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Abstract 
 
Dynamic inflow models have developed over the years 
based on the desire to develop realistic rotorcraft 
response tools that could be used in a design and 
simulation setting.  The Peters-He dynamic wake 
model represents a mature inflow model that is used in 
most of the production codes and university 
applications. The most recent developments in inflow 
modeling have focused on extension of the models to 
include all three components of flow everywhere in the 
flow field, not just on the rotor disk. Extensive analysis 
on the frequency domain has been performed showing 
that this new methodology converges quickly to the 
exact solution in axial flow, but convergence decreases 
as the skew angle is increased from axial toward 
edgewise flow. In this paper an extensive convergence 
analysis is presented to determine the conditions that 
allow optimizing the solution obtained by this new 
methodology. 
 
Introduction 

1 
 Dynamic inflow models go back over 50 years in 
terms of their development and application.  Sissingh, 
Ref. 1, first formulated a mathematical model that 
described how gradients in inflow could result from 
cyclic pitch changes or from fuselage pitch and roll 
rates.  He further showed how these inflow gradients 
could create cyclic changes in blade angle of attack 
that significantly changed the actual rotor response. 
Curtiss and Shupe, Ref. 2, refined this idea into a lift 
deficiency function for rotor cyclic variations.  Ormiston 
and Peters, Ref. 3, showed how that the formulation 
could be generalized into a wake model for both 
uniform and side-to-side variations in inflow.  
                                                           
1Presented at the 28th European Rotorcraft Forum, Bristol, 
England, September 17-20, 2002. Copyright  2002 by the 
Royal Aeronautical Society, Inc. All rights reserved. 
 

Comparisons with static data in hover and forward 
flight showed that the previous methodologies were 
inadequate in forward flight. Peters, generalized these 
concepts to the unsteady case in Ref. 4 by including 
apparent mass terms to account for the time delay 
involved in the development of the rotor flow field. 
 Pitt and Peters, Ref. 5, used principles of potential 
flow theory to show that these concepts could be 
developed from first principles without ad hoc 
assumptions on time delay or on the effects of forward 
flight.  They obtained an unsteady flow model from 
potential functions that gave spectacular correlation 
with wind tunnel response data throughout the 
frequency and advance ratio range.  These 
correlations are well documented in Ref. 6.  However, 
despite the unquestioned success of this “Pitt-Peters” 
inflow model, it still remained a theory with only three 
inflow degrees of freedom:  1) uniform, 2) fore-to-aft, 
and 3) side-to-side.  Although Ref. 5 investigated 
adding more radial functions and more harmonics (up 
to 8 states total possible), these ideas were not fully 
developed. 
 Later, Peters and He showed how the Pitt-Peters 
ideas could be truly generalized to a theory with an 
arbitrary number of inflow harmonics and an arbitrary 
number of radial shape functions per harmonic, Ref. 7.  
They showed how the general theory could reduce in 
special cases to the old Pitt-Peters model as well as to 
Loewy theory and Prandtl tip-loss theory.  In Ref. 8, the 
new theory was used to correlate unsteady wind tunnel 
data from the NASA Langley wind tunnel for various 
planforms, thrust coefficients, and advance ratios.  The 
match in both steady and unsteady distributions was 
excellent.  Reference 9 showed how the new theory 
could be used even for pure hover and offered data 
correlation with unsteady hover test results taken in the 
Georgia Tech Hover Test Facility. 
 Once again, however, it was recognized that the 
new Peters-He inflow model still had areas where it 
was lacking such as ground effect studies.  Although 
the original paper, Ref. 7, discussed an approximate 



66.2 

way to estimate the effect of steady ground effect on 
the uniform flow, there existed no generalized way to 
include dynamic ground, tilted ground, partial ground, 
or to find the entire flow field in the presence of normal 
ground effect.  Prasad et al, Ref. 10, showed that 
uniform ground could be simulated by an image rotor 
below the ground plane.  However, this methodology 
did not apply in hover. Xin, et al, Ref. 11 showed that 
the ground could also be modeled by a source disk at 
the ground plane, itself.  This could then be used in 
hover as well as for inclined ground and partial ground.  
Further work, Ref. 12, showed how quasi-steady 
effects could be added.  A summary of the various 
models can be found in Ref. 13.  Once again, the 
formulation remains in the context of classical inflow 
theories but with added states included for the ground 
source. 
 However, in the ground effect work, it is necessary 
to find not just the normal flow at the disk, but all three 
components of flow off of the disk as well. Peters and 
Morillo, Ref. 14, presented a consistent methodology 
for computing all three components of the flow in axial 
flow, both on and off of the rotor disk within the context 
of a finite-state model.  The model is formulated in a 
manner fairly similar to previous work (in that the 
potential functions in ellipsoidal coordinates are used).  
However, in contrast with the previous work, the states 
represent velocity potentials rather than individual flow 
components.  In addition, all potential functions are 
considered (not just the ones that have a pressure 
discontinuity across the disk); and the derivation of the 
equation coefficients is done in a more consistent and 
rigorous manner than in the earlier derivations.  The 
result is a simpler derivation and a more complete 
inflow theory for the velocity both off and on the disk.  
Previous dynamic inflow models in axial flow are 
shown to be special cases of the new model when off-
disk coupling is neglected.  This new methodology 
based on a Galerkin approach provides the exact 
solution on as well as off the disk for the axial velocity 
component in axial flow. 
 Later, Morillo and Peters, Ref. 15, extended the 
model to analyze skewed flows. As the wake skew 
angle is varied from axial flow toward edgewise flow, 
the new model, continues to converge to the true 
solution at all wake skew angles, but it shows a trend 
of decreasing rate of convergence on the downstream 
side as the skew angle approaches edgewise flow. 
 This paper will present a study of the nature of the 
convergence of this new methodology and ways to 
improve it. 
 
Mathematical Basis 
 
 The following is the mathematical basis for the 
new, complete inflow model for skewed flow developed 
in Ref. 15.  First, the pressure and velocities functions 
are written as gradients of the pressure and velocity 

potentials in ellipsoidal coordinates (ν, η, ψ ), Ref. 16, 
as shown below: 
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Legendre functions of first and second kind, Ref. 16. 
 The equations of motion in this new formulation 
have the following structure where, for convenience, 
only the cosine terms are shown 
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Each one of the elements of the ~Lc  and cD  matrices 
are known in closed form. The expressions are shown 
in the Appendix. 

Equation (6) is valid for any skew angle χ, which 
appears in the equation in the expressions for the 
wake influence coefficient matrix cL~ . This equation can 
be further partitioned into two row-groups and two 
column-groups such that m+n (or j+r) is odd and m+n 
(or j+r) is even. These matrices are organized in the 
following way 

{ }
{ }







=+
=+





























=+
=+









=+
=+









=+
=+









=+
=+

evenmn
oddmn

evenmn
,evenrj

oddmn
,evenrj

evenmn
,oddrj

oddmn
,oddrj

 (7)

If Eq. (6) is organized as suggested in Eq. (7), it 
can be partitioned as 
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 From Eqs. (2) and (3), it is seen that, to compute 
the velocity field, it is required to compute the velocity 
potentials, m

nΨ , by a numerical integration. 
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To avoid numerical integration and in order to be 
able to express the velocity potentials in terms of 
potentials known everywhere in the flow field, a change 
of variable from m

nâ  to m
na  is introduced 
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The constants m
nσ  and m

nς  are chosen such that the 
new velocity potential will give no singularities when 
gradients of it are taken. 
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If Eq. (9) is substituted into Eq. (6), the set of 
ordinary differential equations for the velocity 
coefficients in terms of the pressure coefficients for 
skewed flow becomes, 
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From the results obtained thus far in Refs. 14 and 
15, several important conclusions work together to 
define the development of this paper.  First, 
comparisons for the on-disk axial velocity component 
in axial flow computed by the old Peters-He model, by 
the new model, and by exact solutions show that the 
new model converges to the true solution and that the 
old model does not.  Although the differences are 
mainly seen for the lower harmonics and for radial 
distributions at intermediate frequencies, they are 
definitely significant.  For off-disk flow, only predicted 
by the new model, convergence is also excellent. 

Second, as the wake skew angle is varied from 
axial flow toward edgewise flow, the Peters-He model 
converges more quickly than the new model for flow on 
the disk.  (Recall that that model does not give flow 
anywhere else).  By the time that purely edgewise flow 
is encountered, the old model is virtually exact (except 
at very high frequencies).  The new model, on the 
other hand, while continuing to converge to the true 
solution at all wake skew angles, shows a trend of 
decreasing rate of convergence on the downstream 
side as the skew angle approaches edgewise flow.  

Although it is easy to see theoretically why perfectly 
edgewise flow cannot converge downstream, one 
would still expect better on-disk convergence given 
that the old Peters-He model gives excellent on-disk 
results even at edgewise flow.   

This focuses our attention on the study of the 
nature of the convergence and ways to improve it.  It is 
known that the choice of basis functions can have a 
profound effect on convergence, Refs. 17 and 18.  To 
analyze the convergence of this new methodology, the 
inflow model with an original odd-even partitioning will 
be considered with truncation of even terms.  This 
model will be studied since it is the most basic of our 
derivations and seems to have a good convergence in 
the previous results.  Additionally, truncation of even-
numbered terms will help with the conditioning problem 
of cL% , as it was indicated in Ref. 15. 

 
Results 

 
The convergence of the results will be determined 

by comparing the exact results obtained with the 
convolution approach, Ref. 16, with the results 
obtained with the Galerkin approach.  The error norm, 
E, between two distributions v1 and v2 is defined as 

( )
( )

f

o

f

o

r
2 2

1 2
r r2

r
2 2

1
r r

v v 1 r rdr

E

v 1 r rdr

=

=

− −

=

−

∫

∫
 (15)

For the Galerkin approach, two errors can be 
defined.  One for the on-disk region (ro=-1; rf=1), and 
one for the on/off-disk region (ro=-2; rf=2) at an azimuth 
angle ψ .  The error norm will be plotted, so that an 
over-all feeling can be obtained for the effect of 
neglecting inflow modes that are zero on the disk 
(n+m=even). 

In order to determine the number of even terms 
included in the solution, the table method will be used, 
Ref. 16.  In this methodology, the number of 
harmonics, m, is equal the highest dynamic frequency 
of interest. For the choice of the number of radial 
shape functions to be used for each harmonic, a 
mathematically consistent hierarchy was set up to 
determine the number of radial shape functions for 
each harmonics, m in order to have radial terms up to 
a given power of r.  Based on this methodology, the 
number of terms, odd or even, included in the solution 
could be specified in four different ways: 1) by 
indicating the number of harmonics, m, 2) by indicating 
the number for the highest power of r; 3) by indicating 
the number of terms for the zeroth harmonic; or 4) by 
indicating the index of the highest subscript, n, of the 

m
nΦ  terms. All of these possibilities are related by the 

following expressions: 
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highest power of r m=  (16)
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where Int(x) is a function that rounds the elements of x 
to the nearest integer towards zero. 

In this paper, two different sizes for the submatrix 
with n+m=odd and j+r=odd will be considered, one with 
m=10, and one with m=20.  The number of terms in the 
solution will be identified by indicating the index of the 
highest subscripts, n, of the m

nΦ  terms.  Thus, unless 
otherwise is indicated, an index indicates the highest 
value of n for the m

nΦ  terms. 
For each one of the cases considered in this 

paper, the index for the even terms is varied from zero 
to a number equivalent to the one included for the odd 
terms.  With zero as the index for the even terms, the 
model is equivalent to the Peters-He model. 
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Fig.1(a) Index of highest subscript, = 0
1P Φ , 

modd=10; (b) ( ) −= min on diskE E . 
Figures 1(a) through 4(a) show contour plots for 

the index for the even terms required in the Galerkin 
approach solution in order to minimize the error in the 
axial component of the induced velocity in the on-disk 
region as a function of the skew angle and the reduced 
frequency.  In all the cases, the velocities are 
computed at the rotor disk plane (z=0), s, and for y=0.  
Figures 1(b) through 4(b) show contour plots for the 
minimum error on the disk area also as a function of 
the skew angle and the reduced frequency.  Note that 
the reduced frequency is plotted as ω/(ω+1).  With this 
representation, the complete range of frequency from 0 
up to ∞ could be seen.  In this paper, the reduced 
frequency considered goes from 0 up to 9.  For typical 
problems of rotorcraft maneuverings, the reduced 
frequency (not per/rev frequency) is less than 0.5, 
which gives ω/(ω+1)<0.333 and for typical propeller 
blade-passage frequencies ω/(ω+1)>0.6.  Thus, unless 
otherwise mentioned, when referring to the frequency 
range, rotorcraft region implies ω/(ω+1)≤0.3 and 
propeller blade-passage region indicates ω/(ω+1)≥ 0.6.  
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Fig.2(a) Index of highest subscript, = 0
1P Φ , 

modd=20; (b) ( ) −= min on diskE E . 
Figures 1 and 2 are for the first collective pressure 

input 0
1Φ  with two different number of harmonics for 

the odd terms included in the solution, 10 and 20, 
respectively.  For Fig.1 the maximum possible number 
for the index for the even terms to be included is 12, 
and the minimum is 0 (Peters-He model).  Figure 1 
shows that for the complete frequency range plotted, 
ω/(ω+1)≤0.9, and χ≤45o the minimum error is provided 
by the original matrix without any truncation.  In that 
region, the solution provided for the Galerkin approach 
is exact at χ=0o (axial flow), and the error is less than 
4% for a skew angle of χ≤45o.  On the other hand, for a 
very steep skew angle, χ≥75o, the minimum error is 
provided by a solution with at most 3 as the index (i.e., 
at most meven=1)  The minimum error goes from 4%, for 
rotorcraft frequencies, up to 16%, for propeller blade 
passage frequencies.  The maximum possible number 
for the index for the even terms for Fig.2 is 22.  In this 
figure, for χ≤45o the index for the even terms that 
produces the minimum error never reaches the 
possible maximum number; and at χ≥75o, and higher 
frequencies ω/(ω+1)≥0.7, the best solution is provided 
with a relatively large number of even terms in the 
solution.  The minimum error for χ≤45o is about 1%, 
and for χ≥75o goes from 2% up to 16%.  Comparisons 
between Figures 1(b) and 2(b) show that as the 
number of harmonics for the odd terms is increased 
(i.e., number of odd terms), the error produced by the 
Galerkin approach on the on-disk area for a given 
frequency and skew angle is reduced. 
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Fig.3(a) Index of highest subscript, = 1
2P Φ , 

modd=10; (b) ( ) −= min on diskE E . 
Figures 3 and 4 are for the first cyclic pressure 

input 1
2Φ .  Figure 3 is for 10 as the number of 

harmonics in the odd terms included in the solution.  In 
Fig.3(a) it is observed that the optimum number of 
even terms to be included in the solution (to minimize 
the error) depends on the skew angle and on the 
frequency.  For skew angles χ≤45o it is required to 
include the maximum index for the even terms to 
minimized the error either for 0≤ω/(ω+1)≤0.2 and 
0.6≤ω/(ω+1)≤0.9.  For the intermediate values, the best 
solution is provided is the even matrix is truncated (i.e. 
9≤index≤12).  This behavior is different than the one 
observed for the pressure collective inputs in which for 
χ≤45o the best solution is provided by including the 
maximum amount of even terms independently of the 
frequency.  It is also observed that for skew angles 
χ≥60o the number of terms that produces the minimum 
error is sensitive to frequency.  For rotorcraft 
frequencies, a low index value for the even terms is 
needed (only 5 out of 12), but for intermediate and 
propeller blade-passage frequencies, the index needs 
to be increased considerably. 
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Fig.4(a) Index of highest subscript, = 1
2P Φ , 

modd=20; (b) ( ) −= min on diskE E . 
From Fig.3(b), the error in the on-disk region for 

χ≤45o is less than 2 % for rotorcraft and intermediate 
frequencies, and for propeller blade-passage 
frequencies it can go up to 4%.  As the skew angle and 
the frequency are increased, the error increases.  For 
edgewise flow, low and intermediate frequencies, the 
error is 8%, and for high frequencies, it increases 
above 16%. 

If the number of harmonics for the odd terms is 
increased to 20, Fig.4, it is observed that for χ≤45o, the 
index for the even terms is 17 for any value of 
frequency.  For skew angles 45o≤χ≤75o, the optimum 
solution is sensitive to the frequency.  For steep skew 
angles χ≥75o, the solution depends on the frequency 
and on the skew angle.  For low frequencies, despite 
the behavior observed for the collective pressure 
inputs as the skew angle increases, the index also 
increases.  For frequencies 0.3≤ω/(ω+1)≤0.9, the 
behavior is opposite, the steeper the skew angle, the 
lower the index for the even terms.  For this region, 
and for intermediate frequencies, an index of 5 is 
required, but for propeller blade-passage frequencies, 

one could need an index as high as 17.  On Fig.4(b), 
for skew angles χ≤75o, the error is sensitive to 
frequency.  For 0≤ω/(ω+1)≤0.4, the error is about 2% 
for any frequency, but for 0.4 ≤ω/(ω+1)≤0.9, the error 
can go from 2% up to 6%.  For χ≥75o, the relation 
between the error and the frequency is less marked, 
until a point in which edgewise flow is encountered and 
the error is about 8% for any value of frequency. 

Based on the results presented in Figs. 1 through 
4, it is possible to indicate that, to minimize the error for 
low skew angles (i.e. χ≤45o), a high value for the index 
of the even terms is required.  It is also observed from 
these figures that the Galerkin approach provides an 
exact solution for axial flow, χ=0o, for the entire range 
of frequencies.   
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Fig.5 Error, ω=2.3, = 0

1P Φ , χ=0o, modd=20. 
Figure 5 shows the error norm in the axial 

component of induced velocity in axial flow at ω=2.3 for 
a pressure distribution 0

1Φ  as a function of the highest 
subscript index for the even terms that are included in 
the velocity expansions.  The number of harmonics in 
the odd terms is 20.  This number of harmonics will be 
kept in all the remaining figures.  The figure shows 
that, by adding to the Peters-He model one even term 
(i.e., 2 as the index), the error norm is reduced from its 
original value of 18.8% down to 6.8%.  If the index is 
increased up to 6, the error is only 1%.  The minimum 
error is obtained when 16 is the index for the even 
terms (0.14%).  It is also shown the error in the solution 
on the entire rotor disk plane both on and off-disk (-
2≤x≤2).  It will be called on/off-disk error.  It goes from 
38.5% when no even term is included down to a 
minimum of 1.2% when even terms with 16 as the 
index are included.  Both errors decay essentially 
monotonically as the index of the even terms is 
increased.  Note that only every other index occurs in 
the even terms. 

Figure 6 shows similar results for 1
2Φ  at ω=7.3.  In 

this case, only even terms with 7 as the index are 
required to reduce the on-disk error to about 1%.  The 
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on/off-error goes from 30% up to 0.7% when terms 
with index of 17 are included. 

The frequencies analyzed for the axial flow cases, 
Figs. 5 and 6, are the frequencies at which the Peters-
He model introduced the maximum error for these 
pressure distributions, Ref. 14. 
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Fig.6 Error, ω=7.3, = 1

2P Φ , χ=0o, modd=20. 
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Fig.7 Error, ω=4.0, = 0

1P Φ , χ=45o, modd=20. 
It is convenient to analyze the behavior of the 

convergence of the on-disk solution for steeper skew 
angles (i.e. χ≥45o) to see if it is possible to find a 
pattern to describe the index for the even terms 
needed in the approximate solution, as it was done for 
χ≤45o. 

In Figs. 7 through 12, three different skew angles 
are considered. Figures 7 and 8 are for χ=45o, Figs. 9 
and 10 for χ=75o, and Figs. 11 and 12 for perfectly 
edgewise flow, χ=90o. 

Figure 7 shows the on-disk and on/off-disk errors 
when the input is the 0

1Φ  at a frequency ω=4.  In this 
case, the minimum error, 1.33%, is obtained when 
even terms with  index up to 21 are included in the 
solution.  It is important to notice that the on-disk error 
when no even term is included is 11.77%, Ref. 16, 
lower than its value for axial flow.  It indicates that the 

error introduced by the Peters-He model decreases as 
the skew angle increases.  Another observation about 
the convergence of the on-disk error is that instead of 
decreasing monotonically as it does for axial flow, its 
convergence is slower when few even terms are 
considered (i.e. terms with index less than 8) and after 
that it decreases until it reaches a minimum when 21 is 
the index for the even terms considered in the solution.  
After this point, the on-disk error starts to diverge, even 
thought the cL%  matrix still well-conditioned, Ref. 16.  
On the other hand, the on/off-disk error exhibits 
behavior similar to axial flow.  The error decreases until 
it reaches a point in which starts to diverge.  The 
minimum on/off-disk error, 5.63%, increases as the 
skew angle is increased.  This is due to the error 
obtained in the velocity in the off-disk trailing edge area 
of the rotor disk plane. 
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Fig.8 Error, ω=4.0, = 1

2P Φ , χ=45o, modd=20. 
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Fig.9 Error, ω=4.0, = 0

1P Φ , χ=75o, modd=20. 
Figure 8 shows the on and on/off-disk errors for a 

first cyclic pressure distribution 1
2Φ  at a frequency 

ω=4.0.  The on-disk error increases from 9.74% to 
11.54% when 1 even term is included (index equal to 
2) and then decreases up to 1.06% when 18 is the 
index for the even terms included.  It is also observed 
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that at this frequency the error does not evidently 
diverge as it does on the previous figures.  The on/off 
error also increases when only 1 even term is included, 
and then decreases as the index for the even terms 
increases up to 20.  The minimum error is 6%. 

Figure 9 is for the first collective pressure input 0
1Φ  

at χ=75o and ω=4.0.  The on-disk error does not 
monotonic decrease as the number of even terms is 
increased, instead it converges slowly.  In this case, if 
no even term is included in the solution (Peters-He 
model), the error is 6.27%, if the index for the even 
terms is increased to 3, the error is 6.35%, and if no 
truncation is done on the even terms, the error is 7.3%.  
Thus, the error with a small number of even terms 
included in the solution is lower than the one obtained 
when a large number of even terms are included.  For 
the same pressure input and frequency but at a skew 
angle χ=45o, the error introduced by the Peters-He 
model is 11.7%, Fig. 7.  Thus, the Peters-He model 
becomes more accurate as the skew angle is 
increased.  On the other hand, the minimum on-disk 
error introduced by the Galerkin approach at χ=75o is 
7.8% which is higher compared with 1.33% obtained 
for χ=45o.  Therefore, the Galerkin approach 
converges more slowly as the skew angle is increased.  
For the on/off-disk solution, it is observed that the error 
decays as the index for the even terms is increased up 
to 19 (75.2% for the Peters-He model and 34.3% for 19 
as the index for the even terms included in the 
solution), after that, the error increases as the number 
of even terms increases.  If Fig. 9 is compared with the 
one for χ=45o (Fig.6), it is noted that the minimum error 
that the methodology achieves for the on/off-disk 
solution is much higher than before.  Also, the index for 
the even terms that produces the minimum error in the 
on/off-disk region reduces from 21 to 19. Again, the 
increase in the on/off-disk error is due to the loss of 
accuracy in the solution on the trailing off-disk region. 
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Fig.10 Error, ω=4.0, = 1

2P Φ , χ=75o, modd=20. 

Figure 10 is for the first cyclic pressure distribution 
1
2Φ  and ω=4.0.  For the on-disk region, the minimum 

error, 5.06%, is obtained with 8 as the index for the 
even terms included in the solution.  This error is 
similar to the one obtained with no even terms and with 
12 as the index, 5.78% and 5.87%, respectively.  If this 
figure is compared with the one for the same pressure 
input and frequency, but for a skew angle χ=45o, it is 
observed that the convergence is slower and that the 
Peters-He model becomes more accurate while the 
Galerkin methodology lose accuracy.  For the on/off-
disk region, the error reduces from 78.56% up to 
36.98% when 19 is the index. 

The pressure input in Fig.11 is the first collective 
pressure 0

1Φ , but perfectly edgewise flow is analyzed.  
The convergence of the error in the on-disk region is 
again slow, and the minimum error is achieved with the 
index is 3 for the even term, 9.9%.  The error 
introduced by the Peters-He model is higher (11.84%) 
as compared with the results obtained for χ=75o, and 
similar loss of accuracy is observed on the Galerkin 
methodology.  For the on/off-disk region, the best 
solution is also obtained with 3 as the index. 
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Fig.11 Error, ω=4.0, = 0

1P Φ , χ=90o, modd=20. 
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Fig.12 Error, ω=4.0, = 1

2P Φ , χ=90o, modd=20. 
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On Fig.12 (first cyclic pressure 1
2Φ , χ=90o, and 

ω=4.0), the minimum error in the on-disk region is 
produced by the Peters-He model, 8.44%.  Again, this 
value is higher if compared with the one obtained for 
χ=75o.  For the on/off-disk region, the error reduces 
from 92.05% to 58.85% when an even term with an 
index of 19 is included.  Note that for this number of 
even terms, the on-disk error increases from 8.44% to 
25.7%. 

The results shown on Figs 5 through 12, show that 
for steep skew angles, the minimum error in the on-
disk solution for the axial component of the induced 
velocity is obtained by including in the approximate 
solution a small number of even terms.  On the other 
hand, in all these figures, it is shown that including a 
small number of even terms would significantly affect 
the on/off-disk error.  Thus, if the off-disk value of the 
induced velocity is needed at the rotor disk plane, it is 
convenient to include a large number of even terms 

Based on these results, the following expression is 
suggested to obtain the index for the even terms to be 
included to minimize the error in the on-disk solution. 

( ) o oeven terms 3 cos ; 0 90
odd terms 2

χ χ= ≤ ≤  (19)

If it is desired to minimize the error in the on/off-
disk region 

o oeven terms .75; 0 90
odd terms

χ= ≤ ≤  (20)

Analysis with other pressure as well as mass-
source inputs has been performed in Ref. 16, which 
validates equations (19) and (20) for any input, skew 
angle and reduced frequency. 
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Fig.13 Frequency response, ω=4.0, = 0

1P Φ , χ=75o, 
z=0. 
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Fig.14 Frequency response, ω=4.0, = 0

1P Φ , χ=75o, 
z=-1. 

Figures 13 and 14 compare the frequency 
response for the first collective pressure distribution 

0
1Φ  for two different number of even terms included in 

the solution, one is with an equal number of odd and 
even terms and one with the number of even terms 
indicated by equation (20); and at two different 
locations, one is on the rotor disk plane, Fig. 13,  and 
one is a distance equal of one radius above the rotor 
disk plane, Fig. 14. In both figures the frequency is 
ω=4.0, and the skew angle is χ=75o. 

In Fig. 13, although the optimized solution 
converges faster than the one with equal number of 
odd and even terms, the optimized on-disk response 
shows some oscillations about the exact, in-phase as 
well as out-of-phase. The convergence in the leading 
off-disk region (although similar) is slightly faster in the 
optimized solution especially in the in-phase response.  
In the trailing off-disk region, both solutions converge 
to the exact one up to about x=-1.5. 

In Fig. 14, it is observed a better agreement 
between the Galerkin solution and the exact solution in 
the region located above the on-disk area. The 
improvement in the solution is also observed in the 
region above the off-disk trailing and leading area. 
Even thought the improvement introduced in the 
solution, it is observed that the optimized solution 
converges to the exact solution on the complete range 
of x values, while the solution with similar number of 
odd and even terms seems to deteriorate after x=±1.5. 
This deterioration has also been observed in rotor disk 
plane solutions at distance of 3 times the rotor radius.16 
This may be due to error is the computation of 

( )ηiQ m
n

16 for large η.  
 
Summary and Conclusions 

 
An extensive convergence analysis is performed 

with solutions with up to 20 harmonics for the odd and 
even terms, and it is concluded that the number of odd 



66.10 

and even terms to be included in the solution depends 
on the exactness required, the skew angle considered, 
and the desire to optimize the on-disk or the on/off 
velocity profile. 

The index for the even terms required in the 
solution to minimize the error in the on-disk area is 
expressed as a function of the skew angle.  If it is 
desired to optimize the on/off velocity profile, the ratio 
of the indexes for even terms over odd terms is a 
constant equal to 0.75. 

If the optimum values of even terms are included in 
the solution for 20 as the harmonic for the odd terms, it 
is observed that the Galerkin approach is exact in axial 
flow, and that it introduces a maximum error of about 
16% at perfectly edgewise flow and high frequencies.  
For the rotorcraft range of value (χ≤75o and 
ω/(1+ω)≤0.3) the error is always less than 4% for any 
pressure or mass-source distribution. 
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Appendix: Closed-Form Expressions 
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Influence Coefficient Matrix 
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