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ABSTRACT
In this study, the composite helicopter rotor blaslenodeled as arElastic Cantilevered Rotating Thin-Walled Composite
Box Beam" with angular velocity(Q2) and forward flight spee@/,,). The presentCircumferentially Asymmetric Stiffness
(CAS) structural model takes into account a group of-plassical effects; such as the transverse shiearmaterial
anisotropy, warping inhibition, etc. TheAérodynamic Strip Methddbased on Wagner Functioh in unsteady
incompressible flow are used to simulate incompipéssinsteady aerodynamic effects. As a result;'Ehr@ended Galerkin’s
Method (EGM) and the Separation of Variables Methba@re used to obtain the coupled and lingaoverning System of
Dynamic Equatiorls Solving the aforementioned equations of motiorthe time domain, the aeroelastic responses of the
"Composite Rotor Bladlecan be computed. The present numerical resultge wempared and are verified with existing
results in the literature. Based on these, someiitapt conclusions are presented

INTRODUCTION AND BRIEF REVIEW
The aeroelastic analysis to predict the charatiesiof
rotorcraft systems is very important in the aerauyit
and structural design of composite helicopter Badiéore
recently, the "Advanced Composites" are increagingl
being used in rotorcraft blades and structurestdubeir
favorable characteristics [1]. Nowadays, more & of
the latest rotorcraft structures is made of varitypes of
"Advanced Composites’. The so-called "Advanced
Composites” generally exhibit certain advantageous
properties such as high strength, effective sti$ndight-
deadweight, high resistance to sonic and other rdima
fatigue — fracture, reduced vibrational responsereiased
aerodynamic and structural stability and flightesaf The
fiber orientations in the material layers of these
composites can be used to provide the desiredelagt
up with the right material and stiffness properties

The investigation of the aeroelastic stabilgyektremely
important from the design and operational pointiefv of
rotor blades. The aeroelastic response problem hwhic
represents the blade free and forced (under aeaouign
and other loads) vibration responses is criticdhasafety
and air — worthiness of flight vehicle systems.

Most of the structural dynamic models for thdoro
blades are moderate deflection-type beam thedrasare
based on ordering schemes and are valid for malerat
deflections. These models have frequently beenexppd
the aeroelastic stability and response analysisstidropic
[2-4] and composite hingeless rotor blades [5,6].
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Numerous researches have been conducted oingotat
composite thin-walled beams. Rehfield [7] studide t
design analysis methodology of a thin-walled beam f
composite rotor blades. Rehfield et al. [8] disedsthe
non-classical behavior of thin-walled composite rbgea
with closed cross sections. Chandra and Chopra [9]
investigated the vibration characteristics of riogt
composite box beams by experiment and theoretical
methods. Smith and Chopra [10] researched the lastine
response, loads and stability of a composite thafled
beam. In the case of the rotating beam, Song dtLd].
researched the vibration of rotating blades modeled
anisotropic thin-walled beams containing piezoelect
materials through the proportional control law a&etbcity
control law. In the past few years, a number ofiydital
models of anisotropic "Thin-Walled Composite Box
Beams" have been proposed in the world-wide liteeat
and they are analyzed either numerically or
experimentally. One of them, a refined "Thin-Walled
Composite Box Beam" theory developed by Libresadl an
Song [12] and Song [13] has been extensively usethé
study of the free vibrations, Furthermore, Qin and
Librescu [14] and Qin [15] have investigated thgriamic
aeroelastic response of aircraft wings" modeled as
anisotropic "Thin-Walled Composite Box Beams" exqibs
to gust and blast loadsladdadpour and Shadmehri [16]
have investigated the effect of the offset betwdem
reference axis and the mid-chord on aeroelastiilityeof
composite wings in an incompressible flow



"Rotating Thin-Walled Composite Box Beam" as
" Structural Modd"

The analysis of rotating blade structures is more -
complex than that of their nonrotating counterpartghén o=ty
rotating case, in addition to the accelerations resultin DS S

from elastic structural deformations, the centrifugal and

coriolis accelerations have to be included in the mogelin
Here in this present study, the structural modehiday

to those developed in Ref. [157]. x;
Inertial reference coordinateX,Y, 7)is attached to the .

hub centre, while two other coordinate systems exist
(z,y,z)as a local coordinate associated with the blade
and (n, s, z) used to define complex cross-section profiles Figure. 1. Symbolic Rotor blade and "Thin-Walled

(Figure. (1), (2) and (3)). Composite Box Beam" Configur_ation (Aerodynamic and
Structural Coordinates)

THEORETICAL ANALYSISAND FORMULATION
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Let (z,y,2)be a fixed Cartesian coordinate system with

the outwardzdirection parallel to the longitudinal axis of ~  fo=~— B
the "Rotating Thin-Walled Composite Box Beam" as N
shown in Figures.(1) and (2). The thickness, along its
contour of the "Composite Box Beam", is assumed to be
constant 'h " as given in the same Figures.(1) and (2).

The angular velocity is also assumed to be constant and is
directed in the(X — 7)-plane (Figure. (3)). The position
vector "R" of a point in a deformed rotating beam, ' -6
measured from the centre of the hub, can be expressed as _ﬂ,{ S

[17],

P=F +PFP +A . —r . -
’ . ) ) ) (1) Figure. 2. "Thin-Walled Composite Box Beam" (Fiber Lay-
Ry = Rk, R, = zi+yj+ 2k = ui+ v+ wk up and "Circumferentially Asymmetric Stiffness (CAS
Configuration) (Adopted from Libresda7])

Considering angular velociif)) and Eq. 1), "R" and y
" R" can be written as, \ 4

R =[i+ QR +z+w)|i+ o + [ — Az + u) |k ,
B = [ii + 200 — (3 + W) |i + i (2)
[0 5w

" RO" and "R " are the hub radius and the undeformed h
u b |

L A

position vector of a beam point, respectively, and " /
represents the displacement vector, whose components are ( Ro
defined in Eq3).

A "Rotating Composite Thin-Walled Box Beam" with a
length of "L ", thickness of h", and hub radius of R, " 1

is considered in Figure. (2) ag8). 0O R, |

Q
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Figure. 3. Schematic description of the rotate blade strectur
simulated by "Rotating Thin-Walled Composite Beand
its cross-section
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In addition to the global(z,y,z)coordinate system, a

local one(n,s,z)is introduced, wheren® and 's' are

the normal and tangential directions to the contofithe
"Rotating Thin-Walled Composite Box Beam"
respectively (see also Figures. (2)). The presenttsral
model of the "Rotating Thin-Walled Composite Box
Beam" includes some non-classical
material anisotropy, transverse shear,
secondary warping inhibition, nonuniform torsionaddel
and rotary moment of inertia [15-17]. Also,
"Circumferentially Asymmetric Stiffness (CAS)" meth
[16, 17] is chosen among various lay-up methodsrdter
to obtain an appropriate coupling for the rotordela
structural performance. This ply-angle configunatio
achievable via the usual filament winding technglog
results in an exact decoupling between the extensio
twist, on one hand, and the flap — shear elastiplatg,
on the other hand.

The 3-D displacement quantiti%&, , w) are assumed to

be,
U(IL’, Y, 2, t) = UO(Za t) - y¢(z7 t)

w(x,y,2,t) = uy(2,t) + 22,1 ®3)
Wl 250) = (1) + 6,(5) o(5) — | +6,8) o15) + n .
—6 (1) F,(s) + na(s)]

where,

'91' (Zat) = Yy (Z7t) - Ub (Z7t)

'9;1,/ (Z7t) = Vaz (Z7t) - U’E)(Z’t) (4)

als) = ~y(5) %L — a() L

In the above Egs.(3) and (A()uo(z, t),v,(2t),w,(z, t))
are the medium surface displacements in the "Rafati
Thin-Walled Box Beam" in (z,y,z) directions,
respectively. SimiIarIy,(&w(z,t),Hy(z, t),o(z, t)) are the
three rotations in (z,y,2)

directions, respectively.

Additionally, (wzy(z, t),7,.(2 t)) represent the transverse

shear strains. The other quantities in Egs.(3)(dhdre as
follows:

The primary "Warping FunctionK )" is expressed as,

F = f[rn(s) — Ulds (5)
0
where the "Torsional Functiqrﬁl)" and the quantity

"r (s)" are given as,

®)

Sgﬁ (6)
h(s)
dz

effects such as
primary and

_ (W
rn(s) - x(s) dS y(s) dS
The strains contributing to the potential energyd an
kinematic energy are,

spanwise strains
e, (n,s,2,t) = €2 (s,2,t) + ne (s, 2,t) (7)
el (5,2,1) = wy(2,1) + 0, (2, 0)y(s) + 0, (2,1)z(s) — ¢ (2,1)F, (s)
e (smt) = 0,20 L — 6%~ 'z tals)

v ds ds

shear strain and transverse shear strains,

loi2t) = 25 + 2226 () ®
10620) = [t + 6, (DI + [1h(at) + 0,

dzx

Y, (8,2,8) = [uy(2,1) + Hy(z,t)]% — [y (2,1) + Hw(z,t)]g

Wheresi, 737 are the normal strain and the shear strain

components, respectively on the mid-surface of ien-
Walled Box Beam".

The stress resultantsV's" and stress couplesL's" can
be reduced to the following expressions:

The stress resultantsV's":

€2,
N, Ky, Ky K3 Ky ’Ygz
N | |Kn Ky Ky Ky o
. 9)
622
Nn,z = A447n,z
The stress resultants momehiss",
€2,
L, Ky Ky Ky Ky ’Ygz
= , (20)
L, K5 K Kz Ky 10}
€2

In the above expressions.(9) and ilO) the mdluc
stiffness coefficient$ K, ) are defined in [14,15].



The kinetic energy, the strain energy and thekwal
external forces are calculated using the previdrens
displacement relationships, sectional effectivdfrsss
matrix, and external forces. By substituting thoséues
into the "Hamilton’s Principle", the "Governing $gs of
Equations" can be obtained. The "Rotating Thin-Adhll
Composite Box Beam Theory" produces a linear
relationship between the section structural loaud the
strain measures [15-17]. Then,

"Hamilton’s Principle" and "Variational Formulatign

f’2

f (6T — 6V + 6W)dt =
tl

at t=t,t, ou,

(11)
= bu, = bw, =60, = 80, = ¢ =0

the kinetic energy of the system is,

5T = f f f pRSR  dndsdz (12)
and the potential energy of the system is,

oV = fffa 66 dndsdz (13)
=6 fSEZ f 0%z + 052852 + O'nzgmv] )dndeZ

0 C F=ln(k
and, the work of the external forces,

W = f (p, (2,080, (2, ) +(m, + b,)8(z,1))dz  (14)

Taking into account the present structural configjon
and model, the entire state of stress or rathet3kstem"
splits exactly into (i) flag twist/ vertical transverse shear

(v0,¢,9 ) respectively and (ii) extensidiateral bending

/ lateral transverse shéag, W, ) respectively.

The next step in the theoretical formulation t&s
consider the "Aerodynamic Model" as is done in the
following section.

"Incompressible Unsteady Flow" as " Aerodynamic
Modd"

In general,
viewpoints in aerodynamic modeling of aeroelagticit
problems. These viewpoints include such concepts as
steady flow, semi-steady flow and unsteady flow in
different flight regimes. The steady and quasydtea
flows contain errors in predicting the "flutter baary".
Consequently, it is better and more accurate tothee
unsteady flows to calculate the realistic aeromlast
behavior and response. The "Aerodynamic Strip M#tho
based on "Wagner Function" in "Unsteady Incomphéssi
Flow" has been used to simulate incompressiblecadgt
aerodynamic effects in the "State Space" form. The

4)

there are three approaches as well as

"Wagner Function" based aerodynamic models proaide
efficient, general, and convenient approach to rilesc¢he
incompressible unsteady flows. In fact, for the
incompressible unsteady flows the formulation based
"Wagner Function" is much simpler than other
formulations (such as the "Doublet Lattice Method")
Aforementioned method is much suitable for the
"aeroelastic response"” and “flutter analysis". The

"Unsteady Aerodynamic Lift and Pitching Moment, (

and T, )" about the reference axes, based on the "Strip

Theory" in "Aerodynamics of Incompressible Unstiead
Flow" are expressed as in [18,19],

La,e(z? t) = _ﬂ—poon[w()ﬁc(zv t)] -
Ut
w0.756(z7 t)(¢w)( g ) + (15)
2mp b X1 t
o dw, t U
[zl ) oo gy, +
0 t b
1. . _ (16)
T (2,1) = —WpoobS[E U,p — U, a¢p + aij, +b(= + a®)¢] —
Ut
)1 Wo 750(2: 1) (B, ( [;L )+
27p U b*(= + a) x 1 ¢
= 2 dw . 5c(t ) Un,
SR oy +

where 'U " is the free stream velocity normal to the

leading edge of the blade (z,t) denotes the plunging
displacement of the points on the reference axid an
6|2 1t) defines the pitching about this axis at each point.

Also "w, - ." and "W, ,;." are the downwash at the mid-

chord and three quarter chord of the blade afg"is

"Wagner's Function”. In order to expreds, and T in

the “"state space" form, the quasi-polynomial
approximation of Wagner's function is used,

"Wagner Functio(lqsw ) " is approximately given by [20]:

(@, )(T) =1—ce " —ce ™ 17)
and the constants are,

¢, = 0.165, ¢, = 0.335, ¢ = 0.0455, &, = 0.3

In the other word,

(¢,)(7) = 1*204 exp(—3;7) | H(T) (18)




where, the two aerodynamic lag terms are useddoh e
"Wagner Function". For instance, =2 and as a result,
there are, totally, 2 aerodynamic lag terms in the
description of the 2-D unsteady aerodynamic loadhé
incompressible flow. Also, in the above Eq.(18)()" is

the definition of the unite step function. Also, &bove

. t, . ) . . .
equations, T = —2" is a dimensionless quantity. Using

the notation of Ref. [15,16] and denoting the failog
expressions,

t
dw, .- (1 U
[ Bozselo) 3 Bo s~y yat, = Diat) 19)
)ty b
where D’s are given as,
D, (2,t) = wy s (2,) — ZaB (2,t) (20

Finally, based on these equations, the expliciresgions
of "Unsteady Aerodynamic Lift L, (zt)" and the

"Unsteady Aerodynamic Pitching Moment (z,t) are

given below in Eq.(21) and Eq.(22), respectivelyus,

L (zt) = —mp U b*[i, — Uné + bag)]

~CLup UMy U6, +bad =2 -1d)

—Za B (2,1)]

T,,(5t) = =7 B (S — 0,6 U6 +
LT 2)

adi, + b(— + a*)¢] — (5 +a)Cpp, U W[y — U, —

bcl

bqb——(——l EozB(zt

In the above equations, the quantitiés's have been
defined such that, they should satisfy the follayvget of
expressions in the following Eq.(23),

U )
bn )B; = 10 75.(%:¢)

B, + (8, (23)

GOVERNING SYSTEM EQUATIONS OF PRESENT
AEROELASTIC SYSTEM
In the present study, an anisotropic, "Rotatirgn-
Walled Composite Box Beam" is employed in order to
consider the effects of the fiber orientation amel fay-up
configuration on the "aeroelastic stability" ande th

(6)

dynamic response of a helicopter rotor blade in
incompressible flow. The kinetic energy, the strirergy,
and the work by external forces of the helicoptaior
blade structure, are calculated using strain -aligment
relations, the sectional effective stiffness matind the
external loads or forces. Thus, by simple substatd
aforementioned quantities into the "Hamilton's Eipte"
and making use of variational principles the twis € the
"Governing System of Equations" of the problem unde
study are obtained. Furthermore, the assumpticsmail
deformations and small strains theory results iinear
relationship between cross-section external loauds the
strain  measures. The present "Circumferentially
Asymmetric Stiffness (CAS)" [16-17] analytical mdde
takes into account various non — classical effsath as
the fiber orientation (or the material anisotropyhe
transverse shear strains, the warping inhibitiothefcross

— section, etc. The present "Rotating Thin — Walled
Composite Box Beam", by means of the "Hamilton's
Principle" and the variational calculus yield theot"sets"

of the "Governing System of Equations". The firset" is
elastically coupled by the "flaptwist/ vertical transverse

shear" or( vy, ¢, 0 )and the second "set" is elastically
coupled by the "extension lateral bending/ lateral
transverse shear"” céluo, w,, Hy). In this study, the second

"set", as usual, is not taken into account. Theaggus of
motion corresponding to the first "set" are of iatd for
the present problem. Then,

vy = 0:055(”8 + 9;:) + a56¢m + (Tzvé)’ + L, = b,
80, = 0:a430, + ag.0 —ag (v, +0,) — a0 =

(24)
(b + b14)(9 929 )
6¢ = 0: aﬁo(vg +0,) - a66¢”” + a739 + a77¢ +(T.0")
+ ( L 5)QQ¢ + T(w = (b4 +b5)¢ -

(bl[) + b18)((b.// - QQ¢U)

where the "Unsteady Aerodynamic Lft (zt)" and the

"Unsteady Aerodynamic Pitching Mome (z,)" are
expressed in Eqgs.(21) and (22) respectively. Clegal
forces appear in the flap and twist equations With"

and "I'" as centrifugal stiffening expressions,

respectively. T " plays the role of torsional stiffness

induced by the centrifugal force field. Also, the
corresponding "Boundary Conditions" at=0 from
Eq.(25) are,



v, =0, =¢ =0 also d%:gb':O (25)
and » = L yields the following:
6vy = 0:ag (v +0.,) — azsp + bQPR(z) =0
80, = 0:a5,0, + az;¢ =0
T 337z 37 (26)

op = 05%5(”8 +6,) — %6¢m + %6’; + a77¢' +
(b + big)d + BPR(2) 6" = 0

8¢ = 0:a5(vy +0,) — aged =0

whereT , T and R(z) are given as,

R() = Ry(L = 2)+ Y (I = 22),
T.(2,t) = bQ°R(2),

(27)
21 .
I:b4+b5’[m:—p7[h:p_
b b mb, + mt, * I}
T’,(Z7t) = Tzlph,

and Where< a; ) and (bi)and (mbo,mto ) in the above
Egs.(24), (26) and (27) are defined in [15-17].

NUMERICAL SOLUTION PROCEDURE

The "Numerical Method of Solution" employed hése
going to be briefly explained. In order to form thmass,
stiffnress and damping matrices of non-conservative
aeroelastic systems, the "Extended Galerkin’s Mektho
(EGM)" and the "Method of Separation of Variablegte
been used. After that, by transforming matrices itfite
form of "state space", an eigenvalue analysis feenb
developed. The real part of the eigenvalues repteshe
damping and the imaginary parts represent the ércyu
Therefore, by solving the resulting coupled linear
"Governing System of Dynamic Equations", the "#utt
and “divergence" speeds for various laminate
configurations with different geometric and materia
properties were obtained. Then, by solving the
aforementioned dynamic equations in the time dontha
aeroelastic responses of the composite helicomtr r
blade for different flight speed and angular velpdiave
been computed. The present numerical results were
compared with the same existing analytical results.

In order to solve this set of equations in Ef})(the
"Extended Galerkins Method (EGM)" is employed. For
this purpose, the aerodynamic and the structurdblas
have to be discretized through time. Hence, thenasd
mode shapes, are as follows,

(6)

(28)

in which wl " are the so-called "admissible functions”

which satisfy the "Geometric Boundary Condition§'the
problem. The "State Vector" or the column matrixiofe
dependent variables for the incompressible flodetned
as in the following,

T
_) . r T T T T T
{q}—{ql, G 6 G 9 qu}
After some manipulations, the "aeroelastic general
equation” are finally obtained, in terms of the elepment

of the mass, the stiffness and the damping majrsesh
that,

(M, + M, )i +(Cop)i + (K, + K,.)g = {0} (0

a

(29)

Where "M " and "M, " are the structural and

aerodynamic mass matrices arﬁa'; " is the aerodynamic

damping matrix and K, " and "K_, " are the structural

and aerodynamic stiffness matrices, respectively.
If the "state vector" is redefined as,

T
T . . .

{X}:{{Q} a4 q;:p} 31)

Then, the "state space" form of the dominant "Goivney

System of Equations" in Eq. (24) becomes,

. M, M) K+ K (0] 32

1] o of it

where[[] is the unit matrix an([io] is the zero matrix.

{x}+

The above "System" can be rewritten in a more @anp
"state vector" form, Then, the "Governing System of
Equations" is,

{X}=[a){x},
c. MM+MSV K, + K, [0]
~[1]

7] o] [0]

Now, to obtain the specific values related to tlp(E3),
the "Closed Form Solution" is assumed to be,
General solution (closed form),

{x}={x.}e" (34)

where {XO} is a constant vector and\" is a constant

(33)
4] - -

scalar, both of them being, in general, the complex



guantities. After inserting Eq.(34) into Eq.(33)het
following "Eigenvalue Problem" is obtained,

{AHX}=2{X,} (35)

In the above, Eq.(35) yields the eigenvalues aral th
corresponding  eigenvectors  (which are complex
guantities).

It is also important to note here that the "Goiy
System of Equations" is finally reduced or rather
converted into an "Eigenvalue Problem" in Eq. (35).

In Eq.(35), the real part of a particular eigaoe
indicates the damping value and the imaginary part
represents the frequency. Thus, by means of soliag
above equations in the time domain, the various
aeroelastic responses of the "Rotating Thin — \Wlalle
Composite Box Beam" (or rather the present rotadél
model) can be computed.

SOME NUMERICAL RESULTSAND VALIDATION
Validation of Incompressible Aero-Elastic Pattern
In this study, the Ref. [16] is used to evaludte

accuracy of the results of present aero-elastic
incompressible flow model. This investigation [16]
consists of aeroelastic instability of "Thin Walled

Composite Box Beam" in an incompressible flow. The
geometric and mechanical properties of the "Thirl&da
Composite Box Beam" are considered in Ref. [16]e Th
present numerical results are compared with thateesf
the analytical results from Ref. [16]. Hence, thgpection

of the results in Table. (1) provides the verifiocatof and
the validation of the present model considered his t
study.

Table.l. Comparison of the instability results of the cosip®
box beam § = —20°, Q=0

a Ref [16] Present work
Up(m [s) | wp(Hz) | Up(m/s) [ w;(Hz)
a= 100 3.59 102 3.54
a=-02 127 3.62 12¢ 3.56

Invedtigation of Aero-Elastic Model Response in
I ncompr essible Flow

In this section, the "aeroelastic model response" i
incompressible flow is investigated. The implicatiof
warping restraint and the transverse shear eff@ttthe
response are also considered. The geometric argtiatat
specifications of the "Rotating Thin-Walled Compesi
Box Beams" with CAS lay-up are listed in Tables42p
(3). Note that, in the actual implementation, tlrstf5
structural modes and 2 aerodynamic lag terms for
"Wagner Function" (see also Eq.(18)) are used, fine=

()

5, n=2). This rotor blade is capable of flying in
incompressible flow regime.

Figure. (4) illustrate the Flap and the Twist reses for
model helicopter rotor composite blade for

Q = 300rpm, U, = 80m / 5,% —0.07.

Table. 2. Rectangular Cross section
"Thin-Walled Composite Box Bea" (Geometric Specification

Geometric specification value

Width, 2w 0.23m

Depth, 2d 0.088 m

Wall thickness,h 0.012m

rotor blade chord 20 0.5m

Table. 3. Rectangular Cross Section
"Thin-Walled Composite Box Bea" (Material properties

Material specification value

By 206.8 (Gpa)

Eyy = Eg 5.17 (Gpa)

G12 = G13 31 (Gpa)

Gy 2.55 (Gpa)

M2 = H13 = Hag 0.25

p 1528 (kg/m)

Investigation of Rotor Blade Flap Response of
" Composite Helicopter Rotate Blade' Model on the

Basis of Fiber Orientation (o)Variation

In examining responses in incompressible fligigimes,
we investigated the effect of the fiber lay-up oe totor
blade flap response. Then, Figure. (5). have bkeitlsed
for the flap mode for fiber orientation
6=-20 -40 - 60 - 86. The flight forward speed and
rotor blade angular velocity of the present model a
"a" parameter have been considered for
U, =80m/s,Q=300mpm and a=0 respectively. The
longest time needed for the damping of the respoise
seen fod=-80°. The angle " changesfrom 8=0°

towards# =-80°, the blade flap response amplitude

increases and the response damping time increases
Investigation of Rotor Blade Flap Response of

" Composite Hdlicopter Rotate Blade' Model Based on

Distance Variation Between Aero-Dynamic Center and

Elastic Center (ab)

In real helicopter rotor blades, there existdistance
between the aerodynamic center and the elasticercent




which is marked with tb" magnitude in Figure.(1). This
distance has an important effect on the "aeroelasti
steadiness" of the rotor blades. Thus, Figures.(6).
illustrate  oscillations response for  coefficients
a =0.3,0,—0.3,—0.6 ,respectively. The forward velocity
and rotor blade angular velocity of the present eh@ahd
fiber  orientation have been considered for
U, =80m /s,Q = 300rpm and 8 = -2 respectively.

The more positive coefficientd" becomes the more
"flutter speed" increases, and consequently, ttor lade
can fly in high speed. With regards to Figure.(®r,the
flap mode, the response amplitude for= —0.6 is larger
than those oft = —0.3,0 and a = 0.3 and the response
full damping time also gets larger. In general,hwilhe
value "a" becoming more negative, the response
amplitude increases. Consequently, the damping time
oscillations becomes longer. This damping time ffap
mode is around seconds.

Investigation of Rotor
" Composite Helicopter Rotate Blade'
Forwar d speed (Un) Variations

Blade Flap Response of
Moded Based on

Figures.(7). illustrate the effects of differefdrward
speed on rotor blade flap responses. The flap nsgsofor
the forward speedsU, =40m/s,60m/s80nt : are
considered in Figure.(7). The fiber orientation antbr
blade angular velocity of the present model ar@l""
parameter have been considered for
6=-60",Q = 300pm anda =0 respectively.

As the forward velocity increases, the tip rotoadd flap
response amplitude decreases. Likewise, the tiredetke
for response damping also decreases in a way hieat t
time for U, =80m/sis around t =1sec. As for

U,=60m/sand U, =40m/s , this time continues to

increase.

Investigation of Rotor
" Composite Helicopter Rotate Blade"
Angular Veocity (Q) Variations

Blade Flap Response of
Model Based on

With regards to Figure.(8), for the flap modestFigure
illustrate the effects of different angular velgcan rotor
blade flap responses in fixed forward velocity. Tiep
responses for the angular velocity
Q=100pm, 200pm ,30@pm are considered in Figure.8.

The fiber orientation and rotor blade forward vélpof
the present model and &" parameter have been
considered for 8=-60U,=80n/s and a=0

respectively.
As the angular velocity increases, the tip rotoadbl
response amplitude for flap mode decreases. Fuortirer

©)

the time needed for response damping also decreases
way that this time folQ = 300pm is aroundt =1sec.

BRIEF CONCLUDING REMARKS

The present study investigates the behavior of a
"Rotating Thin-Walled Composite Box Beam" as the
helicopter rotor blade model made of compositeenielts
in an incompressible unsteady flow. To this endppoter
code has been developed to simulate the aeroeelasti
behavior of the rotor blade based on Librescu "®ua
Thin-Walled Composite Box Beam" structural modedl an
incompressible  aerodynamics based on “"Wagner
Function". A careful analysis of the numerical fesu
obtained from this software revealed that the diutt
frequency is zero for positive angles of fiber otaion
and has a certain value for negative angles. ThkEans
that "rotor blade unsteadiness" occurs in the fam
"divergence" for positive angles and in the form of
"flutter" for negative angles. Moreover, investigat of
rotor blade behavior for different beam modes shibthat
as the rotor blade core moves toward the wing ttip,
distance between the rotor blade aerodynamic cemigr

the elastic center increases andb" value becomes
highly positive. This leads to an increase in thetdr

blade steadiness" and the occurrence of the modes
response damping in shorter period of time.

REFERENCES
[1] I. H. Marshall and H. Demuts (Editors), 1998,

"Supportability of Composite Airframes and Aerostures”,
Elsevier Applied Science Punlishers, New York.

[2] D. H. Hodges, R. A. Ormiston, "Stability of Elic
Bending and Torsion of Uniform Cantilever Rotor @ain
Hover with Variable Structural Coupling”, NASA TN-D
8192, April, 1976.

[3] P. P. Friedmann, "Effect of Modified Aerodynantrip
Theories on Rotor Blade Aeroelastic Stability", AAJ
1977; 15(7):932-40.

[4] N. T. Sivaneri, I. Chopra, "Dynamic Stabilitf a Rotor
Blade Using Finite Element Analysis”, AIAA J
1982;20(5):716-23.

[5] C. H. Hong, I. Chopra, "Aeroelastic Stabilitynalysis of

a Composite Rotor Blade", J Am Helicopter Soc
1985;30(2):57-67.

[6] O. Rand, "Periodic Response of Thin-Walled Cosite
Helicopter Blades", J Am Helicopter Soc 1991;3&34)1.

[7] LW. Rehfield, "Design analysis Methodology for
Composite Rotor Blades", Proceedings of the Seventh
DOD/NASA Conference on Fibrous Composites in Strradt
Design, AFWAL-TR-85-3094, June 1985, pp. 1-15.

[8] L.W. Rehfield, A.R. Atilgan, D.H. Hodges, "Nolassical
Behavior of Thin-Walled Composite Beams with Closed
Cross Sections", Proceedings of the American Hel@o
Society National Technical Specialists Meeting: Adeed
Rotorcraft Structures,Williamsburg, VA, October 89&p.



42-50

[9] R. Chandra, I. Chopra, "Experimental-Theordtica
Investigation of the Vibration Characteristics obt&ing
Composite Box Beams", Journal of Aircr&® (4) (1992)
657-664

[10] E. C. Smith, I. Chopra, "Aeroelastic Respoasd Blade
Loads of a Composite Rotor in Forward Flight",
In:Proceedings of AIAA/ASMEASCE/AHS/ACS 3%
Structures, Structural Dynamics and Materials Cranfee.
Dallas, Texas]992, P. 199014

[11] O. Song, L. Librescu, S.Y. Oh, "Vibration ofddwisted
Adaptive Rotating Blades Modeled as Anisotropic nFhi
Walled Beams", AIAA Journa9 (2) (2001) 285295

[12] L. Librescu, O Song, 1991;Behavior of Thin-Walled
Beams Made of Advanced Composite Materials and
Incorporating Non-Classical Effects” Appl Mech R&99];
44(11):S17480. Par2

[13] O. Song 1990, "Modeling and Response Analysis of
Thin-Walled Beam Structure Constructed of Advanced
Composite Materials" PhD Thesis, Virginia Polyteichn
Institute and State University.

0.03

Flap Mode Response

0.02

0.01

-0.01

Dimensionless rotor blade Flap response

b b b b b b b b b
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

time (s)

-0.02

0 1

[14] Z. Qin, L. Librescy 2003, "Dynamic Aeroelastic
Response of Aircraft Wing Modeled as AnisotropicinFh
Walled Beams", J Aircraft 20030(3).

[15] Z. Qin, 2001,"Vibration and Aeroelasticity of Advanced
Aircraft Wing Modeled as Thin-Walled Beams — Dynasji
Stability and Control", PhD Thesis, Virginia Polgtmic
Institute and State University.

[16] H. Haddadpour, M. A. Kouchakzadeh , F. Shadmeh
2008 "Aeroelastic Instability of Aircraft Composite Wiadn
an Incompressible Flow" J. of composite struc&Be pp 93
90.

[17] L. Librescu, O Song, 2006;Thin Walled Composite
Beam", Springer, Dordrechthe Netherlands, 2006

[18] EH. Dowell, EF, Crawley, HC Curtiss, DA, PeteRH,
Scanlan, F. Sisto 1995, "A Modern Course in
Aeroelasticity”, Kluwer Academic Publisher.

[19] J.G. Leishman, "Unsteady aerodynamics", iimdtples
of Helicopter AerodynamicsCh. 8, Cambridge Univetsi
Press, Cambridg&/K, 2000, pp. 302377.

[20] R.L. Bisplinghoff, H. Ashley, R.L. "Halfman,
Aeroelasticity", Dover Publication®lew York, 1996.

0.003

Twist Mode Response
0.002

0.001

-0.001

-0.002

-0.003

Dimensionless rotor blade Twist response

-0.004

0.1 0.2 0.3 0.4 0.5

time (s)

0.6 0.7 0.8 0.9 1
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Figure. 5. Rotor blade fla response for the variation of fiber ang
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0.03
—— e - a= 03
———-- a= 00
0.02 — — —-a=-03
a=-0.6

0.01

-0.01

Dimensionless blade tip deflection (Flap) v/L

IoYs ) NI INE I MAEE WA W N N S S N
) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time (s)
Figure. 6. Rotor blad flap response for the offset betweaerodynamic cent and theelastic center fc
0 =—20°,Q = 300rpm,U, =80m /s

(10)



Un=40m/s
J — — — - Un=60m/s
coo2g W A | Do Un=80m/s

Dimensionless blade tip deflection (Flap) v/L

NS NEEEE NN NS RS NS NN SR N N
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time (s)

O[T
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