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ABSTRACT 

A COMPREHENSIVE APPROACH TO 
COUPLED ROTOR-FUSELAGE DYNAMICS 

P T ~ JUGGINS 
~ESTLAND HELICOPTERS LTD., YEOVIL, ENGLAND 

In order to fully describe, by theoretical analysis, the behaviour of a 
helicopter rotor system, in terms of its dynamic characteristics 
(natural frequencies and mode shapes), stability and in-flight response 
and loads, it is necessary to adequately model the additional dynamic 
systems with which the rotor is coupled. These systems are principally 
the fuselage (gearbox and engine bodies, isolation and absorber systems 
and flexible structure), the control circuit {upper controls, 
swashplate and actuators) and the transmission system (gears, shafts, 
couplings and engine components). 

Previous approaches to this problem have typically calculated the 
dynamic characteristics of a single blade in a hub-fixed configuration, 
with perhaps a spring stiffness representation of the control circuit. 
The natural frequencies and mode shapes have then been used in 
subsequent calculations of blade stability, rotor-body stability 
(ground and air resonance), blade loads, fuselage vibration and 
transmission system dynamics. 

This paper describes a comprehensive approach to the representation of 
these coupled dynamic systems in which the mode shapes and natural 
frequencies of the complete assembly of systems are calculated, using a 
rotor model which includes the other component systems as boundary 
conditions in terms of impedance models. In order to do this, the 
Coupled Rotor-Fuselage Dynamics (CRFD) model adopts a multiblade 
transfer-matrix method. 

Some initial validation exercises for the CRFD analysis are described. 
Further work is required to extend the usefulness of the analysis and 
to complete the definition of a complementary theoretical model for the 
prediction of coupled rotor-fuselage aeroelastic response. 

1 INTRODUCTION 

A common method of determining the dynamic characteristics of a 
helicopter rotor system is to calculate the natural frequencies 
and mode shapes of a single hub-fixed rotating blade. From the 
frequency placements and content of the modes, an initial 
evaluation of a given rotor design may be made against 
undesirable resonances and couplings, in terms of expected 
loads and stability. Subsequently, the blade modes may be used 
as degrees of freedom in calculations of predicted loads, rotor 
stability and coupled rotor-body stability (ground and air 
resonance). Fuselage vibration may be predicted by applying the 
calculated rotor loads to a finite element model of the 
fuselage, with an inertia representation of the rotor. Such 
methods for loads, stability and vibration prediction have been 
well validated against test results (References 1 and 2). 
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Some important aspects of rotor behaviour may not be adequately 
described by these methods, however. In order to fully describe 
the behaviour of the rotor system, it is necessary to 
adequately model the additional dynamic systems with which the 
rotor is coupled, in terms of their effects on the rotor as 
well as (conventionally) the rotor's action on them. Previous 
comprehensive rotorcraft models such as C81, CAMRAD and GRASP 
have been reported in literature (Reference 3, 4 and 5, 
respectively). 

A programme of research has been undertaken at Vestland (VHL) 
to develop analytical methods in which the fullest description 
of the coupled behaviour of the rotor and fuselage systems is 
obtained, using a comprehensive theoretical model. Applications 
of such a capability can be specifically identified in the 
modelling of helicopter manoeuvres, including transition to the 
hover and limit cases, the optimisation of airframe dynamics, 
and aeroelastic tailoring of blade design. 

The initial stage of the work was to evaluate alternative 
methods for calculating the natural frequencies and mode shapes 
of the total coupled system, such that the modes calculated 
might be used as degrees of freedom in a new response analysis. 
As a result of that evaluation, an analysis for Coupled 
Rotor-Fuselage Dynamics {CRFD) has been written, and progress 
has been made on a corresponding aeroelastic model for 
calculation of responses and loads, referred to as the Coupled 
Rotor-Fuselage Aeroelastics (CRFA) analysis. A further phase of 
this research activity is commencing, to enhance the efficiency 
of the CRFD computer code as a working design tool, and 
complete the first version of CRFA code. The activity is being 
performed under UK Ministry of Defence sponsorship, in 
collaboration with the Royal Aerospace Establishment, 
Farnborough. 

This paper 
addressed 
development 

describes some brief examples of problems to be 
by a coupled rotor-fuselage approach, and the 
and initial validation of the CRFD analysis. 

2 EXAMPLES OF COUPLED ROTOR-FUSELAGE EFFECTS 

Some examples of coupled system effects can be considered which 
are not adequately described by separate theoretical analysis 
of the rotor and fuselage systems. 

2.1 Blade Lead-Lag Dynamics 

Modifications to the existing YHL rotor blade modes prediction 
analysis have enabled a transmission system model to be 
included, using an impedance representation. In Table 1, 
predicted blade lead-lag frequencies, with and without the 
transmissi-on included, are tabulated for a Lynx main rotor. The 
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presence of the transmission has a significant effect on the 
frequencies. In particular, the second blade lead-lag mode has 
moved from 4.31R to 3.48R. This frequency shift will only occur 
for collective motion of the blades, when forced at 4R, 8R 
etc .. Flight test results for Lynx show that 4R mast stresses 
increase as rotor speed is decreased. This suggests that the 
effective value of the collective second lead-lag mode is below 
4R, as indicated by the prediction. 

2. 2 Blade. Torsion Dynamics 

The value of the stiffness of the control circuit seen by a 
single blade depends on the motion of all the blades of the 
rotor, producing relative moti9n in different components of the 
control circuit. In Table 2, fundamental torsion frequencies 
calculated for a single Lynx blade are listed, for collective, 
cyclic (lateral and longitudinal) and reactionless motions of 
the blades. It can be seen that there are significant 
differences between the frequencies. In conventional 
single-blade analysis only one of these modes may be used in 
subsequent calculations of rotor response loads. A coupled 
rotot·-fuselage analysis allows rotor modes, rather than blade 
modes, to be included, and a total description of the blade 
torsion behaviour is made. 

2.3 Fuselage Dynamics and Hub Motion 

The natural frequencies and mode shapes for the helicopter 
airframe are typically calculated with an inertia 
representation of the rotor, at the hub. There are clearly 
limitations in the accuracy of this type of representation of 
the rotor. 

An assessment of the effect of rotor/fuselage coupling on 
fuselage vibration predictions was made, using a simplified 
structural model, in Reference 6. A conclusion of that work was 
that the magnitude of the resonant response at the fuselage 
mode frequencies is highly dependent on their proximity to the 
blade modal frequencies. In Reference 7, the effect of a 
flexible rotor model on predicted fuselage mode frequencies was 
not significant. Clearly the significance of coupled 
rotor-fuselage effects on fuselage modes and response is likely 
to depend on the characteristics of the rotor-fuselage system 
considered, and especially on the coalescence or otherwise of 
rotor and fuselage mode frequencies, and whether fuselage modes 
are close to resonance at the predominant forcing frequency. 

If the presence of the rotor may affect fuselage dynamics, then 
conversely it might be expected that hub motions may have 
signficant effects on rotor loads, as suggested in Reference 8. 
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2.4 Tail Rotor Stability Example 

3 

Example calculations for a tail rotor have shown large effects 
on blade stability margins when transmission system and control 
circuit impedance models are included in a single blade 
analysis. Some results from these calculations, performed using 
the WHL blade modes analysis and single blade stability 
analysis, are shown in Figure 1, for the first blade lead-lag 
eigenvalue. The control circuit models, for hydraulics on and 
hydraulics off cases, were based on two-mass-spring-damper 
representations of measured dynamic characteristics for 
collective rotor motions, while the transmission impedance was 
made up from a ten-mode transmission system model. 

The results are given for collective, cyclic and reactionless 
rotor modes. In the cyclic and reactionless cases no 
transmission model is included, and the control circuit may be 
represented by a simple spring stiffness (different for each 
case). This example serves to illustrate the importance of 
considering rotor modes, rather than single blade modes. 

AN INVESTIGATION OF ALTERNATIVE METHODS FOR A COUPLED 
ROTOR-FUSELAGE ANALYSIS 

Alternative methods of analysis identified and subsequently 
investigated could be classified under four categories:-

(a) Classical 
modes. 

impedance matching, using free-free blade 

(b) The use of hub-fixed modes superimposed on hub motion. 

(c) An imposed blade root condition method, applied to a 
single blade. 

(d) The imposed blade root condition method, using multiblade 
degrees of freedom. 

Also assessed, to be applied within an overall method -
strategy, was:-

(e) The use of complex modes. 

In all the methods considered, it was assumed that the fuselage 
systems would be modelled by impedance representations. 

Method (a) was considered to be unsuitable due to the necessity 
for the step of calculating free-free blade modes, which are of 
little use in themselves. Method (b) has been used successfully 
in coupled rotor-body stability predictions. It is the 
approach adopted in the WHL ground resonance analysis 
(Reference 2) and the AGEM program developed at City University 
(Reference 7) except that the latter program uses a numerical 
generation of the equations of motion. 
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Experience with this approach has shown that the results are 
sensitive to the number and location of radial points used to 
describe the blade. As the number of radial points is 
increased, the advantage (in computation time) of using the 
hub-fixed modes as degrees of freedom decreases. In the case of 
the CRFD analysis, it was decided to develop a direct method of 
deriving the coupled system modes, avoiding the intermediate 
step of calculating fixed-hub modes. 

The basis of Methods (c) and (d) was that the presence of hub 
motions may be accommodated by modifying the assumed boundary 
conditions for the rotating blade. This approach had already 
been applied to the YHL single blade modes analysis for 
modelling effects of transmission system and control circuit 
impedances (See Section 2, above). Both of these impedances may 
be expressed in the rotating system for a single blade with no 
time-dependant coefficients, provided that the appropriate mode 
of rotor motion is assumed (ie collective motion for the 
transmission, collective, cyclic or reactionless motion for the 
control circuit). A comprehensive analysis must be able to 
model all coupled system motions, including hub translations 
and rotations perpendicular to the axis of rotor rotation, and 
motion in which collective and cyclic rotor modes may be 
coupled through the hub impedance. A single blade model, 
including such a capability, inevitably includes time-dependent 
coefficients. In order to remove this time-dependency, the 
equations of motion may be transformed into multiblade degrees 
of freedom. 

The approach selected for 
the imposed blade root 
degrees of freedom (method 

development of the 
condition method, 
d). 

CRFD analysis was 
using multiblade 

The retention of velocity terms in the CRFD analysis was 
considered to give identifiable advantages. Confidence that a 
full description of the coupling between rotating and fixed 
systems had been achieved was greater with a complex analysis 
(method (e)). Linearised Coriolis terms could be retained in 
CRFD, and hence need not be included in the CRFA response 
program. In addition, complex modes enab~ed important effects 
of the blade lead-lag damper to be included in the mode shapes. 
At the conclusion of the current phase of CRFD research, the 
use of real modes remains an option, at least for input to the 
initial development versions of CRFA. 

4 APPLICATION OF ALGEBRAIC COMPUTING 

The equations of motion for the CRFD analysis were derived 
using the REDUCE algebraic computing software, available from 
the Rand Corporation. After experience had been gained in the 
application of this software, using simplified examples, the 
considerable advantages of algebraic computing over 
hand-derivation could be realised, in terms of shortened time 
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scales and lessened likelihood of errors. A recognised 
disadvantage of this approach vas the reduced visibility of the 
derivation of the analysis to the dynamicist. This could lead 
to errors or inefficiencies in analytical technique rather than 
in the algebraic manipulations. 

5 DESCRIPTION OF THE CRFD ANALYSIS 

The rotor blade is defined by a continuous beam model similar 
to that developed for ~HL program J146, vhere it vas used to 
calculate the natural frequencies and mode shapes of a 
bearingless rotor blade (Reference 2). It also bears 'some 
resemblance to the approach of Reference 9. 

The derivation of the equations of motion, defined at a point 
on the blade reference axis, proceeds by application of 
Hamilton's Principle to expressions for kinetic energy, strain 
energy and virtual vork. Once derived for a single blade, these 
equations are transformed into multiblade degrees of freedom, 
to describe the motion of a point in a rotor made up of a 
number (greater than tvo) of identical blades. 

The fuselage 
derived from 
motion for the 

is expressed as a frequency-dependent impedance, 
natural frequencies, modal damping and hub modal 
fuselage alone. 

5.1 Definition of the Equations of Motion 

The equations of motion 
Hamilton' s· Principle is 
components: 

for the 
applied 

system 
to the 

are obtained vhen 
folloving energy 

Blade Kinetic Energy 
Blade Strain Energy 
Virtual ~ork from (i) 

(ii) 

(iii) 

(iv) 

Blade Internal Loads 
Blade Distributed External 
Loads (for the steady state). 
Blade Gravitational Loads 
(for the steady state). 
Hub Reactions. 

The equations of motion for a single (ith) blade plus fuselage 
(hub motion) may be vritten in terms of coefficient matrices 
as:-

Ar, • Ui' + A, . Ui + A.z • !:i + SAi = 0 

B0 • !:i' + B, . !:i + B2 • Ui + B3 • l)j + B4 • Oi 

+ Bsi(t)H + Bsi(t)A + SBi = 0 
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where the notation is as follows: 

u. _, 

F. _, 

Differentation with respect to blade radius 
First time derivative 

Second time derivative 
Vector of three translations and three rotations at 
a point on the blade axis of shear centres 

Vector of three shear forces and three bending 
moments at a point on the blade axis of shear 
centres. 

Coefficient matrices, with 
azimuth and hence time, t. 

8 5 j and 86 j functions of blade 

SAi, SBi 

Vectors of constant terms, from external loads and steady state 
linearisation correction terms. 

H 

Vector of three translations and three rotations at the rotor 
centre line, due to hub motions. 

Note that U; and F; are vectors defined in a rotating frame 
of reference. U; is-defined relative to hub motion~. which is 
defined in a fixed frame of reference. 

The solution is defined as consisting of steady plus 
perturbatory components in U and f, and perturbatory components 
only in H. 

The steady-state solution proceeds for a single blade, 
hub-fixed condition, using the equations: 

A,U' + A1U + Az!: + SA = 0 

Ba!:' + 81F + 82 U + SB = 0 

If the time-dependent, periodic, nature of Bsi and Bsi is stated 
explicitly as 

Bsi = Bso + B5c COS~j + 855 sin~i 

Bei = Baa + B6c COS~j + B65 sin~i 
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\/here 'lti is the azimuth angle of the ith blade, the 
perturbatory (modes) solution can proceed, using the equations: 

AoUi' + A,Ui + ~~i = 0 

Bo~i' + B,~i + BzUi + B3Ui + a.oi 

+ (Bso + 85c COS'lti + 855 sin'lt i ) . H 

+ (Bso + 8 6 c cos'lti + 8 68 sin'lti) . H = 0 

plus the hub equations (see Section 5.1.2, below) 

5.1.1 Blade Equations in Multiblade Form 

Using transformations into multiblade degrees of freedom, of 
the form described below, the perturbatory solution equations 
may be re-written as follows: (where n is rotor speed) 

Collective equations (3,4 or 5 blades) 

AoUo' + A,Uo + Az~o = 0 

8o~o' + B,~o + BzUo + 83Uo + s.Oo + BsoH + B60H = 0 

Cyclic (cos) equations (3,4 or 5 blades) 

AoUc' + A1Uc + ~~c - 0 

8o~c' + B,~c + SzUc + 83( Uc + nus) 

+ s. ( Oc + 20U8 - 0 2 Uc) + BscH + B6 c A = 0 

Cyclic (sin) equations (3,4 or 5 blades) 

AoUs' + A,U5 + ~~s = 0 

Bo~s' + B,~s + 8zUs + 83( Us - OUc) 

+ s. (Us - 20Uc - 0 2U8 ) + 8ssH + Bss A = 0 
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Reactionless Equatipns (4 blades) 

AoUA' + A,UA + A,!:A = 0 

8o!:A' + 8,FA + 82UA + 83UA + 840A 

Reactionless (cos) equations (5 blades) 

AoU2c' + A,U2c + A,!:2c = 0 

0 

8o!:2c' + 8,!:2c + B2U2c + 83( (J2c + 20U2s) 

+ 84 ( 02C + 40LJ2S - 402U2c ) = 0 

Reactionless (sin) equations 

AoU2S' + A, u2S + A,!:2s = 

(5 blades) 

0 

8o!:2s' + 8,!:25 + B2U25 + 83( 025 - 20U2c) 

+ 84 ( 025 - 4Q(J2C - 402U25 ) = Q 

Note that reactionless degrees of freedom are included for 4 or 
5 blades, which arise from the multiblade transformation and do 
not couple with hub motions. The multiblade degrees of freedom 
are, from Reference 10, and expressed for a general blade 
freedom qi: N 

Collective q0 = 1 ~ qi 
N £.; 

i=1 

N 

Cyclic qc 
2 2: qi cos'lti = 
N 

i=1 

Reactionless (4 blades) 
qR 

Reactionless (5 blades) 

N 

q2C = 2 2: qi cos 2'lti 
N 

i =·1 

N 

qs 
2 2: qi sin'lti -
N 

i=1 

N 
1 2: qi (-1)i+1 = 
N 

i=1 

N 

q2S 
2 2: qi ·sin 2'!1 i = 
N 

i = 1 

llhere 'lti is the azimuth angle of the i th blade, and N is the 
total number of blades. 

Th~ multiblade degrees 
diagrammatically in Figure 2, 
motion. 

of freedom are expressed 
for the example of lead-lag blade 
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5.1. 2 The Hub Equations 

The hub equations may be written by considering the Virtual 
Work terms in the variation of hub motions, defined at the 
rotor centre line. By equating the coefficients of hub motion 
variations to zero, from Hamilton's Principle, the equations 
are obtained for the effective force equilibrium conditions at 
the hub. 

The set of hub equations may be written in matrix form as: 

Where N is the number of blades. 

Z is the fuselage impedance, at the hub. 
S is a matrix containing steady blade root 

forces (linearised terms) 
H is the vector of hub motions, as before 
- are blade root forces, defined 
!:cH • !:sH ' !:oH in mul tiblade form. 

FC,FS,FO are coefficient matrices of the forces. 

Motion compatability conditions at the blade root point, 
defined in multiblade form, are dependent on the hinge 
configuration of the rotor. For a general rotor (articulated or 
non-articulated), 

A U root + B F root = 0 

where U root, F root are displacements and 
point, in any multiblade vector, A and 
matrices, dependent in form on the number 
flexibilities required. 

loads at the root 
B are coefficient 
of root hinges or 

In order to describe the principle of the solution method, the 
case of a non-articulated blade will be pursued here. For this 
configuration, A is a unit matrix and B is a zero matrix. 

6 METHOD OF SOLUTION 

Th~ method of solution for the coupled rotor-fuselage system is 
based on the Transfer Matrix approach. 
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6.1 The Steady-State Solution 

The linearised form of the steady-state equations, for the 
single hub-fixed blade, from Section 5.1, may be re-expressed 
as 

U' =-A; (A,U + ~~ + SA) 

F' = -8~ ( B,~ + B2U + SB) 

These equations may be integrated along the blade, from blade 
tip to root, to give values for U and F at any point on the 
blade, for assumed values of U and F at-the tip. The U and F 
values at the blade root may be described in transfer-matrix 
form as follows: 

[U l = r TILL:_ l [UJ + [CDJ 
!Jroot LT21 I -j Q tip CS 

where T11, T21 are transfer matrices, and CD, CS are 
corresponding vectors, which may be evaluatea- by--using 
appropriate unit or zero tip values for~. and including or 
excluding constant terms from the equations of motion. Note 
that, at the blade tip F = 0 and hence it is not necessary to 
define the full 12 x 12 matrix which contains T11 and T21. For 
a non-articulated rotor, U = 0 at the blade root and 
consequently the values for ~-at the tip can be obtained from 

Utip = - T11"1 CD 

Integration along the blade from tip to root, using these 
values as the starting values, will then yield the full 
distribution of U and F. An iterative application of the 
solution method is-adopted~ to include non-linear terms. 

6.2 Solution - Collective and Cyclic Case 

In multiblade degrees of freedom, the collective and cyclic 
equations of motion, given in Section 5.1.1., are solved 
together. The cyclic equations are coupled together by the 
cyclic degrees of freedom and by the hub motion. The collective 
equations may be coupled to the cyclic equations through the 
hub motion, depending on the form of the hub impedance. 
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In transfer matrix form, the collective and cyclic equations 
for the perturbatory solution, linearised about the 
steady-state, may be written as 

COLLECTIVE 

[!~]root~ [~~i~ I = }[~jtip + 

CYCLIC (COS) 

\uc] = [tllcc 
Lfc rootLT2lcc 

CYCLIC (SIN) 

+ [ Tllcs 
LT2lcs 

-] [u~ + [THllc 
- l2Jip TH2lc 

[!~ ro~t [gi:~ =}[~1ti; [gi!! = }[~~ti; [~~~i! gj{~] 
The expressions for Fo root, Fe root and Fs root from these 
equations may be substituted into the hub equations given in 
Section 5.1.2, and the values Uo root = Us root = 0 substituted 
in the rema1nlng transfer equations,- for a non-articulated 
rotor, such that: 

(!Z + S) H 
N 

= FC. 
+ FS. 
+ FO. 

(T2lcc Uc + T2lcs Us 
(T21sc Tic + T2lss Tis 
(T2lo go + TH2lo ~) 

Tllo Uo + THlloH = 0 
Tllcc-Uc + Tllcs Us + THllc H = 0 
Tllsc Tic + Tllss Us + THlls H = 0 - -

+ TH21c H) 
+ TH21s ~) 

These equations, in which Uo, Uc, Us are defined to be at the 
blade tip, may be alternatively expressed in full matrix form 
to give the condition 

[D).[~~]. = Q, 

gs tlp 

or D V = 0 

where D and V are 
complex 

In practice, D is evaluated successively for given complex 
search frequencies in a search routine which determines the 
value of frequency which gives a zero of the determinant of D. 
Note that D is a 24 x 24 complex matrix. 

Each such frequency found is then a predicted complex mode 
frequency (eigenvalue or natural frequency) of the coupled 
rotor-fuselage system. By back-substitution in D, the 
corresponding complex mode shape is defined. The mode shape is 
normalised to unity and zero phase of the largest component of 
v. 
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A similar solution for the reactionless case (4 or 5 blades) 
may be made, but with no hub motion. 

7 VALIDATION EXERCISES 

Initial validation exercises for the CRFD analysis have been 
based on comparison with other predictions, for a number of 
rotor-fuselage configurations. Some examples of results are 
given in Tables 3 and 4. 

In order to check the representation of fundamental couplings 
between fuselage and rotor motion, a simple model was defined 
for analysis by the YHL ground resonance program. This 
consisted of an approximate representation of the Lynx 
semi-rigid main rotor, and an arbitrary set of rigid body 
fuselage modes in which the constituent degrees of freedom -
three translations, and roll and pitch rotations were 
uncoupled. In the ground resonance analysis, pure flap and lag 
blade modes are used. For comparative purposes, the blade data 
for the CRFD program was arranged to give no coupling between 
flap and lag, by removing pre-twist and steady coning. The 
results from the two analyses, for four modes, are given in 
Table 3, in terms of frequencies, and magnitude and phase of 
mode shape components. The exercise of comparison was valuable, 
and the final results show very good agreement between the two 
analyses. Note that no aerodynamic terms were included in this 
exercise, or that of Table 4. 

The introduction of coupling between the fuselage degrees of 
freedom, for arbitrary rigid-body mode shapes, allowed further 
comparison between predictions from CRFD and the ground 
resonance program. Table 4 shows results for a predominantly 
translational mode shape in this case. Agreement is good, with 
the largest difference appearing in the flap (cosine) 
component. 

A requirement for test data against which to validate the 
program has been identified, and it is hoped that model rotor 
tests will take place in the near future. 

8 EXAMPLE APPLICATION - BLADE LAG DAMPER 

An example of an application of CRFD is given in Figure 3, 
where shear force and bending moment predictions for the 
fundamental lead-lag mode are plotted, for an articulated 
rotor. The force and moment distributions were obtained from 
CRFD, for a single blade, with and without' a lag damper 
included. For the case with no damper, all velocity terms were 
omitted from 'the analysis, to give a "conventional" rotating 
blade real mode. Vith the lag damper, all velocity terms were 
included, and a complex mode was obtained. Large differences 
between the distributions are apparent, due to the action of 
the damper. Such a representation of the damper, although 
linear, provides a basis for modes to be used in a response 
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analysis, in which additional amplitude-dependent effects may 
be included. The representation may also be used in mode shapes 
for fitting to flight test measurements, in order to 
reconstruct hub loads from blade strain gauge data. 

9 CURRENT CAPABILITIES AND FURTHER DEVELOPMENT 

The current capabilities of the CRFD model, which are the 
subject of continuing validation exercises, are the ability to 
model the following elements, in combination: 

Rotor (3,4 or 5 blades) 

By multiblade continuous beam model, including 
non-linear steady-state solution. 

Control Circuit 

By secondary load path to earth model, 
as an impedance calculated from modal data, 
with definition for collective, cyclic 
(twice) and reactionless rotor motion. 

General Blade Secondary Load Paths and· Point Flexibilities. 

Blade Lag Damper 

Yith transmission of damper root forces 
to the rotor hub. 

Fuselage and Transmission 

By impedance calculated from modal data, including 
interface with NASTRAN results. 

Further development is proceeding, to include the following: 

Improvements to software to reduce computation times. 

Addition of steady state trim and pertubatory 
aerodynamics models. 

Interface for CRFA program and graphics post-processing. 

Verification of modal orthogonality conditions. 

Addition of multiple flexural load paths, for bearingless 
rotors. 

The CRFA Coupled Rotor-Fuselage Aeroelastics analysis is under 
parallel development, to include a comprehensive description of 
a manoeuvring flight wake model, control logic for three 
dimensional simulation, modelling of engine control response 
and calculation of rotor structural loads. 
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Table 3. 

Table 1. 

'redicted Collective Lead-Lag Frequencies, 
Lynx Rotor 

Predicted Rotor-fuselage Modes for a 
Simple Semi-rigid Rotor with Arbitrary 
Uncoupled Rigid-body Fuselage Modes 

WITH TRANSMISSION 
BLADE ONLY MODEL 

CRFO • Coupled Rotor-Fuselage Dynamics Code 

WHL G.R. ·Westland Ground Resonance Code 

0.65R 0.99R MAGNITUDES AND PHASE. 

1.44R NOTES: (I) Blade angl .. based on tip deflections 

3.05R (ii) Real parts of complex frequenciu are all very small 

4.31R 3.48R ... CRFD WHLG.R. 

(1 R = MAIN ROTOR SPEED) 5.81Hz 5.80Hz 
HUB VERTlCAL 28.71N 0' 28.51N o· 
FLAP {COU.£CTJVE) 1.0 RAD o• 1.0 RAD o• 

3b CRFO WHLG.R. 
0.548Hz 0.547Hz 

HUB ROLL 0.15 RAD o• 0.14 RAD o• 
HUB PfTCH 0.24 RAD 90' 0.24 RAD 90' 
FLAP (COSINE) 0.98 RAD . ..,. 0.98 RAD ·90" 

Table 2. 
FLAP {SINE) 1.00 RAO o• 1.00 RAD o· 

Predicted Blade Torsion Frequencies. 
Lynx Rotor 

lc 

tiUB TRANSlATlON {X) 

CAFD 
1.97Hz 

2.78/N 

WHLG.R. 
1.98Hz 

o· 2.741N o· 

CONTROL 
HUB TRANSLATION (Y) '113.91N 90' 107.8 IN 90' 
LAG (COSINE) 0.93 RAD 90' 0.93 RAD .., .. 

DEFLECTION FREQUENCY LAG (SINE) 1.00 RAO 90' 1.00 RAD o• 

COLLECTIVE 3.8R 
CYCLIC (LONG.) 3.8R 

3d Cf"AD WHLG.R. 
1.80Hz 1.80Hz 

CYCLIC (LAT.) 4.5R HUB ROlL 0.044RAO 90' 0.0441\AO 90' 

REACTIONLESS 6.2R HUB PITCH 0.86 RAD o· 0.84 RAD o· 
FLAP (COSINE) 1.00 RAD o• 1.00 RAD o· 

(1 R = MAIN ROTOR SPEED) 
FLAP (SINE) 0.34 RAD 90' 0.33 RAD 90' 

----------------------------------~~~ 

Table 4. 

CRFD Validation Case 

PREDICTED ROTOR-FUSElAGE MODE FOR A SIMPLE SEMI·RIGID 
ROTOR Willi ARBITRARY COUPLED RIGID·BODY FUSElAGE MOOES 

PROGRAM: CRFD PROGRAM: WHL G.R. 

FREQUENC'f 

X 
y TRANSLAnONB 

z 
ROLl. 

PrTCH 
FLAP (coa.) 

FtAP (sin.) 

FLAP {coli.) 

LAG {coa.) 

\.AG (•in.) 

LAG {ccML) 

REAL 

o.o· 
IMAGINARY 

1UII 

MODESHAPI 

REAL 

-to"7 

IM.AGINA.RV 

14.43 (RAD/S) 

MAGNITUDa PHASI (") MAGNmJDE PHASE {") 

0.31 ·90 0.31 ·90 

711 0 711 0 

u ·90 ... ·90 

0.91 180 0.91 180 

0.33 90 0.34 90 

0.03 90 o.os 90 

1.0 0 1.0 0 

0.003 ·90 0.003 ·90 

0.31 0 0.32 0 

0.37 ·90 0.38 ·90 
(10 ... ) 0 {10'') 0 

NOTI: X. Y, Z in inch unita. all other COiiifMM,..tta in ...Uana. 

-................................................................................ --~~--
J~l/1 
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Figure 1. 

Example of Predicted Tail Rotor Blade Eigenvalues 

1st Lag Mode Stability 1st Lag Mode • Frequency 

CUFF PITCH (OEGS) 10 15 20 25 400 ·3T 

·2T 

3 and 4 

·1T 

1 and 2 

·20 10 15 20 25 
CUFF PITCH (OEGS) 

1 SYMMETRIC 
(HYDRAULICS ON) 3 ASYMMETRIC 

CONTROL CIRCUIT 1---""1 £..---1 AND TRANSMISSION 
SYSTEM MODELS 

2 SYMMETRIC 4 REACTIONLESS 
(HYORAULICS OFF) 

~ t--1 
Westland_ 

Figure 2. 

Multiblade Degrees of Freedom (Lead-lag Example) 

COLLECTIVE CYCLIC 

COSINE SINE 

REACTION LESS REACTION LESS 
(4 BLADES} ~ (5 BLADES} -

/ I 

'~ v 

\ N \ ~ 2 q;sin2i'; 
...- i • I 

COSINE SINE 

----------------------------------------------------------~~~ 

Figure 3. 

Articulated Rotor. with Blade Damper Fundamental Blade Lead-Lag Mode Shape 
MODAL LAG SHEAR FORCE MODAL tAG BENDING MOMENT 

soo ---- COMPUX MOOI 
•1.02 + iO.SI Ha 

REAl. MODI 
i1.01 H31 

·--
oL-----------~~--~==~~~. 0.5 ROTOR RADIUS 1.0 

~ 10lh======;:;=:~~ i .) j 0.5 ROTOR RADIUS 1.0 
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