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1. Abstract 

The paper presents a new numerical technique for 
deriving and solving the nonlinear periodic equations 
of motion of a coupled rotor/fuselage system. The 
method is based on the combination of the concept of 
working with "Harmonic Variables" with general 
purpose nonlinear solvers. The resulting technique 
substantially reduces the required analytical effort 
while preserving high accuracy solution and symbolic 
harmonic resolution. For demonstration purposes, the 
present nonlinear modelling consists of elastic 
blades and fuselage, and contains nonlinear elastic 
and dynamic contributions. The method is demonstrated 
by a study of the influence of possible fuselage 
responsiveness on the vibratory hub motion and hub 
loads. 

2. Introduction 

The prediction of the vibratory response of coupled 
rotor-fuselage systems poses many modelling and 
computation challenges and has attracted considerable 
research efforts during the last decade (see Ref. 1). 
The fact that these systems undergo vibration in all 
their operation modes, creates a need for adequate 
prediction of their vibratory characteristics even in 
the early design stages. Moreover, many of the 
advanced active mechanisms for vibration reduction 
(and recently also for improving the rotor acoustic 
characteristics) in helicopters are based on 
introducing high harmonic pitch commands to the blade 
root (Refs. 2-6). Among these vibration suppression 
methods it is important to mention the well known 
Higher Harmonic Control (HHC) technique (Refs. 2-5), 
which is implemented through a conventional 
swashplate and provides identical excitation for all 
blades, and the Individual Blade Control (IBC) 
technique (Ref. 6) which produces different high 
harmonic pitch commands for each blade. Clearly, the 
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key to meaningful estimation of the efficiency of 
such methods is a high quality prediction of the 
vibratory characteristics of the involved 
rotor-airframe systems. Such prediction should be 
able to handle nonlinear effects that might originate 
from the elastic, the dynamic and the aerodynamic 
modeling, and should preserve high harmonic 
resolution (see also Refs. 7 ,8). 

There are numerous contributors to the complexity of 
the analysis of rotary wing-airframe systems and many 
sources of computation difficulties. From an 
aerodynamic point of view, it may be stated that the 
unsteady aerodynamic environment which is created by 
the rotary wing presence, introduces various 
complications to the unsteady loads predictions 
(unsteady motion of the blades, interlocking wakes, 
wake-airframe interaction, etc.) and usually force a 
number of major simplifying assumptions. From a 
dynamics point of view, the coupling between the 
rotor and the fuselage results in a nonlinear 
formulation in which the hub vibratory motion and 
loads have to be balanced. There are also significant 
elastic motions of the blades and the fuselage which 
contribute nonlinearities and an enormous number of 
additional degrees of freedom. Additional 
difficulties emerge from the fact that the vibratory 
motion is usually very small compared to the constant 
(mean) and the first harmonic components. In such 
cases when nonlinear formulation is inevitable, 
numerical difficulties associated with the 
requirement for high harmonic resolution arc 
encountered. 

The objective of the present paper is to offer a new 
way to derive and solve the nonlinear periodic 
equations of motion of rotor/fuselage coupled systems 
while preserving high harmonic resolution. The 
general aspects of the method will be described and 
discussed first, followed by a few numerical results 
of a study of the influence of a broad range of 
possible elastic fuselage responsiveness on the 
vibratory hub motion and hub loads. 
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3. The Numerical Procedure 

3.1 General Algorithms for Nonlinear Systems 

The present method of solution is based on the 
combioation of the "Harmonic Variables" concept with 
generic algorithms for solviog nonlioear systems. To 
appreciate the advantages offered by this concept, it 
is first necessary to put io perspective all methods 
for nonlinear periodic response. The reader should 
carefully distinguish between "methods for periodic 
response" which are in the focus of the present paper 
and are designed to determioe the steady state 
periodic response, and "time integration methods" 
which are capable of simulatiog the transient 
response (and may also reach the periodic response 
after the iotegration is carried out for a number of 
periods, and the transient response is dimioished). 

Generally, numerical solution procedures for 
nonlioear periodic equations are based on two major 
steps: (a): The conversion of the nonlinear periodic 
differential equations to the form of nonlinear 
algebraic equations using "stationary unknowns", and 
(b): The solution of the resulting algebraic system 
of equations. 

There are several ways to execute the first step 
(step (a)). For example, while using the Fourier 
series expansion, the stationary unknowns are the 
harmonic coefficients. Similarly, there are other 
versions of expandiog the unknowns in terms of 
a-priori defioed shape functions. Using the "fioite
element in time~~ technique, the stationary unknowns 
are the values and the derivatives of the origioal 
unknowns at some prescribed azimuthal locations. Once 
the system of nonlioear periodic equations is 
formulated as a system of nonlioear algebraic 
equations, it may be solved by well established 
numerical tools (step ((b)). Thus, the most critical 
stage in any formulation is the conversion of the 
system to the form of a system of algebraic 
equations. 

The purpose of the method proposed io this paper is 
to present a new way to efficiently and accurately 
execute the first step mentioned above, i.e., to 
convert the system ioto a system of algebraic 
equations while preserviog all nonlioearities and 
maintain symbolic harmonic resolution. However, 
before describiog the method, and in order to clarify 
the picture, the working mode of a generic nonlioear 
solver will be described first. For that purpose, the 
following generic nonlioear algebraic system is 
considered: 

r.(x ,x ... x ) = 0 
1 1 2 n 

(i=l,n) (I) 

where [x. ]=<x ,x ... x > T is the vector of independent 
1 1 2 n T 

unknowns ("unknowns vector") aod [r. ]=<r ,r ... r > 
t 1 2 n 

contains the equations residuals ("residual vector"). 
A general purpose nonlinear solver is designed to 
determine the unknowns vector [x'l that will satisfy 

1 

Eq. (1), and is usually based on two maio components 
as shown by Fig. 1. The first component is "The 
Algorithm" which includes the logic of the nonlinear 
solution (such as the Newton-Raphson method, 
quasi-linear iterations, etc.). Starting from ao 
"initial guess vector", [x

0
], this component reaches 

1 

the desired solution by successive substitutions of 
If trial vectors~~, { x ~ } , in the second component that 

1 

may be titled "The Equations". This component 
evaluates the equations residuals { r.] for each trial 

1 

vector. Depending on the solution algorithm, the 
trial vectors are selected in a way that the 

s 
"solution vector" [x.) may be deduced. 

1 

To describe the proposed way to execute the above 
step (a), (i.e. "The Equations" part io Fig. 1), the 
concept of working with Harmonic Variables is 
described next. 

0 {xd 

The 
{xt} 

1 The 

Algorithm Equations 

{rd 

1 {xp 

Fig. 1: Scheme of nonlioear solver operation mode. 

3.2 The Harmonic Variables Concept 

In general, the "Harmonic Variables" concept is based 
on the definition of Harmonic Variables, mathematical 
operations with them aod their usage io deriviog the 
equations of motions. These aspects will be discussed 
in this section. More details are given io Ref. 9. 
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3.2.1 Definition 

A Harmonic Variable is a real number the value of 
which varies periodically with a period of 2rc. 
Harmonic Variable, F, may therefore be represented by 
an infinite array of its Fourier coefficients as: 

F = F + r [F cos(p\jf) + F sin(p\jf)] (2) 
o L cp sp 

p=l 

Truncating the above infinite sum enables to define 
the Harmonic Variable, F, by a finite harmonic 
operator, H , using finite arrays of real numbers F 

q ~ 

and F of dimension q (i.e. p=l, .... q) as: 
sp 

F := H (F ,F ,F ) = F + ~ [F cos(p\jf)+F sin(p\jf)] 
qocpsp oL cp sp 

p=l 

(3) 

In principle, the periodicity parameter, \jf, may 
represent any variable. However, in the context of 
the present study, \jf represents a nondimensional time 
(i.e. \jf=2m(T where t is the time and T is the 
period). In what follows, all Harmonic Variables and 
their coefficients will be denoted as shown in Eq. 
(3) (i.e., denoting the harmonies by the subscripts 
( ) , ( ) and ( ) ). Clearly any constant real 

o cp sp 
number, r, may be represented as the Harmonic 
Variable, R, where R =r, R =R =0 (p=l, .... q). In 

o cp sp 
addition, the basic trigonometric functions sin(\jf) 
and cos(\jf) may be described as the Harmonic Variables 
S and C, respectively, where S =C =I and 

sl cl 
S =C =S =C =0, S =S =C =C =0 (p=2, ... q). 

o o cl sl cp sp cp sp 

2go gel gc2 

Zgel 2g +g 
0 e2 gel+ge3 

Zge2 gel+ge3 2go 
I [OJ =2 Zge3 ge2 gel 

Zgsl gs2 gs3 -gsl 

Zgs2 gs 1 +gs3 0 

Zgs3 gs2 gsl 

Practically, Harmonic Variable may be viewed as an 
array of real numbers and this is the way it is 
stored in the numerical codes. For example, the 
Harmonic Variable, E, is stored as an array of the 
real numbers E ,E .... E ,E .... E . 

o cl cq sl sq 

3.2.2 Mathematical Operations 

Based on the above definition, it is possible to 
define arithmetic and general mathematical operations 
between Harmonic Variables. Additions and 
subtractions are trivial and are essentially based on 
adding or subtracting the corresponding harmonics. 
Multiplying two Harmonic Variables is based on the 
appropriate trigonometric identities and may be · put 
in the following form for the case of E=F•G: 

E F 
0 0 

E F 
cl c1 

E' = [OJ F' 
cq eq (4) 

E F sl sl 

E' F' 
sq sq 

where [G] is a matrix which is a function of the 
coefficients of the harmonic variable G only, namely: 
G , G , G (p= I , .... q). This matrix is generated 

o cp sp . 
symbolically for any given number of harmonics. For 
example, in the case of q=3, [G] is given by: 

ge3 gsl gs2 gs3 

ge2 gs2 gsl+gs3 gs2 

gel gs3 -gsl 0 g s 1 

2go -gs2 -g 
s 1 

0 (5) 

-gs2 2g -g 
0 c2 gcl-gc3 gc2 

-g 
s I gel-ge3 2go gel 

0 ge2 gel 2go 
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Division of Hannonic Variables is essentially the 
inverse operation of the above multiplication 
operation. More details may be found in Ref. 9. 

It should be noted that there is an interesting 
analogy between the number of coefficients needed to 
execute a mathematical operation between two Harmonic 
Variables and the number of digits needed to execute 
a mathematical operation between two real numbers. 
This is due to the fact that similar to real numbers, 
adding and subtracting of Hannonic Variables do not 
change the required number of coefficients. However, 
multiplying two Harmonic Variables represented by q 

I 

and ~ hannonics, respectively, results in a Harmonic 

Variable having q
1 
+~ coefficients, and generally, 

division of two Hannonic Variables results in an 
infinite number of additional hannonics. 

Similar to real numbers, analytic functions of 
Harmonic Variables (i.e. F;f(G) or F;f(G,E), etc.) 
may be easily executed based on the above basic 
arithmetic operations. 

Differentiation of Hannonic Variables with respect to 
the periodicity parameter, II'· results in Hannonic 
Variables as well: 

n+l 
a "F -2- n n 
-; (-1) H (0,-p F ,p F ) n;l,3,5, ... 
BIV" q sp cp 

(6a) 

n -
2 n.., n 

(-1) H (O,p t< ,p F ) 
q cp sp 

n;2,4,6, ... (6b) 

It should be emphasized that all numerical schemes 
for differentiation and integration with respect to 
any variable (other than IV) that have been developed 
for real numbers may be directly applied to Harmonic 
Variables as well, and may · be executed using the 
above mathematical operations. The above operations 
also enable the construction of all other 
trigonometric functions by using the definitions of 
the sine and cosine functions (see Section 3.2.1). 

3.3 Computerized Implementation 

The implementation of hannonic variables in numerical 
codes is carried out using a "super compiler" which 
has been developed along the above guidelines. This 
is a computer code that converts codes that were 
written using Harmonic Variables to standard computer 
codes. As mentioned earlier, the Harmonic Variables 
are stored as arrays of real numbers and as far as 
the user is concerned, all mathematical operations 
with Hannonic Variables, (additions, multiplications, 

analytical functions, etc.) are written in the 
standard form as if they were real numbers. 

A simple application of the method is presented in 
Fig. 2. In this example, a short code is presented. 
The purpose of this code is to multiply two periodic 
functions: I +2sin1!'+3cos21!' and 4+5sin31!'+6cos41V. First, 
each one of these two functions is declared as 
"Hannonic Variable" (of 17 coefficients: one for the 
constant value, 8 for the sine terms and 8 for the 
cosine terms), and denoted as HA and HB, 
respectively. Then, numerical values are assigned for 
all coefficients and HA and HB are printed out. As 
shown, the multiplication operation is subsequently 
executed as if these two periodic functions were real 
numbers by the 'HC;HA *HB' operation without . any 
additional derivation or coding. The resulting 
Hannonic Variable, HC, is then printed out. 

3.4 Application to the Equations of Motion 

To derive the equations of motion using the present 
approach, all time-dependent quantities are first 
defined as Hannonic Variables while the "unknown 
vector" [x.} (see section 3.1) contains the 

1 

coefficients of all independent Hannonic Variables. 
Thus, for each "trial vector" [x\ the independent 

1 

unknowns may be determined as Hannonic Variables. 
Explicit execution of the equations of motion in 
their homogeneous form yields the equations residuals 
in the form of Hannonic Variables as well. The 
harmonic coefficients of these residuals are then 
introduced to the "residual vector" [ r.}. Thus, since 

1 

operations between Hannonic Variables are executed 
automatically (see for example the multiplication 
operation in Fig. 2), the only requirement on the 
user part is the explicit coding of the nonlinear 
equations of motions, while no additional adaptation 
or time discretization is needed. Consequently, the 
required effort is reduced to the effort needed in a 
similar steady problem. In principle, the method is 
equivalent to the "harmonic balance" method that has 
lost its attraction due to the enormous analytical 
effort which was required for its employment while 
highly nonlinear terms are included. The proposed 
technique removes this difficulty. Moreover, 
increasing the number of hannonics does not cause any 
changes in the analytic derivation or in the computer 
code, and it is executed automatically by changing 
the Harmonic Variables dimension (q) in the 
mathematical operation routines. 

It should be emphasized that this · method is 
substantially different from other methods that use 
computerized symbolic manipulation tools. The 
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c 
c Declaring HA,HB,HC as Harmonic Variables 
c of 8 harmonics(i.e. 17 coefficients) 
c and double precision (11'8). 

c 
HARHON1C(l7}*9 HA,HB,HC 

c 
c Setting RA to bes 
c 1.+2.•sin(Psai)+3.*Cos(2.*Psai) 
c 

HA•SI!:T(O.DO) 
HA~INPUTC(l,DO,O} 
HA•INPUTS{2.D0,1) 
HA•INPUTC(3.D0,2) 

c 
c Printing RA 
c 

WRlTE(lO,*)'••••••••• !!A ................... 
!!A•PRINT(HA) 

c 
c setting HB to be: 
c 4.+S.•sin(3.*Psai)+6.*Cos(4.*Psai) 
c 

HB•SET{O.DO) 
HB•INPUTC(4.D0,0) 
HB•INPUTS(5.D0,3) 
HB•INPUTC(6.D0,4) 

c 
c Printing HB 
c 

WRITE(lO,*)'••••••••• HB ................... 
HB•PRINT(HB) 

c 
c Setting HC•RA*RB 
c 

HC•HA*HB 
c 
c Printing HC 
c 

WRITI!:(l0,*)'••••••••• HC ................... 
HC•PRINT(RC) 

c 
STOP 

al 
END 

.................. HA .................. 
0 1. 0000 O.OOOOOE+OO 
1 O.OOOOOE+OO 2.0000 
2 3.0000 0.000001!:+00 
3 O.OOOOOE+OO O.OOOOOE+OO 
4 O.OOOOOE+OO 0.00060£+00 
5 0.00000£+00 O,OOOOOE+OO 
6 O.OOOOOE+OO O.OOOOOE+OO 
7 0.00000£+00 O.OOOOOE+OO 
B. O.OOOOOE+OO O.OOOOOE+OO 

...................... HB ................... 
0 4.0000 o.oooo·OE+OO 
1 0.00000£+00 O.OOOOOE+OO 
2 O.OOOOOE+OO O.OOOOOE+OO 
3 O.OOOOOE+OO 5.0000 
4 6.0000 0. OOOOOE+OO 
5 O.OOOOOE+OO O.OOOOOE+OO 
6 O.OOOOOE+OO O.OOOOOE+OO 
7 0.00000£+00 O.OOOOOE+OO 
B O.OOOOOE+OO 0.00000£+00 

................... HC .. .................. 
0 4.0000 0.00000£+00 
1 0. 00000£+00 15.500 
2 26.000 O.OOOOOE+OO 
3 O.OOOOOE+OO -1.0000 
4 1. 0000 O.OOOOOE+OO 
5 0.00000£+00 13.500 
6 9.0000 O.OOOOOE+OO 
7 0.00000£+00 O.OOOOOt+OO 
B O.OOOOOE+OO 0.00000£+00 

b) 

Fig. 2: An application of "Harmonic variables". 
a) The code (includes the input and 

a multiplication operation). 
b) The output. 
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symbolic operations are executed within the 
mathematical operations during the numerical 
execution of the code and are never written nor coded 
explicitly. Nonlinear expressions are evaluated 
gradually using the required mathematical operations 
as if all Harmonic Variables were real numbers. The 
fact that each mathematical operation preserves 

. symbolic exactness, provides this kind of exactness 
to the entire expression. Unlike the standard 
symbolic manipulation tools, the present method 
enables the introduction of decisions and 
conditioning elements to the code based on 
momentary values of the variables. 

3.5 "Dynamic" Scaling 

The nonlinear solvers mentioned above usually use 
convergence criteria which are based on the norm of 
the "unknowns vector''. Therefore, if the numerical 
values of the unknowns differ by few orders of 
magnitude, only the relatively large components of 
the ~~unknowns vector" will influence the norm, which 
is bound to induce numerical errors in the evaluation 
of the relatively small components. 

Examination of the order of the numerical magnitude 
of the unknowns in a typical rotor/fuselage system 
shows vast varieiy. For example, the numerical values 
of the 4th harmonic components of the blades bearnwise 
elastic motion may be considerably smaller than the 
constant (mean) one, but it plays a major role in the 
vibration analysis. Clearly, nondimensionalization 
based on physical arguments does not solve this 
problem. Therefore, to maintain high resolution, a 
special "dynamic" scaling method has been developed -
see Fig. 3. In this method, the scaling factors are 
initially set to unit for all unknowns, i.e. S .= 1 

1 

(i=l,N). Then, the nonlinear solver is activated and 
the resulting "solution vector" {x5

} is used to 
1 

determine a new set of scaling factors which are 
equal to S.-x' (i=l,N). When such iterations are 

1 1 

repeated, the resulting solution vector is converged 
to a unit vector (i.e. x'=l, i=l,N) and the solution 

1 

is given by the last scaling factors vector. In this 
way, all unknowns are forced to equally contribute to 
the norm regardless of their numerical value. 

4. The Rotor/Fuselage System 

A brief description of the rotor/airframe system 
modelling which has been used to demonstrate the 
proposed method of solution is described in this 
section. More details may be found in Ref. 11. 

xf=Initial guess 
Si=--1 

si ~ St• x~ 
xf=l 

········ ............ ................ ····················- ·····-·····--··-·····. 

(x?} 

The 

Algorithm 

j (xl) 

{xl The 

-----j Equations 

{ri 

' ---- -~- -·· 

·<? xi=l 

yes 

Solution is given 
by S; 

Fig. 3: The application of "dynamic scaling". 

4.1 Degrees of Freedom 

The modelling is based on five systems of coordinates 
which are connected by exact transformation matrices 
based on Euler finite angles. The systems are 
described in Figs. 4,5. Each system and quantities in 
its directions are denoted by one of the indices G, 
F, H, Band D. 

The G · (gravity) system is an inertial reference 
A 

system while gravity is assumed to act in the -z 
G 

direction. 

The F (fuselage) system is a system which is attached 
to the fuselage (see Fig. 4). The transformation 
between the G system and the F system is a function 
of the fuselage attitude angles 9 , 9 , and 9 . By 

Fx Fy Fz 

setting 9 =0, the helicopter fuselage is assumed to 
Fz A A 

be placed in a plane which is parallel to the x
0

-z
0 

plane. 

The H (hub) system is attached to the F system at the 
coordinate xp=\· zF=zh (see Fig. 4) and is rotating 

A 
in a constant angular velocity Oz . The transfor

F 

mation between the F and the H systems is a function 
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of the azimuth angle of the reference blade, IJI. 

T,(le B (blade) system is connected to the H system at 
ex and its attitude is determined by the three root 

H 
angles p, t;, e. p is the flapping angle, t; is the 
lead-lag angle and e is the pitch angle. 

ROTOR HUB 

FUSELAGE BEAM 

Fig. 4: The "Gravity", 11Fuselagen and 11Hub" systems 
of coordinates. 

z", 
;, 

w 

Fig. 5: The 11Hub", I!Blade" and "Deformed" systems of 
coordinates. 

The D (deformed) system is a local system of 
coordinates which is attached to . each cross-section 
along the blade (see Fig. 5). The attitude of this 
system is determined by the local elastic 

A A A 
displacements u,v ,w in the xB, y B' zB directions, 

respectively, and the twist angle, <jl, which is 
superimposed (about the elastic axis) over the above 
deformation. Before deformation the blade elastic 
axis is assumed to be straight and to coincide with 
the xB axis. While the elastic elongation of the 

blade is usually small, the present analysis accounts 
also for the shortening of the distance of each 
cross-section to the rotating axis induced by the 
transverse displacements. Thus, the location of the D 
system root is at x :::::x+s, y =v, z =w, where: 

B B B 

I 
s(x) " - 2 IX 2 2 

(w, + v,) 
X X 

0 

4.2 The Blade Structural Modeling 

dx' (7) 

The structural analysis is based on the generic 
nonlinear beam model described in Ref. 10. The 
nonlinear equations in this model are derived for 
small strains and moderate elastic rotations. The 
bending moments components in this case are given by: 

PI 
M = (GJ + _____.E )T 

X A (Sa) 

M =-EI K "EI K +Pz (8b) 
y yz y zz z c 

M=EIK+EIK-Py 
z yy y yz z c 

(8c) 

P is the tensile force (which has replaced u as an 
unknown), and y 

0
, z c are the cross-sectional 

coordinates of the center of tension. K , K and T 
II A y z 

are the curvatures in y D and zD directions, and the 

T = <j>, + (v, + w, <j>)(w, - v, <j>) 
X XX XX X X 

(9a) 

K = v, + w, <jl 
y XX XX 

(9b) 

K = w, - v, (<jl + v, w,) 
Z XX XX X X 

(9c) 

where ( ), stands for differentiation with respect 
X 

to the blade length. The six equilibrium equations 
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for forces and moments that act on each segment of 
the beam are also presented in Ref. to. Elimination 
of the shear resultant forces from these equations 
(by expressing them as functions of the above moments 
and curvatures) yields the following four 
differential equations of equilibrium: 

P, = - p + K V + K V (lOa) 
X X yy ZZ 

K P - (EI v, + EI w, ), = - p +TV +q (lOb) 
Y YY XX yz XX XX y Z ze,x 

K P - (El v, + EI w, ), = - p -TV -q (toe) 
Z yz XX ZZ XX XX Z y )'e,x 

PI 

[[GJ + AP)T], =- q + K M + K M 
X X YY zz 

(10d) 

where q , q are equivalent load components that 
ze -ye 

contain the actual loads and additional 
contributions. The nonlinear expressions 
equivalent loads and the associated 
conditions are given in Ref. to. 

nonlinear 
for the 
boundary 

The equations of motion are obtained by substituting 
the inertia and aerodynamic loads which will be 
mentioned in what follows in the right hand side of 
Eqs. toa-d. These are differential equations in time 
and space. The unknowns in these equations are 
functions of the time and the beamwise coordinate 
along the blade. Using Galerkin's method, these 
equations are converted into differential time 
dependent equations for the shape functions 
coefficients. These coefficients are then expressed 
as Harmonic Variables. Note that any other treatment 
of the problem in space could be utilized while the 
time domain is handled by the Harmonic Variable 
method as described in Section 3. 

4.3 The Elastic Fuselage 

The fuselage and its system of coordinates xF, y F and 

zF are presented schematically in Fig. 4. The 

formulation is based on modal analysis and it is 
assumed that the motion consists of small linear 
deflections in which all elastic lateral and twist 
?'otions are uncoupled (longitudinally, the fuselage 
IS assumed to be infinitely stiff). Thus, the 
fuselage deformation may be expressed as: 

N 

(!Ia) 

i = 1 

N 
y 

vF(xF,t) = L: si i (t) · <!> (x ) 
v v F 

(lib) 

i = 1 

N<l> 
i 

<!>F(xF,t) = L S~(t) . <!>.p(9 (lie) 

i = 1 

As a beam, the fuselage boundary conditions are 
"free'.' at both ends. To account for rigid motions, 
the frrst modes have been chosen as follows: 

X -X 
<!>2 = <!>2 = F FCG 

w y 
(12) 

where xFCG and LF are the fuselage center of gravity 

coordinate and its length, respectively, and the 
successive modes are the corresponding natural mode 
shapes. 

Generally, in a trimmed forward flight, the 
helicopter fuselage undergoes periodic excitation due 
to many sources. Even by confining the discussion to 
the vibration induced by the main rotor, in certain 
configurations one should take into account not only 
the vibrations which are transferred to the fuselage 
through the hub, but also those vibrations which are 
induced by the blades passage over the fuselage, or 
by the interaction of the main rotor wake with the 
fuselage: However, the study presented in this paper 
1s restricted to the vibratory forces and moments 
which are transferred to the fuselage through the 
hub. All other loads acting over the fuselage are 
assumed to contain relatively low frequencies. 

Based on the above assumptions, the fuselage acce
lerations components at x =x due to the pth harmonic 

F p -

of the hub loads may be put in the following form: 

o o 0 
X 

o o o 
y 

0 

0 

0 0 o o 
z 

0 0 o R 
X 

0 0 

o R 
z 

R o 
y 

0 0 

X 

F 
y 

F 
z 

= 

.. 
<!>F 

(13) 

where () indicates a complex quantity which consists 
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of a magnitude and a phase angle. Fa: and Q<X (<X = 

x,y,z) are the forces and moments at the hub (xF =xh), 

respectively, while G<X and R<X (<X = x,y,z) are their 

influence coefficients, respectively. 
quantities are defined as: 

Q 
i(p'JI·<P ) - a 

Q = Q e 
<X <X 

'AF -!,., 
G =G e a: 

a: a 

These 

(J4a) 

(14b) 

(14c) 

(14d) 

It should be noted that the values of F , Q , G , R , a a: a: a: 
.p F, .p Q, ~ F, ~ Q are all functions of the harmonic 

<X <X <X <X 
number, p, the hub location, xh, and the location 

where the acceleration response is obtained, x . The 
p 

assumption of linear behavior of the fuselage allows 
to sum up the accelerations due to each harmonic 
separately. 

To demonstrate the analytic evaluation of the above 
influence coefficients, the following discussion will 
be concentrated on the vertical motion, w p' There-

fore, for the sake of clarification, the index ( ) 
' w 

will be omitted in what follows. Since <!>' are 
orthogonal modes, the governing equation for the i!h 
mode becomes: 

** * 2 i 
Mi~ i 02 +Mid~iO+Miroi ~i=F (ljl)<!>i(x )-Q ('JI)a <!> (x ) 

z h y ax h 
F 

(i=l,N) (15a) 

where: 

L 
F 2 

i I i M = <P (x •)rn(x •)dx • 
F F F 

(15b) 

0 

d is a generalized damping coefficient, u} is the 
ith mode frequency, m is the fuselage mass per unit 
length and F ('l') (= Re(F )) and Q ('JI) (= Re(Q )) are 

z z y y 

the concentrated force and moment, in the zF and y F 

directions, , respectively, that acts at the hub 
(xF "'\). ( ) stands for differentiation with respect 

to the azimuth angle, 'JI. As shown, the damping is 
assumed to be proportional to the mass per unit 
length in order to preserve the mqdes orthogonality. 
However, c' may be a function of ro' as experimentally 
observed in typical rotorcraft fuselages. 

Solving Eq. (J5a) for all ~i (i=l,N) and based on the 
notation of Eq. (13), it may be shown that G and ~F 

z z 
are given by: 

G (p,x ,x) = 
z h p 

(16a) 
F 

~ (p,x ,x ) = 
z h p 

(J6b) 
where: 

2 
A; = Mi(roi -p2Q2) (17a) 

(17b) 

Similar analytic expressions may be derived for 
F F Q Q Q 

G , R , R , R , p , p , ~ , p , ~ (see Ref. 11). 
yxyzxyxyz 

G, 
X 

Figures 6a-c present the quality of results that may 
be obtained by the above assumptions. Figures 6a 
(reproduced from Ref. 12 for the ACAP fuselage) 
presents typical variation of the value of G at the 

z 

pilot seat location (x ) as a function of the 
p 

exciting frequencies p. Figures 6b-c show the 
analytic results that were obtained by assuming rigid 
body modes or by assuming uniform elastic beam model 
for different values of damping. As shown, assuming 
rigid fuselage is not acceptable, and there are many 
missing details in the elastic beam results as well. 

Having clarified this point, there are three 
alternative ways to study the fuselage influence. The 
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first one is to accept the above quality of results 
and to derive analytically the influence coefficient 
based on the mass and stuffiness distribution of the 
fuselages (as presented above by Eqs. 13,16,17). A 
second way is to execute similar calculations using 
more refined structural/dynamic analysis of the 
fuselage as a three dimensional structure. A third 
alternative way has been adopted for the present 
study where a parametric study of the fuselage 
reaction as a function of the "global" responsiveness 
parameters G , R has been carried out. This 

(); (); 

alternative seems to be efficient due to the fact 
that many different fuselage structures may have the 
same hub reaction as reflected by G , R . In 

(); (); 

addition, the prediction of the damping mechanisms 
that controls the phase of the fuselage reaction 
seems to be a complicated task and meanwhile may be 
extracted mainly from experimental data. For all the 
above alternatives, the fuselage influence may be 
introduced to the analysis by equations similar to 
Eq. (13) since the rotor is excited only by the 
fuselage motion at the hub, and the fuselage is 
excited only by the hub loads. Note that if the 
analysis is a nonlinear and a three dimensional one, 
the matrix in Eq. (13) may be fully populated and 
there may be couplings between the harmonics. 
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Fig. 6a: Fuselage absolute response (0 at the pilot 
z 

seat) as a function of the frequency of the 
hub vibratory force as obtained in ground 
shake tests (Ref. 12). 
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Fig. 6b: Fuselage absolute response (0 at the pilot 
z 

seat) as a function of the frequency of the 
hub vibratory force as obtained by the 
analytic model using rigid modes only. 
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Fig. 6c: Fuselage absolute response (0 at the pilot 
z 

seat) as a function of the frequency of the 
hub vibratory force as obtained by the 
analytic model using rigid and elastic modes 
of uniform beam. 

4.4 The Inertial Loads 

To determine the inertial loads at a certain cross· 
section in the local D system, one has to express the 
inertial acceleration (i.e. in the 0 system) of each 
material point over the cross-section. This process 
has been carried out systematically and consistently 
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by sequential usage of all the transformation 
matrices. However, since all the participating 
degrees of freedom were defined as Harmonic 
Variables, this process is simple and is reduced to 
the coding of the transformation operations and the 
required integrations. The end result is the inertial 
loads expressed as Harmonic Variables as well. More 
details may be found in Ref. II. 

4.5 The Aerodynamic Loads 

To determine the aerodynamic loads, one first has to 
evaluate the components of the resultant "dynamic" 
velocity at each cross-section (i.e. the velocity due 
to the fuselage motion, the rotor rotation, the 
elastic motions, etc.). Since the present analysis 
deals with motions containing high harmonics, exact 
and complete expression of the dynamic velocity which 
is fully consistent with the dynamic response is 
required. This step has been executed similar to the 
above inertial loads based on the exact 
transformation matrices. The end result of this step 
are the velocity components at each cross-section 
expressed as Harmonic Variables. 

The expressions for the aerodynamic loads are based 
on a two-dimensional unsteady strip theory obtained 
from the classical Theodorsen theory and its 
extension to the case of pulsating free stream 
velocity provided by Greenberg (see Ref. 13). These 
calculations account also for a prescribed steady 
inflow disttibution over the disk. The assumption of 
steady inflow may be rationalized by the fact that 
the present modelling is concentrated on the case of 
a steady trimmed flight where the overall thrust and 
moments acting on the fuselage are constants. On the 
other hand, the local variations of loads are rapid, 
and unsteady evaluation of the loads which accounts 
for the near shed wake effects is inevitable. The end 
result of these calculations are the aerodynamic 
loads expressed as Harmonic Variables (see Ref. 11). 

4.6 Hub Loads 

The hub loads are obtained by direct integration of 
the distributed loads over the blade. For that 
purpose, all disttibuted loads and moments originally 
developed in the D system are first transformed to 
the B system. Titen, all quantities are integrated to 
yield the blade root loads. These loads are then 
transformed through the offset to the H system. Such 
loads due to all blades are then assembled to give 
the resultant forces and moments in the non-rotating 
system. 
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4.7 Trim 

To assure a trimmed steady flight, the present 
formulation is supplemented by seven equations which 
enables the introduction of seven unknown trim 
parameters. These unknowns are the fuselage steady 
(mean) attitude angles 0 and 0 (0 =0 is 

Fx Fy Fz 
0 0 

assumed), the collective pitch angle (0 ), the cyclic 
0 

pitch angles (9 !C and 0 
18

), the tail rotor thrust, 

and the averaged induced velocity. The corresponding 
equations are based on equilibrium of forces and 
moments in the F system (six equations) and on 
Glauert's momentum equation for the averaged inflow. 
Note that this is a fully coupled aeroelastic trim 
where all degrees of freedom simultaneously 
participate in the solution. 

4.8 Illustrative Examples 

To demonstrate the need for high harmonic resolution, 
correlations with test results reported in Ref. 14 
are presented first. In this test, a three-bladed 
rotor was mounted in a wind tunnel (and therefore the 
calculated results contain no fuselage influences), 
and the resulted vibratory hub loads at advance ratio 
of 0.14 were measured. The correlation is presented 
in Fig. 7. To appreciate the quality of the results, 
one should realize that the nonrotating hub force 
(Fig. 7a) is only 1.3% of the thrust and the rotating 
in- plane force (Fig. 7b) is about 2% of the thrust. 
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Fig. 7: Correlation of the present results with wind 
tunnel measurements (Ref. 14). 

A study of the influence of realistic elastic 
fuselage on the vibratory characteristics of rotor/ 
fuselage systems is presented next. The following 
results are for a typical full-scale system in 
forward flight where the rotor consists of four 



hingeless blades (>t=0.3, CT =0.009). To demonstrate 

the use of the "global" responsiveness parameters as 
discussed in Section 4.3, the following examples deal 
with the most important component of the fuselage 
vibratory response - the vertical motion. Therefore, 
the only non-zero parameters are G ,pF,R ,pQ 

z z y y 

Figure 8a presents the 4/rev. amplitude of the 
transferred to the vertical force, F which is 

fuselage 

PF(R =0 
z y 

fuselage 
6a). The 

Fig. 8a: 

z 
as a function of G for different values of 

z 

in this case). The realistic range of the 

response is also indicated (see also Fig. 
corresponding values of the phase lag angle 
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Fig. 8b: The fuselage influence on hub acceleration 
as function of its response magnitude, G , 

F z 
phase, P . 

z 

depend mainly on the overall damping of the fuselage 
structure, and therefore, a wide range of angles has 
been studied. Figure 8b presents the hub acceleration 
amplitude for each curve of Fig. 8a. The symbols in 
Figs. 8a,b represent constant acceleration. As shown, 
for very stiff and massive fuselage (i.e. for large 
values of G ), the 4/rev. amplitude of F , coincides 

z z 
with the case of an isolated rotor, while the hub 
acceleration amplitude vanishes. As the fuselage 
becomes elastic and less massive, the hub 
acceleration amplitude rises. As shown, it may be 
possible to adjust the fuselage structural damping 
(which reflects itself by the phase angle, PF) so 

z 
that for a given value of G , both hub acceleration 

z 

amplitude and the vibratory force amplitude will be 
reduced. It should be emphasized that G and PF are 

z z 
global parameters of the fuselage response and their 
values contain also the influence of isolation 
mechanisms or other vibration suppression devices 
that may be installed between the rotor and the 
fuselage. Such mechanipms are mostly efficient in 
modifying the value of p . 

z 

The influence of adding the fuselage response due to 
the vibratory hub moment in the y direction, Q , is 

F y 

presented in Figs. 9a,b. As shown, the influence of 
this moment may be important. The general trends are 
similar to those observed in the case of vibratory 
vertic'al force. As the fuselage responsiveness to 
moment is reduced (i.e. large values of R ) the 

y 
vibration level coincides with those presented in 
Fig. 8a. The hub acceleration amplitude as a function 
of R is presented in Fig. 9b. 

y 

The influence of elastic fuselage on the 
effectiveness of the higher harmonic pitch command is 
presented in Fig. 10. In this case, the 4/rev. 
vertical vibratory load is presented for various 
phase angles of the command with and without the 
fuselage. The fuselage is assumed to respond in the 
vertical direction only. Note that the e pitch angle 

H 

is superimposed on the trim pitch commands. 
Generally, it may be concluded that while the 
fuselage has influence on the hub loads, its 
influence on the higher harmonic control 
effectiveness and on the optimal phase angle is 
small. 
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5. Concluding Remarks 

A numerical technique for deriving and solving the 
nonlinear periodic equations of motion of a coupled 
rotor/fuselage system has been presented. The method 
substantially reduces the analytical and coding 
efforts which are required for implementation of the 
nonlinear periodic equations of motion, while 
preserving high accuracy solution and symbolic 
harmonic resolution. By using this method, the 
introduction of the equations of motion is confined 
to a simple listing of the equations while no time 
discretization or other adaptations are required. The 
present approach has been demonstrated by modelling a 
rotor/fuselage system that consists of elastic blades 
and fuselage and a study of the influence of the 
fuselage response characteristics. 
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