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ABSTRACT
In this study, the composite helicopter rotor blade is modeled as an "Elastic Cantilevered Rotating Thin-Walled Composite 
Box Beam " with angular velocity �Ω� and forward flight speed ����. The present "Circumferentially Asymmetric Stiffness 
(CAS)" structural model takes into account a group of non-classical effects; such as the transverse shear, the material 
anisotropy, warping inhibition, etc. The "Aerodynamic Strip Method" based on "Wagner Function" in unsteady 
incompressible flow are used to simulate incompressible unsteady aerodynamic effects. As a result, the "Extended Galerkin’s 
Method (EGM)" and the "Separation of Variables Method" are used to obtain the coupled and linear "Governing System of 
Dynamic Equations". Solving the aforementioned equations of motion in the time domain, the aeroelastic responses of the 
"Composite Rotor Blade" can be computed. The present numerical results were compared and are verified with existing 
results in the literature. Based on these, some important conclusions are presented.  
 

INTRODUCTION AND BRIEF REVIEW 
 The aeroelastic analysis to predict the characteristics of 
rotorcraft systems is very important in the aerodynamic 
and structural design of composite helicopter blades. More 
recently, the "Advanced Composites" are increasingly 
being used in rotorcraft blades and structures due to their 
favorable characteristics [1]. Nowadays, more than %40 of 
the latest rotorcraft structures is made of various types of 
"Advanced Composites". The so-called "Advanced 
Composites" generally exhibit certain advantageous 
properties such as high strength, effective stiffness, light-
deadweight, high resistance to sonic and other dynamic 
fatigue – fracture, reduced vibrational response, increased 
aerodynamic and structural stability and flight safety. The 
fiber orientations in the material layers of these 
composites can be used to provide the desired elastic lay-
up with the right material and stiffness properties. 
   The investigation of the aeroelastic stability is extremely 
important from the design and operational point of view of 
rotor blades. The aeroelastic response problem which 
represents the blade free and forced (under aerodynamic 
and other loads) vibration responses is critical in the safety 
and air – worthiness of flight vehicle systems.  
   Most of the structural dynamic models for the rotor 
blades are moderate deflection-type beam theories that are 
based on ordering schemes and are valid for moderate 
deflections. These models have frequently been applied to 
the aeroelastic stability and response analysis for isotropic 
[2-4] and composite hingeless rotor blades [5,6]. 

   Numerous researches have been conducted on rotating 
composite thin-walled beams. Rehfield [7] studied the 
design analysis methodology of a thin-walled beam for 
composite rotor blades. Rehfield et al. [8] discussed the 
non-classical behavior of thin-walled composite beams 
with closed cross sections. Chandra and Chopra [9] 
investigated the vibration characteristics of rotating 
composite box beams by experiment and theoretical 
methods. Smith and Chopra [10] researched the aeroelastic 
response, loads and stability of a composite thin walled 
beam. In the case of the rotating beam, Song et al. [11] 
researched the vibration of rotating blades modeled as 
anisotropic thin-walled beams containing piezoelectric 
materials through the proportional control law and velocity 
control law. In the past few years, a number of analytical 
models of anisotropic "Thin-Walled Composite Box 
Beams" have been proposed in the world-wide literature 
and they are analyzed either numerically or 
experimentally. One of them, a refined "Thin-Walled 
Composite Box Beam" theory developed by Librescu and 
Song [12] and Song [13] has been extensively used for the 
study of the free vibrations, Furthermore, Qin and 
Librescu [14] and Qin [15] have investigated the "dynamic 
aeroelastic response of aircraft wings" modeled as 
anisotropic "Thin-Walled Composite Box Beams" exposed 
to gust and blast loads. Haddadpour and Shadmehri [16] 
have investigated the effect of the offset between the 
reference axis and the mid-chord on aeroelastic stability of 
composite wings in an incompressible flow. 
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THEORETICAL ANALYSIS AND FORMULATION 
   "Rotating Thin-Walled Composite Box Beam" as 
"Structural Model" 
   The analysis of rotating blade structures is more 
complex than that of their nonrotating counterparts. In the 
rotating case, in addition to the accelerations resulting 
from elastic structural deformations, the centrifugal and 
coriolis accelerations have to be included in the modeling. 
   Here in this present study, the structural model is similar 
to those developed in Ref. [16, 17].  
   Inertial reference coordinate ( , , )X Y Z is attached to the 
hub centre, while two other coordinate systems exist
( , , )x y z as a local coordinate associated with the blade 

and ( , , )n s z used to define complex cross-section profiles 
(Figure. (1), (2) and (3)). 
Let ( , , )x y z be a fixed Cartesian coordinate system with 
the outward z-direction parallel to the longitudinal axis of 
the "Rotating Thin-Walled Composite Box Beam" as 
shown in Figures.(1) and (2). The thickness, along its 
contour of the "Composite Box Beam", is assumed to be 
constant "h " as given in the same Figures.(1) and (2).  
The angular velocity is also assumed to be constant and is 
directed in the ( )X Z− -plane (Figure. (3)). The position 

vector "R " of a point in a deformed rotating beam, 
measured from the centre of the hub, can be expressed as 
[17],  
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Considering angular velocity �Ω�  and Eq. (1), "Rɺ " and  
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"
0
R " and "

u
R " are the hub radius and the undeformed  

position vector of a beam point, respectively, and "∆" 
represents the displacement vector, whose components are 
defined in Eq.(3).  
A "Rotating Composite Thin-Walled Box Beam" with a 

length of " L ", thickness of " h " , and hub radius of "0R " 

is considered in Figure. (2) and (3). 
 
 
 
 

 
 

 

 

 

 
 

 
 

Figure. 1. Symbolic Rotor blade and "Thin-Walled 
Composite Box Beam" Configuration (Aerodynamic and 

Structural Coordinates) 
 

 

   

 

 

 

 

Figure. 2. "Thin-Walled Composite Box Beam" (Fiber Lay-
up and "Circumferentially Asymmetric Stiffness (CAS)" 

Configuration) (Adopted from Librescu [17]) 

 
Figure. 3. Schematic description of the rotate blade structure 
simulated by "Rotating Thin-Walled Composite Beam" and 

its cross-section 
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    In addition to the global ( , , )x y z coordinate system, a 

local one ( , , )n s z is introduced, where "n"  and "s"  are 
the normal and tangential directions to the contour, of the 
"Rotating Thin-Walled Composite  Box Beam" 
respectively (see also Figures. (2)). The present structural 
model of the "Rotating Thin-Walled Composite Box 
Beam" includes some non-classical effects such as 
material anisotropy, transverse shear, primary and 
secondary warping inhibition, nonuniform torsional model 
and rotary moment of inertia [15-17]. Also, 
"Circumferentially Asymmetric Stiffness (CAS)" method 
[16, 17] is chosen among various lay-up methods in order 
to obtain an appropriate coupling for the rotor blade 
structural performance. This ply-angle configuration, 
achievable via the usual filament winding technology, 
results in an exact decoupling between the extension - 
twist, on one hand, and the flap – shear elastic coupling, 
on the other hand. 

The 3-D displacement quantities ( ), ,u v w are assumed to 

be, 
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In the above Eqs.(3) and (4), ( )0 0 0
( , ), ( , ), ( , )u z t v z t w z t  

are the medium surface displacements in the "Rotating 
Thin-Walled Box Beam" in ( , , )x y z  directions, 

respectively. Similarly, ( )( , ), ( , ), ( , )
x y
z t z t z tθ θ φ  are the 

three rotations in ( , , )x y z  directions, respectively. 

Additionally, ( )( , ), ( , )
zy xz
z t z tγ γ represent the transverse 

shear strains. The other quantities in Eqs.(3) and (4) are as 
follows: 
The primary "Warping Function (

w
F )" is expressed as, 
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The strains contributing to the potential energy and 
kinematic energy are, 
 
spanwise strains, 
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where 0 0,
zz sz
ε γ are the normal strain and the shear strain 

components, respectively on the mid-surface of the "Thin-
Walled Box Beam".  
The stress resultants "̀N s " and stress couples "̀Ls " can 
be reduced to the following expressions: 
The stress resultants " `N s ": 
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The stress resultants moments " L̀ s ", 
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   In the above expressions.(9) and (10)  the reduced 

stiffness coefficients ( )ijK  are defined in [14,15]. 
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   The kinetic energy, the strain energy and the work of 
external forces are calculated using the previous strain-
displacement relationships, sectional effective stiffness 
matrix, and external forces. By substituting those values 
into the "Hamilton’s Principle", the "Governing System of 
Equations" can be obtained. The "Rotating Thin-Walled 
Composite Box Beam Theory" produces a linear 
relationship between the section structural loads and the 
strain measures [15-17]. Then, 
"Hamilton`s Principle" and "Variational Formulation", 
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the kinetic energy of the system is, 
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and the potential energy of the system is, 
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and, the work of the external forces,
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Taking into account the present structural configuration 
and model, the entire state of stress or rather the "System" 
splits exactly into (i) flap / twist / vertical transverse shear 

( )0
, ,

x
v φ θ , respectively and (ii) extension / lateral bending 

/ lateral transverse shear( )0 0
, ,

y
u w θ , respectively. 

   The next step in the theoretical formulation is to 
consider the "Aerodynamic Model" as is done in the 
following section. 
 
   "Incompressible Unsteady Flow" as "Aerodynamic 
Model" 
   In general, there are three approaches as well as 
viewpoints in aerodynamic modeling of aeroelasticity 
problems. These viewpoints include such concepts as 
steady flow, semi-steady flow and unsteady flow in 
different flight regimes. The steady and quasy-steady 
flows contain errors in predicting the "flutter boundary". 
Consequently, it is better and more accurate to use the 
unsteady flows to calculate the realistic aeroelastic 
behavior and response. The "Aerodynamic Strip Method" 
based on "Wagner Function" in "Unsteady Incompressible 
Flow" has been used to simulate incompressible unsteady 
aerodynamic effects in the "State Space" form.  The 

"Wagner Function" based aerodynamic models provide an 
efficient, general, and convenient approach to describe the 
incompressible unsteady flows. In fact, for the  
incompressible unsteady flows the formulation based on 
"Wagner Function" is much simpler than other 
formulations (such as the "Doublet Lattice Method"). 
Aforementioned method is much suitable for the 
"aeroelastic response" and "flutter analysis". The 

"Unsteady Aerodynamic Lift and Pitching Moment (aeL   
and aeT )" about the reference axes, based on the "Strip 

Theory" in "Aerodynamics of  Incompressible Unsteady 
Flow" are expressed as in [18,19], 
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where "
n
U " is the free stream velocity normal to the 

leading edge of the blade, ( )0
,v z t  denotes the plunging 

displacement of the points on the reference axis and 

( ),z tφ defines the pitching about this axis at each point. 

Also " 0.5c
w " and " 0.75cw " are the downwash at the mid-

chord and three quarter chord of the blade and "w
φ " is 

"Wagner’s Function". In order to express aeL  and 
aeT in 

the "state space" form, the quasi-polynomial 
approximation of Wagner’s function is used, 
"Wagner Function( )wφ " is approximately given by [20]: 
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where, the two aerodynamic lag terms are used for each 
"Wagner Function". For instance, 2n=  and as a result, 
there are, totally, 2 aerodynamic lag terms in the 
description of the 2-D unsteady aerodynamic loads in the 
incompressible flow. Also, in the above Eq.(18), "( )H τ " is 
the definition of the unite step function. Also, in above 

equations, " nU t

b
τ = " is a dimensionless quantity. Using 

the notation of Ref. [15,16] and denoting the following 
expressions, 
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Finally, based on these equations, the explicit expressions 

of "Unsteady Aerodynamic Lift ( ),ae
L z t " and the 

"Unsteady Aerodynamic Pitching Moment ( ),ae
T z t " are 

given below in Eq.(21) and Eq.(22), respectively. Thus, 
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In the above equations, the quantities ̀B s have been 
defined such that, they should satisfy the following set of 
expressions in the following Eq.(23), 

0.75( ) ( , )n
i i i c

U
B B w z t

b
β+ =ɺ ɺ

 
 

GOVERNING SYSTEM EQUATIONS OF PRESENT 
AEROELASTIC SYSTEM 

   In the present study, an anisotropic, "Rotating Thin- 
Walled Composite Box Beam" is employed in order to 
consider the effects of the fiber orientation and the lay-up 
configuration on the "aeroelastic stability" and the 

dynamic response of a helicopter rotor blade in  
incompressible flow. The kinetic energy, the strain energy, 
and the work by external forces of the helicopter rotor 
blade structure, are calculated using strain – displacement 
relations, the sectional effective stiffness matrix and the 
external loads or forces. Thus, by simple substation of 
aforementioned quantities into the "Hamilton`s Principle" 
and making use of variational principles the two sets of the 
"Governing System of Equations" of the problem under 
study are obtained. Furthermore, the assumption of small 
deformations and small strains theory results in a linear 
relationship between cross-section external loads and the 
strain measures. The present "Circumferentially 
Asymmetric Stiffness (CAS)" [16-17] analytical model 
takes into account various non – classical effects such as 
the fiber orientation (or the material anisotropy), the 
transverse shear strains, the warping inhibition of the cross 
– section, etc. The present "Rotating Thin – Walled 
Composite Box Beam", by means of the "Hamilton`s 
Principle" and the variational calculus yield the two "sets" 
of the "Governing System of Equations". The first "set" is 
elastically coupled by the "flap / twist / vertical transverse 

shear" or ( )0
, ,

x
v φ θ and the second "set" is elastically 

coupled by the "extension / lateral bending / lateral 

transverse shear" or ( )0 0
, ,

y
u w θ . In this study, the second 

"set", as usual, is not taken into account. The equations of 
motion corresponding to the first "set" are of interest for 
the present problem. Then, 
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where the "Unsteady Aerodynamic Lift ( ),ae
L z t " and the 

"Unsteady Aerodynamic Pitching Moment ( ),ae
T z t " are 

expressed in Eqs.(21) and (22) respectively. Centrifugal 

forces appear in the flap and twist equations With "
z
T " 

and "
r
T " as centrifugal stiffening expressions, 

respectively. "
r
T " plays the role of torsional stiffness 

induced by the centrifugal force field. Also, the 
corresponding "Boundary Conditions" at 0z=  from 
Eq.(25) are, 
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= Ω

= + = =
+
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and where ( )ija and ( )ib and ( )0 0,mb mt in the above 

Eqs.(24), (26) and (27) are defined in [15-17]. 
 

NUMERICAL SOLUTION PROCEDURE 
   The "Numerical Method of Solution" employed here is 
going to be briefly explained. In order to form the mass, 
stiffness and damping matrices of non-conservative 
aeroelastic systems, the "Extended Galerkin’s Method 
(EGM)" and the "Method of Separation of Variables" have 
been used. After that, by transforming matrices into the 
form of "state space", an eigenvalue analysis has been 
developed. The real part of the eigenvalues represents the 
damping and the imaginary parts represent the frequency. 
Therefore, by solving the resulting coupled linear 
"Governing System of Dynamic Equations", the "flutter" 
and "divergence" speeds for various laminate 
configurations with different geometric and material 
properties were obtained. Then, by solving the 
aforementioned dynamic equations in the time domain, the 
aeroelastic responses of the composite helicopter rotor 
blade for different flight speed and angular velocity have 
been computed. The present numerical results were 
compared with the same existing analytical results. 
   In order to solve this set of equations in Eq. (24) the 
"Extended Galerkin`s Method (EGM)" is employed. For 
this purpose, the aerodynamic and the structural variables 
have to be discretized through time. Hence, the assumed 
mode shapes, are as follows, 
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in which " iψ " are the so-called "admissible functions" 

which satisfy the "Geometric Boundary Conditions" of the 
problem. The "State Vector" or the column matrix of time 
dependent variables for the incompressible flow is defined 
as in the following,  

{ } { }
1 2 3

T
T T T T T T
v x B B B

q q q q q q qφ=  

After some manipulations, the "aeroelastic general 
equation" are finally obtained, in terms of the development 
of the mass, the stiffness and the damping matrices, such 
that, 

{ }( ) ( ) ( ) 0s ae ae s aeM M q C q K K q+ + + + =ɺɺ ɺ  

Where " sM " and " aeM " are the structural and 

aerodynamic mass matrices and "aeC " is the aerodynamic 

damping matrix and " sK " and " aeK " are the structural 

and aerodynamic stiffness matrices, respectively. 
If the "state vector" is redefined as,  

{ } { }{ }
T

T T T T
v xX q q q qφ= ɺ ɺ ɺ  

Then, the "state space" form of the dominant "Governing 
System of Equations" in Eq. (24) becomes, 
 

{ } { } { }
0

0
0 0

ae ae s ae s
C M M K K

X X
I I

     + +     + =          −             

ɺ  

where I    is the unit matrix and 0    is the zero matrix. 

 The above "System" can be rewritten in a more compact 
"state vector" form, Then, the "Governing System of 
Equations" is, 

{ } { }
1

,

0

0 0
ae ae s ae s

X A X

C M M K K
A

I I

−

 =  
     + +       = −            −             

ɺ

 

 
Now, to obtain the specific values related to the Eq.(33), 
the "Closed Form Solution" is assumed to be, 
General solution (closed form), 

{ } { }0X X eλτ=  

where { }0X  
is a constant vector and "λ " is a constant 

scalar, both of them being, in general, the complex 
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quantities. After inserting Eq.(34) into Eq.(33), the 
following "Eigenvalue Problem" is obtained, 

{ }{ } { }0 0A X Xλ=
 

In the above, Eq.(35) yields the eigenvalues and the 
corresponding eigenvectors (which are complex 
quantities). 
   It is also important to note here that the "Governing 
System of Equations" is finally reduced or rather 
converted into an "Eigenvalue Problem" in Eq. (35).  
   In Eq.(35), the real part of a particular eigenvalue 
indicates the damping value and the imaginary part 
represents the frequency. Thus, by means of solving the 
above equations in the time domain, the various 
aeroelastic responses of the "Rotating Thin – Walled 
Composite Box Beam" (or rather the present rotor blade 
model) can be computed.  
 

SOME NUMERICAL RESULTS AND VALIDATION 
   Validation of  Incompressible Aero-Elastic Pattern 
   In this study, the Ref. [16] is used to evaluate the 
accuracy of the results of present aero-elastic 
incompressible flow model. This investigation [16] 
consists of aeroelastic instability of "Thin Walled 
Composite Box Beam" in an incompressible flow. The 
geometric and mechanical properties of the "Thin Walled 
Composite Box Beam" are considered in Ref. [16]. The 
present numerical results are compared with the results of 
the analytical results from Ref. [16]. Hence, the inspection 
of the results in Table. (1) provides the verification of and 
the validation of the present model considered in this 
study.  
 

Table.1 . Comparison of the instability results of the composite 

box beam
  

020 , 0θ=− Ω=  

Present work  Ref [16] a 
( )fw Hz

 
( / )FU m s ( )f Hzω ( / )FU m s 

3.54 102 3.59 100 a = 0 

3.56 128 3.62 127 a = - 0.2 

 
    

   Investigation of Aero-Elastic Model Response in 
Incompressible Flow 
   In this section, the "aeroelastic model response" in  
incompressible flow is investigated. The implication of 
warping restraint and the transverse shear effects on the 
response are also considered. The geometric and material 
specifications of the "Rotating Thin-Walled Composite 
Box Beams" with CAS lay-up are listed in Tables.(2) and 
(3). Note that, in the actual implementation, the first 5 
structural modes and 2 aerodynamic lag terms for 
"Wagner Function" (see also Eq.(18)) are used, (i.e., m = 

5, n=2). This rotor blade is capable of flying in 
incompressible flow regime.   
Figure. (4) illustrate the Flap and the Twist responses for 
model helicopter rotor composite blade for 

300 , 80 / , 0.07
n

c
rpm U m s

R
Ω = = = . 

 

 

 
    

 
   Investigation of Rotor Blade Flap Response of 
"Composite Helicopter Rotate Blade" Model on the 
Basis of Fiber Orientation ( )θ Variation 

   In examining responses in incompressible flight regimes, 
we investigated the effect of the fiber lay-up on the rotor 
blade flap response. Then, Figure. (5). have been sketched 
for the flap mode for fiber orientation

0 0 0 020 , 40 , 60 , 80θ = − − − − . The flight forward speed and 
rotor blade angular velocity of the present model and  
" a " parameter have been considered for 

80 / , 300nU m s rpm= Ω =  and 0a =  respectively. The 
longest time needed for the damping of the responses is 

seen for 080θ = − . The angle "θ " changes from 00θ =  

towards 080θ = − , the blade flap response amplitude 
increases and the response damping time increases.  
   Investigation of Rotor Blade Flap Response of 
"Composite Helicopter Rotate Blade" Model Based on 
Distance Variation Between Aero-Dynamic Center and 
Elastic Center ( )ab     

   In real helicopter rotor blades, there exists a distance 
between the aerodynamic center and the elastic center 

Table. 2. Rectangular Cross section  
"Thin-Walled Composite Box Beam" (Geometric Specifications) 

Geometric specification value 
Width, 2w 0.23 m 

Depth, 2d 
0.088 m 

Wall thickness, h 
0.012 m 

rotor blade chord, 2b 0.5 m 

Table. 3. Rectangular Cross Section  
"Thin-Walled Composite Box Beam" (Material properties) 

Material specification value 

11E 206.8 (Gpa) 

22 33E E= 
 5.17 (Gpa) 

12 13G G=
 

3.1 (Gpa) 

23G 
2.55 (Gpa) 

12 13 23µ µ µ= =
 0.25 

ρ
 1528 (kg/m3) 
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which is marked with "ab " magnitude in Figure.(1). This 
distance has an important effect on the "aeroelastic 
steadiness" of the rotor blades. Thus, Figures.(6).  
illustrate oscillations response for coefficients
0.3,0, 0.3, 0.6a = − − ,respectively. The forward velocity  

and rotor blade angular velocity of the present model and 
fiber orientation have been considered for 

80 / , 300nU m s rpm= Ω =  and 020θ = −  respectively. 

   The more positive coefficient "a " becomes the more 
"flutter speed" increases, and consequently, the rotor blade 
can fly in high speed. With regards to Figure.(6) , for the 
flap mode, the response amplitude for 0.6a =−  is larger 
than those of 0.3,0a =−  and 0.3a =  and the response 
full damping time also gets larger. In general, with the 
value "a " becoming more negative, the response 
amplitude increases. Consequently, the damping time of 
oscillations becomes longer. This damping time for flap 
mode is around 1 seconds.  
   Investigation of Rotor Blade Flap Response of 
"Composite Helicopter Rotate Blade" Model Based on 
Forward speed ( )nU  Variations 

   Figures.(7). illustrate the effects of different forward 
speed on rotor blade flap responses. The flap responses for 
the forward speeds 40 / ,60 / ,80 /nU m s m s m s=  are 
considered in Figure.(7). The fiber orientation and rotor 
blade angular velocity of the present model and "a " 
parameter have been considered for 

060 , 300rpmθ = − Ω =  and 0a =  respectively.  
As the forward velocity increases, the tip rotor blade flap 
response amplitude decreases. Likewise, the time needed 
for response damping also decreases in a way that this 
time for 80 /nU m s= is around 1sect = . As for 

60 /nU m s= and 40 /nU m s=  , this time continues to 
increase.  
   Investigation of Rotor Blade Flap Response of 
"Composite Helicopter Rotate Blade" Model Based on 
Angular Velocity ( )Ω  Variations 

   With regards to Figure.(8), for the flap mode, this Figure   
illustrate the effects of different angular velocity on rotor 
blade flap responses in fixed forward velocity. The flap 
responses for the angular velocity 

100 ,200 ,300rpm rpm rpmΩ =  are considered in Figure.8. 
The fiber orientation and rotor blade forward velocity of 
the present model and "a " parameter have been 

considered for 060 , 80 /nU m sθ = − =  and 0a =  
respectively.       
As the angular velocity increases, the tip rotor blade 
response amplitude for flap mode decreases. Furthermore, 

the time needed for response damping also decreases in a 
way that this time for 300rpmΩ = is around 1sect = .  

BRIEF CONCLUDING REMARKS 
   The present study investigates the behavior of a 
"Rotating Thin-Walled Composite Box Beam" as the 
helicopter rotor blade  model made of composite materials 
in an incompressible unsteady flow. To this end, computer 
code has been developed to simulate the aero-elastic 
behavior of the rotor blade based on Librescu "Rotating 
Thin-Walled Composite Box Beam" structural model and 
incompressible aerodynamics based on "Wagner 
Function". A careful analysis of the numerical results 
obtained from this software revealed that the flutter 
frequency is zero for positive angles of fiber orientation 
and has a certain value for negative angles. This means 
that "rotor blade unsteadiness" occurs in the form of 
"divergence" for positive angles and in the form of 
"flutter" for negative angles. Moreover, investigation of 
rotor blade behavior for different beam modes showed that 
as the rotor blade core moves toward the wing tip, the 
distance between the rotor blade aerodynamic center and 

the elastic center increases and "ab " value becomes 
highly positive. This leads to an increase in the "rotor 
blade  steadiness" and the occurrence of the modes 
response damping in shorter period of time.  
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Figure. 4. Rotor blade Flap and Twist response for 060 , 300 , 80 / , 0
n

rpm U m s aθ =− Ω = = =  
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Figure. 6. Rotor blade flap response for the offset between aerodynamic center and the elastic center for 

  
020 , 300 , 80 /

n
rpmU m sθ =− Ω= =

 
 

Figure. 5. Rotor blade flap response for the variation of fiber angles  

for 0 0 0 020 , 40 , 60 , 80θ =− − − −   and 300 , 80 / , 0
n

rpmU m s aΩ= = =  
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Figure. 7. Rotor blade flap response for different forward flight speed  

for 060 , 300 , 0rpm aθ =− Ω= =  
 

Figure. 8. Rotor blade flap response for different rotor angular velocity  

for 100 ,200 ,300rpm rpm rpmΩ=  and  
060 , 80 / , 0

n
U m s aθ=− = =  
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