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Abstract 
Rotor blade feathering moments caused by the 
gyroscopic forces acting during helicopter pitching and 
rolling motions are identified.  The consequent blade 
elastic feathering motion incurred by these moments are 
shown to give rise to blade flapping which reduces the 
pitch/roll cross-coupling due to the aerodynamic effects 
of pitch and roll motions.   For blades of low feathering 
stiffness this reduction is considerable.  Inclusion of this 
effect into rotor analysis can account for much of the 
difference between calculated cross-coupling and 
observed flight behaviour.  This suggests that ‘dynamic 
inflow’ or other effects introduced to explain these 
discrepancies, should be re-evaluated. 
 
The ‘Bell Bar’ rotor system is reviewed and it is shown 
that the stabiliser bar may be considered as an extension 
of the rotor blade, and gyroscopic feathering moments 
are a fundamental reason for its operation as a beneficial 
influence on helicopter flight behaviour. 
 
Notation 
 
a0 blade aerofoil lift-curve slope = dCL/d α 
c blade chord 
CL  lift coefficient 
CT rotor thrust coefficient = T/ ½ ρ (ΩR)2 π R2 
Dθ damping about feathering axis 
Dθ crit = 2λ θ; critical value of damping about 

feathering axis 
Iβ blade inertia about flapping hinge 
Iθ blade inertia about feathering hinge 
Kβ  spring stiffness about flapping hinge 
Kθ  spring stiffness about feathering axis 
L(r) blade lift on at radius r, per unit length 
Mext(r) ‘extraneous’ pitching moment on blade at 

radius r, per unit length 
nβ blade flap inertia no. = ratio of aerodynamic to 

inertial flap forces, (= Lock no./ 8) 
p, q        aircraft roll rate (+ve port up),  pitch rate (+ve 

nose up) 
p*, q* aircraft roll, pitch rate normalised by  Ω   
r radius of blade element 
R rotor tip radius 
Sβ blade stiffness number = ratio of elastic to 

aerodynamic flap forces  

t time 
T rotor thrust 
vi  induced velocity at rotor disc 
 
α(r) incidence of blade aerofoil section 
β(ψ) = β0 + β1s. sin ψ + β1c. cos ψ ;  blade flap angle 
ζ θ  = Dθ / Dθ crit,  pitch (feather) damping ratio  
θ = θapplied + θtw ;   pitch (feather) angle of blade 
θapplied  = θ0 + θ1s. sin ψ + θ1c. cos ψ ; 

pitch applied to  blade via control system   
θtw = θtw0 + θtw1s. sin ψ + θtw1c. cos ψ ; 

blade elastic twist about feathering hinge 
λ β  natural flapping frequency ratio of  blade   
λ 
θ natural feathering frequency ratio of  blade  

λ 
i  induced velocity normalised by tip-speed ΩR 

µ tip-speed ratio, flight velocity/ ΩR 
ρ  air density 
ψ   = Ω t, blade azimuth, ψ = 0 at rear of disc 
Ω rotor rotational speed   
 
 

 
GYROSCOPIC FEATHERING MOMENTS 

 
Introduction 
 
The helicopter with its edgewise rotor is a peculiarly 
asymmetric aircraft, characterised by cross-coupled 
responses to control and flight state variations, and this 
makes the prediction of flight manoeuvres especially 
difficult.  One area of particular concern is the coupling 
between the longitudinal and lateral motions when the 
helicopter is subjected to pitch and roll rates, as has 
been noted by Prouty (Ref. 1) who reported large 
differences between theory and flight behaviour of the 
Apache helicopter.  
 
The reasons for this are still not fully resolved but one 
explanation that has been invoked – and particularly 
favoured over the past two decades – is that of ‘dynamic 
inflow’ where the induced velocity at the rotor disc is 
varied as a function of flight state parameters and their 
rates of change, including pitch and roll angular 
velocities (e.g. Refs 2,3). 
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However, there is another physical phenomenon at work 
on rotors which explains, and to a seemingly large 
extent, such cross-coupling discrepancies.  It is the 
feathering moment induced by the gyroscopic forces 
acting on the distributed chord-wise mass of the blade. 
These gyroscopic feathering moments very rarely, if 
ever, appear in the analyses of rotor behaviour.  It seems 
that helicopterists have suffered from a collective 
oversight over the years and either never appreciated 
that this inertial moment exists, or perhaps dismissed it 
as very small and therefore of no consequence    This is 
certainly not the case however as the moment, although 
small, is proportional to blade feathering inertia and 
therefore is potentially a source of considerable elastic 
feathering.  
 
This note retains gyroscopic feathering moments in an 
analysis of blade flapping and shows that, on rotors with 
typical blade feathering flexibility, cross-coupling 
predictions better reflect the observed flight behaviour.   
 
Finally, the analysis is used to provide a description of 
the functioning of the ‘Bell Bar’ rotor system. 
 
Rotor Theoretical Model 
 
The theoretical examination of the rotor presented here 
follows ‘classical simple’ analysis as found in many 
texts such as Newman (Ref 4) and Bramwell (Ref 5). 
 
The physical model used here is of a rotor having rigid, 
untwisted, constant chord blades with 
 
- flapping hinge at the centre of rotation, with spring 

restraint about the hinge which accounts for the 
effect of an offset flap hinge or a ‘flexible hinge’, 

- feathering hinge inboard, feathering axis along the 
blade ¼ chord which is also the aerodynamic centre 
of the blade aerofoil section,  

- conventional swash-plate control system with some 
flexibility in the pitch-link arms, which allows an 
‘elastic’ feathering displacement additional to any 
applied control,  

- chord-wise centre-of-mass at the ¼ chord; constant 
mass distribution along blade, 

- zero thickness, i.e. flat in the chordwise direction. 
 
The aerodynamic theory follows conventional practice 
with a constant lift-curve slope, uniform induced 
velocity over the rotor disc, and small angle 
assumptions. 
 
The analysis is restricted to the first harmonic (1 per 
rotor revolution) quasi-steady blade response, as is usual 
in the traditional, simpler considerations of flight 
mechanical behaviour.  Furthermore, for simplicity and 
clarity, the analysis is restricted to hover conditions 
although the principal results are almost unchanged in 
forward flight conditions. 
 

Blade Flapping 
 
The well-known equation defining the flapping motion 
of a rotor blade is   
 
Iβ. ∂2β /∂ t2 + (Ω2Iβ + Kβ). β 
=  ∫ L(r).r dr  +  Iβ (2Ω p . cos ψ - 2Ω q . sin ψ)             -1 
The last term defines the moment about the blade flap 
hinge due to the gyroscopic inertial force acting in the 
flapwise sense. 
 
After defining blade lift in the usual manner, and some 
manipulation, the equation becomes,    
 
∂2β /∂ψ2 + nβ.∂β/∂ψ + λ 

β
2.β  = 

nβ.[θ0 + θ1s sin ψ + θ1c cos ψ + θtw + p*sin ψ + q*cos ψ] 
+ 2 (p*. cos ψ - q*. sin ψ)                  -2 
 
where  λ 

β
2 = 1 + Kβ / Ω2Iβ  is the natural frequency ratio. 

 
The p and q terms within the square brackets reflect the 
aerodynamic incidence at the blade induced by the pitch 
and roll motions, whereas the final p and q terms are 
due to the gyroscopic forces.    
 
Assuming, for now, no blade dynamic twisting θtw , the 
solution of this equation is  
 
β1s ={+θ1c +θ1sSβ + p*(2/nβ+Sβ) + q*(1–2Sβ/nβ)}/(1+Sβ

2) 
 
β1c ={–θ1s +θ1cSβ – p*(1–2Sβ/nβ) + q*(2/nβ+Sβ)}/(1+Sβ

2) 
-3 

 
To illustrate these results consider λ 

β = 1 (i.e. Sβ = 0) – 
as for an articulated rotor with central flap hinge - and 
set nβ = 1 for simplicity.   
 
β1s =  + θ1c +2.p* + q*,       β1c =  – θ1s– p* + 2.q*,       -4 
 
The flapping response to cyclic pitch may be expressed 
βcyclic (ψ + 90° ) = θcyclic (ψ)  i.e. the well-known result 
that flapping equals cyclic pitch but lags by ¼ 
revolution.  Flapping response to pitch rate may be 
expressed as β(ψ)/q* = √5. cos(ψ - 26° )    showing that 
the rotor disc tilts so as to oppose the pitch rate, but with 
a lag of nearly 1/12  revolution. 
 
Blade Aeroelastic Twisting (Feathering) 
 
In the simple rotor model used here the blade is rigid 
and aeroelastic twisting is represented by a pitching 
about the feathering hinge, possible because of 
flexibility in the control system.  Note that this elastic 
twisting is additional to that applied via the controls. 
 
The equation governing the twisting motion is 
 
Iθ.∂2(θapplied +θtw)/∂t2 + Ω2Iθ.(θapplied +θtw) + Kθ.θtw  
= ∫Mext(r).dr - Iθ .(2Ω p.sin ψ + 2Ω q.cos ψ)  -5 
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The second term, the ‘propeller moment’, is due to the 
centrifugal force (sometimes referred to as the tennis-
racket effect) and has its origin in the blade chordwise 
mass distribution (Refs 4, 5). 
      
The last term defines the feathering moment due to the 
gyroscopic forces acting on the distributed chordwise 
mass and is proportional to the blade feathering inertia.   
Although the existence of this moment has been noted 
in standard texts (e.g. Ref 5 p9) it appears to have been 
dismissed as very small and therefore of no 
consequence.    
 
It is to be noted that this moment exists even when the 
chordwise centre-of-mass is on the feathering axis.    A 
centre-of-mass offset gives rise to an additional 
feathering moment proportional to the total gyroscopic 
force (in the flap sense) multiplied by the offset. 
 
Mext indicates any other, undesirable ‘extraneous’ 
feathering moments such as aerodynamic moments and 
structural moments resulting from blade elastic 
deformations such as pitch/flap/lag coupling (Ref 6).    
 
The elastic feathering equation can be manipulated to 
give i 
 
∂2θtw /∂ψ 2 + λ 

θ
2.θtw = 

(1/ Ω2Iθ). ∫ Mext(r).dr  - 2 (p*. sin ψ + q*. cos ψ)           -6 
 
where  λ 

θ
2 = 1 + Kθ / Ω2Iθ  is the natural frequency ratio. 

 
As it is standard practice to design rotor blades such that 
the extraneous moments are as low as possible, it will 
be assumed that the ratio of such moments to inertial 
forces is very small, 
 
i.e.   ∫ Mext(r).dr  << Ω2Iθ                               -7 
 
so that the twisting equation becomes 
 
∂2θtw /∂ψ 2 + λ 

θ
2.θtw =  – 2 (p*. sin ψ + q*. cos ψ)        -8 

 
Note that there is no damping term but, in practice there 
is likely to be a little aerodynamic, structural or 
frictional damping present, sufficient to ensure stability. 
 
The solution is  
  
θtw1s =  -2 p* / (λ 

θ
2-1),    θtw1c =  -2 q* / (λ 

θ
2-1)          -10 

 
Clearly, if the natural feathering frequency is low, blade 
twist in response to pitch and roll rates can be very 
considerable. [Note that the natural frequency must be 
greater than 1.  A value of 1 is possible if there were no 
control system attached to the blade, as any control 

                                                 
i  Note that, as the analysis is restricted to first harmonic 
variations only,   ∂2θapplied /∂ ψ 2 + θapplied = 0 

linkages must have a stiffness which would ensure a 
natural feathering frequency greater than unity.] 
 
Note that a roll (pitch) rate induces only a sine (cosine) 
twisting motion that, in turn, induces a cosine (sine) 
flapping response.   Such flapping means that the rotor 
disc tilts in a pitch (roll) sense – that is a cross-coupling 
effect.  
Coupled Blade Flapping and Feathering Motion 
 
Now that the unconnected blade flapping and blade 
twisting behaviour has been reviewed the coupled 
behaviour can be investigated.  
 
Equations (10) for cyclic twisting are substituted into 
equations (3) for flapping response to give expressions 
for blade flapping when twisting is included.   As this 
leads to lengthy equations in the general case it is 
sensible to forgo this step and move on to a 
consideration of the results for specific values of Sβ, λ 

θ 
that are of interest.  For simplicity the flapping stiffness 
will be set to zero – i.e. Sβ = 0 – throughout the 
following. 
 
The solution is  
 
β1s =  p*.(2 /nβ) + q*.[1 – 2 /(λ 

θ
2-1)]   

β1c =  q*.(2 /nβ) – p*.[1 – 2 /(λ 
θ
2-1)]              -11 

 
It is clear that the twisting induced by the gyroscopic 
feathering moments reduces the cross-coupling effect 
produced by the aerodynamic effects of roll and pitch 
rates.  For typical values of nβ = 1 and λ 

θ =3.5 the cross 
coupling terms are reduced by some 16%.  At a lower 
feathering frequency of λθ =2.5 the reduction is a 
substantial 32%. 
 
Simons (Ref 7) has shown that this effect explains 
phenomena noticed during flight tests in the early 
1970’s with the Westland hingeless-rotor Research 
Scout helicopter (Ref 9)ii which were alike those noted 
by Prouty (Ref 1).    As mentioned before, the effect, if 
not the existence, of gyroscopic feathering moments 
seems to be generally overlookediii and other 
mechanisms have been sought to explain the reduction 
in cross-coupling. 
 
Results  
 
Calculations, with the theory outlined above, of the 
effect of gyroscopic feathering moments on rotor blade 
flapping response to pitch and roll rates are illustrated in 
figures 1 and 2.  The results are displayed as variations 
with feathering frequency of rotor derivatives with 
respect to pitch and roll rates. 
 

                                                 
ii  Reference 9 does not discuss this particular topic.  
iii Padfield (Ref 8) draws attention to the findings of 
reference 7 but does not investigate any further. 
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Figure 1 refers to an articulated rotor with blades hinged 
at the centre line – i.e. λ 

β = 1, Sβ = 0 – and a typical 
blade inertia of nβ = 1.   The reduction in the cross-
coupling terms β1s/q* and β1c/p* is seen to be 
considerable at low feathering frequencies λ 

θ, reflecting 
equation (11) above. 
 
Figure 2 refers to a rotor with a flap frequency ratio of λ 

β = 1.092 (Sβ = 0.1925) which is typical of hingeless 
rotor systems such as the MBB Bo105 and the Westland 
Lynx.  Now, as a consequence of the reduced phase lag 
between cyclic pitch and flap response, the cross-
coupling rate derivatives are somewhat less than for the 
articulated rotor.   Indeed, at low feathering frequencies 
these terms approach zero – i.e. no cross-coupling 
effect.  There is also some variation in the derivative of 
rotor thrust with roll rate which is not shown in the 
figures. 
 
Although these results clearly indicate the cross-
coupling in the rotor flapping behaviour, the effect on 
helicopter behaviour must take into account the inertias 
of the aircraft about its pitch and roll axes.  As the ratio 
of pitch to roll inertia is typically 3-4, the magnitude of 
roll/pitch angular accelerations associated with unit 
lateral and longitudinal disc tilts is of the same order.   
Thus the roll coupling instigated by a pitch rate is 
considerably higher than the pitch coupling induced by 
a roll rate.   
 
A simple 6-degree-of-freedom model of a helicopter has 
been used to calculate response to a pilot cyclic pitch 
input to demand a nose-down pitch manoeuvre in the 
hover.  For this study a generic helicopter model is used, 
with a rotor as described earlier.  The fuselage is 
assumed to have only an aerodynamic drag force, there 
is no tailplane or fin and an actuator disc is used for the 
tail rotor.  The helicopter centre-of-mass is 21.23% of 
main rotor radius below the hub and on the shaft line.   
Pitch and roll radii of gyration are 30% and 13.3% of 
radius respectively.   No stabilisation system is included 
in the model. The equations of motion in classical 
derivative form are used to calculate the helicopter 
motions.   
   
Figures 3 and 4 show the pitch and roll rate time 
histories following application of a 1 degree cyclic pitch 
control in the nose-down sense, for an articulated rotor 
and a hingeless rotor.   The decrease in secondary roll 
motion, resulting from the gyroscopic feathering 
moments on blades of low feathering frequency, is well 
illustrated, especially in the case of the stiffer rotor, and 
is certainly comparable to the observations of ref. 1.  
 
 

 
APPLICATION TO THE BELL ROTOR SYSTEM 
 
Introduction 
    

It is a query of most people, when they study the 
helicopter, as to why the rotor does not act like a 
gyroscope and provide stability to the helicopter rather 
than burden the aircraft with a natural instability.   
Closer inspection shows that this instability is traceable 
to the rotor’s aeroelastic behaviour – to the interaction 
between the airloads acting on the blades and their 
dynamic motion.    In the early years of helicopter 
development many individuals spent considerable effort 
trying to find design features which would restore to the 
rotor the ‘lost’ gyroscope features, and thus improve the 
stability and control of the helicopter. 
 
The ‘Bell’ stabiliser bar was one of the few design 
solutions that actually did provide some improvements 
and has stood the test of time; – it has been used on 
most of the Bell range of helicopters over the years.   A 
similar device, also stemming from the early days, is the 
Hughes ‘paddle’ bar and, in later years, Lockheed 
introduced the ‘gyro-controlled’ rotor which might be 
viewed as a much refined version of the original 
stabiliser bar 
 
A new look at the Bell rotor system is now undertaken, 
taking into account the gyroscopic feathering moments 
discussed above.     
 
Model of Bell Rotor System 
 
The Bell stabiliser bar, in essence, is a heavy bar 
attached to the main rotor shaft below the rotor hub 
(usually), and having a freedom to ‘flap’.   About its 
flapping hinge is a viscous damper.  The bar, aligned 
with its radius at right angles to the blade radius, is 
mechanically connected to the feathering hinge of the 
rotor blades such that bar flapping and blade feathering 
is equal iv in the absence of any pilot control inputs. 
 
Pilot’s controls, via a swash-plate, are attached to the 
linkages between the bar and blades allowing the 
application of collective and cyclic pitch.   The controls 
effectively change the length of the bar-blade linkage; at 
once per revolution in the case of cyclic pitch 
application.  
   
The ‘bar flap + blade pitch’ freedom (which here is 
termed ‘twist’ to correspond to the previous analysis) is 
independent of the pilot-applied pitch angles.   
Moreover this twist freedom comes with no spring 
restraint (i.e. no mechanical stiffness) within the linkage 
system so that the twist natural frequency is once per 
revolution – i.e. λ 

θ = 1.   [The bar alone, with no flap 
spring, has a natural flap frequency of 1; the blade 
alone, having no pitch axis spring, has a natural 
feathering frequency of 1; and so the combined ‘bar flap 

                                                 
iv In practice the connecting linkage may be such that 
bar flap and blade feathering might not be identical but 
in some fixed relationship.  This difference is not crucial 
to the present analysis and is ignored. 
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+ blade pitch’ freedom also retains a natural frequency 
of unity.]   Note also that the damper only operates on 
the twist motion and does not affect the applied pitch. 
 
Figure 5 illustrates, in schematic form, the Bell rotor 
system.  
 
Clearly, if the bar flap and blade twist motions are 
identical then the bar can be ignored as a separate entity, 
and simply considered as an addition to the blade.   
Physically one can visualise the stabiliser bar as moved 
from its low position up to the hub and then attached 
directly to the blade – it is now obvious that the bar 
provides an increase in the blade chordwise dimension 
and mass, and hence feathering inertia.  The bar’s flap 
damper is then seen to act as a damper about the blade 
feathering hinge. 
 
Pilot controls, as described above, can still be connected 
into the pitch links between damper and blade.   
However, the controls may also be taken from the 
swash-plate directly to the ‘earthed’ side of the viscous 
damper which will still allow cyclic pitch to be 
imposed.  [As the blade has a natural pitch frequency of 
1/revolution, a pilot cyclic control input will lead to a 
cyclic feathering such that there is no damper 
displacement.] Of course this layout cannot 
accommodate collective pitch control and an additional 
mechanism would be required such as a separate control 
linkage led up through the rotor shaft.    Figure 6 
illustrates this equivalent Bell rotor system.   
 
For the present purposes this control layout is adequate 
as it emulates the Bell rotor system although, 
undoubtedly, better control architectures could be 
devised.  
 
The blade flapping and twisting behaviour of this 
equivalent rotor can now be analysed in the same 
manner as done previously for a conventional rotor. 
 
Blade Aeroelastic Twisting with Damping 
 
The effect of adding damping around the feathering 
hinge is now considered.  As before the extraneous 
pitching moments are assumed small, but now a 
damping moment of  Dθ.∂θtw /∂ t is added.   Although, as 
has been pointed out, the natural frequency of the twist 
motion is λ 

θ =1, it is kept initially as a variable in the 
analysis. 
 
The previous equations (5,6) governing twisting become 
 
Iθ.∂2θtw /∂ t2 + Dθ.∂θtw /∂ t + (Ω2Iθ +Kθ ).θtw   
=  - Iθ (2Ω p . sin ψ + 2Ω q . cos ψ) 
 
∂2θtw /∂ψ 2 + (Dθ/ΩIθ) ∂θtw /∂ψ + λ 

θ
2.θtw  

=  - 2 (p*. sin ψ + q*. cos ψ)               -13 
 

Now expressing the damping term in terms of critical 
damping gives 
 
∂2θtw /∂ψ 2 + ζ θ .2λ 

θ .∂θtw /∂ψ + λ 
θ
2.θtw   

=  - 2 (p*. sin ψ + q*. cos ψ)               -14 
 
where ζ θ = (Dθ/Dθ crit) = damping ratio,  
and critical damping Dθ crit = 2ΩIθ λ 

θ.              -15 
which has the solution 
 
θtw1s = 
{–2 p*.(λ 

θ
2-1) – 2 q*.2λ 

θ ζ θ}/{(λ 
θ
2-1)2 + (2λ 

θ ζ θ) 2} 
 
θtw1c = 
{–2 q*.(λ 

θ
2-1) + 2 p*.2λ 

θ ζ θ}/{(λ 
θ
2-1)2 + (2λ 

θ ζ θ) 2}  -16 
 
The assumption made in the analysis, that    ∫ Mext(r).dr  
<< Ω2Iθ   (equation 7), is now even more sensible as the 
total ‘bar + blade’ inertia is substantially higher than 
that of the blade alone.  This is perhaps one of the most 
important aspects of the Bell rotor. 
 
Now consider the case of a feathering natural frequency 
λ 
θ = 1, and non-zero damping ζ θ ≠ 0, which reflects the 

Bell rotor.   The expressions for blade twist reduce to 
 
θtw1s =   – q* / ζ θ , θtw1c =   + p* / ζ θ .             -17 
 
Note now that the gyroscopic feathering moments 
brought about by a roll (pitch) rate induce only a cosine 
(sine) twisting motion.   Also the twisting is only 
affected by the feathering damping ratio – the stabiliser 
bar does not appear in the expressions, other than 
indirectly through the damping ratio. 
 
Combined Flap and Feather Equations 
 
Substituting the expressions for blade twist (17) into the 
flapping equation (3) gives 
 
β1s =  + p*.[2 /nβ + 1/ ζ θ] + q*  
β1c = – p* + q*.[2 /nβ + 1/ ζ θ]               -18 
 
It is seen that the twisting caused by the gyroscopic 
feathering moments generated by a roll (pitch) rate 
induces a sine (cosine) flapping response – i.e. the rotor 
disc tilts in a roll (pitch) sense which is opposed to the 
aircraft motion – that is a positive damping effect.  This 
effect adds to the damping produced by the gyroscopic 
flapping forces acting on the blades. 
 
For a value of nβ = 1 and feathering damping equal to 
the critical value, i.e. ζ θ = 1, the damping disc tilt is 
increased by 50%.   Although cross-coupling is not 
reduced its value relative to the damping term is 
considerably lower which may provide some 
improvement in helicopter handling characteristics. 
 
Equivalent Bell Rotor System Results 
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Calculations of blade flapping response to pitch and roll 
rates are illustrated in figure 7, which can be compared 
to figures 1, 2 for ‘conventional’ rotors.   Results are 
shown for two values of the feathering damping ratio – 
100% and 50% of critical.  The substantial increase in 
the direct derivatives β1s /p* and β1c /q* compared to he 
conventional rotor is seen. 
 
The response of a helicopter with this Bell rotor system 
to a nose-down pitch demand in the hover is depicted in 
figures 8 and 9 (cf. figures 3, 4).  Results for both an 
articulated rotor and a hingeless rotor are shown.    A 
considerable reduction in angular rates in both the 
demanded and off-axis directions, due to the higher 
rotor damping is evident. 
 
Concluding Comments 
 
The analysis presented has shown that 
- on a conventional rotor the gyroscopic inertial 

feathering moments, acting on the blades when the 
rotor is rolling or pitching, induce a twist that gives 
rise to a disc tilt in the cross-coupling sense, but 
opposing that cross-coupling produced by the 
aerodynamic effects of rolling and pitching, and 

- the magnitude of this twist increases as blade 
feathering natural frequency decreases, such that 

- on rotors with blade flap frequency above 
1/revolution, and a low feathering frequency of 
~2.5 /revolution, the total cross-coupling may be 
substantially negated (or even reversed).   

 
In view of these results it is recommended that 
- gyroscopic feathering moments be included in all 

rotor analyses concerned with manoeuvring flight 
conditions, 

- that any other mechanisms introduced to improve 
cross-coupling predictions, such as dynamic inflow 
models, be reviewed for applicability. 

 
Further it has been shown that the stabiliser bar on Bell 
rotors can be considered as an addition to the blade 
feathering inertia and that 
- removing stiffness about the feathering axis, so that 

the natural frequency ratio is unity, 
- and adding viscous damping about the feathering 

axis, 
changes the direction of disc tilt caused by gyroscopic 
feathering moments so that it opposes the pitch and roll 
rates and adds to the disc tilt produced by the 
gyroscopic flapping forces. 
 

The merit of the Bell rotor system design is that it 
provides a mechanism for 
- divorcing the conventional rotor blade pitch control 

system from an additional pitch freedom with 
natural frequency of 1/revolution, 

- introducing viscous damping into the blade 
feathering system 

- increasing the feathering inertia of the blades which 
reduces the effect of any undesired/extraneous 
pitching moments on the blades.    
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Figure 1.  Effect of gyroscopic feathering moments on an 
articulated rotor (λ β =1, nβ =1)  -  blade flapping response 
to cyclic control and to pitch and roll rates.  

 

 
 

Figure 1 continued.  
 

 

Figure 2.  Effect of gyroscopic feathering moments on a 
hingeless rotor (λ β =1.092, nβ =1)  -  blade flapping 
response to cyclic control and to pitch and roll rates. 

 

Figure 2 continued. 
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Figure 3. Effect of feathering stiffness on pitch and roll 
rate response to a step nose-down control input in hover,     
- articulated rotor helicopter (λ β =1, nβ =1)   
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Figure 4. Effect of feathering stiffness on pitch and roll 
rate response to a nose-down cyclic step input in hover,     - 
hingeless rotor helicopter (λ β =1.092, nβ =1) 
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Figure 5.  Bell rotor system configuration 

 
Figure 6.  Equivalent Bell rotor configuration 

 
Figure 7.   Equivalent Bell rotor system (λ β =1, nβ =1) -blade 
flapping response to cyclic control and to pitch and roll rates. 

 

 
Figure 7 continued. 
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Figure 8.  Pitch and roll rate response to a step nose-down 
control input in hover,  - equivalent Bell rotor helicopter with 
articulated blade (λ β =1, nβ =1)  
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Figure 9.  Pitch and roll rate response to a step nose-down 
control input in hover,  - equivalent Bell rotor helicopter with 
hingeless blade (λ β =1.092, nβ =1) 
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