts signals always of smaller amplitude
than the experimental ones. The predicted and measured
signals are almost in phase. Is this enough to assure stability of
the control loop ? There is no general response to this
question. One can guess that if the identification
underestimate the responses, the control loop may try to
overcompensate. This may increase the vibrations. Of course,
it is always possible to multiply the matrices into the
identification formula (1) by a real coefficient greater than 1.
The phase would remain the same and the predicted amplitude
would be larger. The control loop would then be less prone to
overcompensation but also probably at the price of a lesser
efficiency.

7.   CONCLUSION.

The identification of the Edy rotor model which has been
experienced in the BRAVoS test rig was a difficult task. As
the identification of the model was tempted on a rather large
frequency band, the number of points by rotation is high (60
points). The number of coefficients to be determined is then

also very large. Moreover, the maximum frequency of the
input is limited to 100 Hz for fear of instabilities in the
hydraulic actuators but all the signals are discretized with a
recording frequency of 400 Hz. Thus, the inputs cannot be
entirely independents and the identification cannot be unique.
The solution must be researched by the SVD (Singular Value
Decomposition) technique (reference [6]) and this is a
problem for the numerical stability of the code. In spite of all
the difficulties, the identification of multi−input, multi−output
periodic systems is now operational. The method of
identification has been extended by the introduction of two
tests for the checking of the validity and accuracy of the
identified system. This tests, applied to the present results
have shown that the rotor model has been accurately
identified. 
The identification, as it is proposed in the present report,
furnishes systems much too clumsy for the design of control
loops by usual methods. Nevertheless other methods,
simulations, LMS (Least Mean Square) or IMC (Internal
Model Control) may be used. 
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figure 4 : Analysis by decomposition of the power spectra
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figure 5-a : Transfer function (Modulus and Phase)

Experiment as input and Theory as output.
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figure 5-b : Transfer function (Modulus and Phase)

Experiment as input and Theory as output.
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