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Abstract

The paper describes the initial development of a free-vortex rotor wake model in state-space form, which is based
on the principles of vorticity transport. The governing wake equations are formulated as partial differential equations
and are converted into a system of ordinary differential equations by the method of lines. The states of the model
are the time varying positions in space of collocation points on the wake filaments. Linearized models are extracted
numerically using finite-difference approximations. The resulting state-space models are large and order reduction is
important. Three techniques are described where the state vector is approximated by a series of shape functions. The
new state-space wake is validated in five different flight conditions by comparison with an existing finite-difference wake
that implements the same fluid dynamics model. Results are also presented for a coupled model including the free-vortex
wake, unsteady airfoil aerodynamics, and rotor blade flapping. Open loop poles of the coupled linearized system are
also shown. The agreement with the finite-difference wake geometries is uniformly excellent within about half a rotor
radius but deteriorates slightly further downstream in some flight conditions, although blade inflow and lift are not af-
fected. Substantial reductions in the number of states are shown to be possible without significant degradation of accuracy.

List of Symbols

A State matrix
A1, A2, b1, b2 Coefficients of unsteady airfoil

model
B Control matrix
c Blade chord
Cl Airfoil lift coefficient
Cnc

l , Cc
l Noncirculatory and circulatory portions of

the airfoil lift coefficient
Clα Airfoil lift curve slope
ḣ Airfoil plunge velocity
L(y) Blade lift per unit span
Mβ Aerodynamic flapping moment
r Position vector of point on vortex filament
rx, ry, rz Components of r in rotor coordinate system
rv Spanwise position of vortex release point
R Rotor radius
u Vector of controls
V Cross-sectional free-stream velocity
V Local convection velocity of the vortex
Δwg Vertical velocity perturbation in airfoil

unsteady aerodynamic model
x Vector of states
x1, x2 States of airfoil unsteady aerodynamic

model
xAC ,xFW Partitions of x containing aircraft and free

wake states
z1, z2 States of airfoil unsteady aerodynamic

model
α Instantaneous airfoil angle of attack
αs, β0 Rotor shaft angle and flapping angle
β, βi Flapping angle of generic blade and of i-th
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blade
Γb Bound circulation
Γv Circulation strength of the tip vortex
Δ(. . .) Small increment for finite-difference

calculations
ζ Angular distance of a vortex point from the

blade (wake age)
λi Inflow velocity along k, nondimensional
μ Advance ratio
ψ Blade azimuth angle
Ω Rotor speed

∗
(. . .) Derivative with respect to ψ, ∂(. . .)/∂ψ

Abbreviations
CFD Computational Fluid Dynamics
CSD Computational Structural Dynamics
DAE Differential-Algebraic Equation
MOL Method of Lines
ODE Ordinary Differential Equation
PC2B Predictor-Corrector 2nd-Order Backward

Difference scheme
PDE Partial Differential Equation

1. Introduction

Advanced rotor control technologies have been proposed
to improve the performance, aeromechanical stability, loads
and vibrations, and handling qualities of rotorcraft. These
devices include individual blade control, trailing edge flaps,
elevons, and morphing airfoils, and generate localized, but
very powerful, aerodynamic effects that significantly affect
all aspects of rotorcraft dynamics. Because the effects are
localized, they cannot be rigorously modeled with momentum-
like theories that consider the rotor as an actuator disk, and
vortex wake type methods need to be used. From the point
of view of the control designer, a technical barrier is that ex-
isting vortex wake models are not formulated in state-space
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form, therefore they cannot be used when a linearized, i.e.,
(A, B, C, D) model is required. In fact, the most powerful
control analysis and synthesis methodologies currently be-
ing used require that the model of the plant (i.e, of the sys-
tem to be controlled) be in the form of systems of ordinary
differential equations. Finite difference-based wake solution
methodologies are very cumbersome if not outright impos-
sible to use.

Furthermore, without a wake state-space model it is not
possible to formulate a linearized state-space model of the
complete rotorcraft, and so it is not possible to directly as-
sess open- and closed-loop aeroelastic and flight dynamic
stability from the eigenvalues of the linearized system (or
from its characteristic exponents if the system has periodic
coefficients and Floquet theory is used). In this case, stabil-
ity can only be assessed indirectly from an examination of
time histories.

It is also not possible to directly extract Bode plots to
describe, for example, the frequency response of the ro-
tor to active control inputs, or the rigid body response to
pilot inputs, which are important for handling qualities anal-
yses and specification compliance. Currently, the only way
to reconstruct some of this information is through system
identification techniques applied to experimental (e.g., [1])
or simulated (e.g., [2, 3]) time histories.

Another solution is to rely on simplified, linearized wake
models that can be cast in state-space form. These models
are based on the solution of the fluid dynamics equations
over global domains. These are small-disturbance, momen-
tum theory based solutions, which represent in a gross way
the effects of certain rotor parameters on the rotor inflow.
Such models include all classes of the actuator disk theo-
ries.

Because of the underlying physics, these widely used
theories have significant limitations. For example, two of
the most popular models, the “dynamic inflow” model [4]
and the “finite state wake” [5], and their numerous subse-
quent developments, trace their origins directly to the small
disturbance, acceleration potential solution over a disk by
Joglekar and Loewy [6]. As solutions over a disk, they in-
trinsically lack the resolution required to model local details
of the flow field. Their extension to maneuvers requires ad
hoc assumptions about how the wake geometries change.
They also assume that the perturbations at the rotor disk
are small compared with the relative free-stream velocity,
which implies that the rotor is lightly loaded. For the same
reason, such theories cannot rigorously model large am-
plitude maneuvers, especially when the wake vortices tend
to merge or bundle. As actuator disk theories, they implic-
itly require the presence of a fully developed slipstream that
can be assumed to encompass the limits of the physical
rotor disk. For this reason, and because they are small
perturbation theories, they cannot rigorously model steep
descents and the vortex ring state. Finally, because they
are fundamentally solutions for a single rotor, they cannot
model the complex interactions associated with multi-rotor
configurations, and do not contain the physics of the wake
distortions from rotor-fuselage or rotor-empennage interac-
tions.

These theories are very popular both for their computa-
tional efficiency, and because they often can produce good
results for many conditions of practical interest. However, it

is clear that the current inability to write a complete rotor-
craft mathematical model in the form of a system of ODEs
with a free-vortex wake, is a significant gap in the state-of-
the-art in several areas of helicopter analysis. Therefore,
the main objective of the present research is to help close
this gap by deriving a first principles-based mathematical
model of free-vortex wakes in the form of a set of ODEs.

Current state-of-the-art free-vortex wake models, which
include those by Brown [7], Johnson [8], Leishman [9], and
their coworkers, are capable of accurately modeling com-
plex, multi-rotor interactions under any flight condition, in-
cluding the vortex ring state and in ground effect. The state-
space wake model described in the present paper is based
on that of Ref. [9].

The only previous state-space free-vortex wake model
available in the literature is that by Johnson, Refs. [10, 11].
In this model, the states are generalized coordinates de-
scribing the inflow, and the inputs are generalized coordi-
nates describing the circulation. It requires the calculation
of an impulse response of the wake-induced downwash λ to
the rate of change of circulation with time for the shed wake,
and of an impulse response of λ to circulation for the trailed
wake. In hover, this is done using frequency domain system
identification techniques. Ref. [11] is limited to the case of
hover, Ref. [10] also briefly covers forward flight. For the
hover case, results for both an undistorted helical wake ge-
ometry and a distorted, prescribed geometry are presented
[10, 11]. In forward flight, because the wake geometry is
time-varying, so are the impulse responses of λ. Then, it
is suggested to use a procedure based on Ref. [12], where
through some simplifying assumptions it is possible to ob-
tain analytical solutions for the induced velocities from the
wake, and therefore reconstruct the required time-varying
impulse responses. The study was described as a “feasibil-
ity investigation,” and no further material was published.

In Ref. [13], the same governing free-vortex equations
of Ref. [9] were converted to a system of ODEs using the
Method of Lines (MOL). The states were the time-varying
spatial positions of collocation points on the wake vortices.
The objective of the paper was to study some basic features
of the MOL methodology, and so only the very simple rigid
wake case was considered; the true vortex dynamics and
the mutual interactions between blade and wake vortices
were not modeled in this case.

The MOL, as used in Ref. [13], is a numerical technique
for the solution of PDEs in which all but one dimension is
discretized, usually the time-dimension, resulting in a sys-
tem of ODEs in this dimension. The method has been ap-
plied to the Navier–Stokes equations [14, 15, 16], and, in
particular, to the vorticity transport equations by Tokunaga
et al. [17, 18].

Representations of vortices in state-space form have
been implemented in other areas, such as the modeling of
leading edge vortices in delta wings at high angle-of-attack
[19, 20, 21], as they are very important for accurate pre-
diction of lift and rolling moments, and for the design of
feedback flow control. These models are simplified, low-
order representations of trailed vortices that are depicted as
straight-line segments starting from some initial point near
the nose to the vortex breakdown location. The overall sys-
tem is nonlinear, and the states of the model are the break-
down position along each axis and vortex strength of both
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the left and right vortices.
Vortex lattice methods have been used to develop two-

dimensional [22, 23] and three-dimensional [24] unsteady
aerodynamic models in state-space form. The states in this
case are the circulation strengths of each vortex segment,
but the lattice (or wake) is fixed and is not allowed to con-
vect under its own induced velocities. Reduced-order mod-
els are also considered by transforming the model into bal-
anced coordinates and truncating states which are less sig-
nificant. Other representations of vortices as a set of ODEs
include the point-vortex models [25, 26]. As the name im-
plies, these models represent the vorticity being shed from
sharp edges as discrete points in a 2D flow. They are ca-
pable of modeling complex fluid-solid interactions that allow
accurate simulation and control of both the body and its sur-
rounding flow. However, their extension to 3D is either not
possible or has not been realized.

In light of the preceding discussion, the objectives of the
present paper are:

1. To present the initial results of the development of the
state-space version of a time-accurate, first principles-
based, free-vortex rotor wake model, using the Method-
of-Lines.

2. To discuss the extraction of a linearized model of the
free-vortex wake in the mathematical form:

ẋ = Ax + Bu

where x and u are, respectively, vectors of states and
controls.

3. To present comparisons between the new state-space
free-vortex wake and an existing finite-difference ver-
sion, based on the same governing equations, for the
calculation of converged wake geometries and of wake
transients, and for models that also include airfoil un-
steady aerodynamics, and rotor blade flapping.

4. To present techniques to reduce the size of the state-
space free-vortex wake model through series of ap-
proximate shape functions, and to compare full- and
reduced-order results.

2. Mathematical model

The State-Space Free vortex Wake (SSFW) model described
in the present paper is based on recasting into state-space
form the Maryland Free Wake (MFW) model. The MFW has
been extensively described in the literature [9, 27]. There-
fore, only the MFW features relevant to the development of
the SSFW will be presented here.

2.1. Vortex model

The MFW is based on a vortex discretization, in which the
geometry of the vortex filaments is governed by the princi-
ples of vorticity transport and is described by the following
PDEs [28]

(1)
∂r(ψ, ζ)

∂ψ
+

∂r(ψ, ζ)

∂ζ
=

1

Ω
V[r(ψ, ζ)]

where r is a position vector describing the geometry of each
of the vortices comprising the wake (trailed or shed), ψ is

the blade azimuth, ζ is the wake age, i.e., the time elapsed
since the release of the vortex element into the flow field
(expressed as an angular distance from the blade release
point), Ω is the rotor speed, and V is the local convection
velocity of the vortex filament. The velocity term on the
right-hand-side is given by [29]:

(2) V[r(ψ, ζ)] = V∞ + Vind[r(ψ, ζ)] + Vman[r(ψ, ζ)]

where V∞ is the free-stream velocity resulting from the lin-
ear motion of the helicopter, Vind is the inflow velocity from
the self- and mutually-induced velocities of the trailed vor-
tices and the blade bound circulation and Vman is the por-
tion of the free-stream velocity associated with the rotational
motion of the helicopter. In the present study, only the first
two terms are considered, but the methodology is set up to
rigorously handle any type of maneuver.

The induced velocity term in Eq. (2) is calculated by
straight-line vortex segmentation with a finite core size rc to
remove the singularity at the vortex axis. This is equivalent
to calculating the induced velocites using the Biot–Savart
law with a trapezoidal numerical quadrature. The induced
velocity at a generic point is represented by the following
summation:

Vind =

NvfX
j=1

kmaxX
k=1

"
Γv

4π

h(cos θ1 − cos θ2)

(r4
c + h4)1/2

#
j,k

ej,k

+

NbX
j=1

imaxX
i=1

"
Γb

4π

h(cos θ1 − cos θ2)

(r4
c + h4)1/2

#
j,i

ej,i

(3)

where Nvf is the number of vortex filaments, Nb is the
number of blades, and kmax and imax are the number of
segments along each vortex and blade, respectively. The
trailed and blade bound circulations are Γv and Γb, respec-
tively. The perpendicular separation distance between the
vortex filament and a generic point is h; the included angles
are θ1 and θ2, and the unit vector e gives the direction of the
velocity vector at the point (see Ref. [30], Ch. 10, for a more
detailed discussion). The first term on the right-hand-side
of Eq. (3) represents the contribution to the induced velocity
from the trailed vortices, while the second term represents
the contribution from the blade bound circulation.

In the MFW, the governing equations, Eq. (1), are dis-
cretized using finite-difference approximations in blade az-
imuth ψ and wake age ζ. The ψ-derivative is based on a
second-order, predictor-corrector, backward difference scheme
(denoted as PC2B). Its approximation uses three previous
azimuth steps and is given by [27]:

∂r

∂ψ
≈ dr

dψ

˛̨̨
˛
ψ+Δψ/2,ζ

(4)

=
1

4Δψ

`
3r(ψ + Δψ, ζ) − r(ψ, ζ)

− 3r(ψ − Δψ, ζ) + r(ψ − 2Δψ, ζ)
´

The approximation of the ζ-derivative uses a five-point cen-
tral difference and is given by:

∂r

∂ζ
≈ dr

dψ

˛̨̨
˛
ψ+Δψ/2,ζ+Δζ/2

(5)

=
1

2Δψ

`
r(ψ + Δψ, ζ + Δζ) − r(ψ + Δψ, ζ)

+ r(ψ, ζ + Δζ) − r(ψ, ζ)
´
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The derivatives in Eqs. (4) and (5) are computed at the mid-
point of the ψ−ζ square grid. Therefore, the ψ-derivative at
the cell center is based on the values at both ζ and ζ + Δζ.

The MFW is capable of modeling both the shed and the
trailed portions of the wake, and there is no limitation on the
number of vortices used to discretize either portion. How-
ever, in the present study, only a trailed wake modeled by
a single tip vortex per blade will be included, for both the
MFW and the SSFW. The shed wake effects will be mod-
eled through an unsteady airfoil aerodynamic model.

2.2. State-Space Free-Vortex Wake Model

The SSFW is obtained by discretizing the governing equa-
tions with respect to wake age ζ only, which results in a
system of ODEs in blade azimuth ψ. The specific form of
this system depends on the finite-difference discretization
chosen. In the present study, a fourth-order five-point bi-
ased upwind approximation (5PBU4) [31] is used. With this
scheme, Eq. (1) becomes:

∂rk(ψ, ζi)

∂ψ
= − 1

12Δζ

h
− rk(ψ, ζi − 3Δζ)

+ 6rk(ψ, ζi − 2Δζ) − 18rk(ψ, ζi − Δζ)

+ 10rk(ψ, ζi) + 3rk(ψ, ζi + Δζ)
i

+
1

Ω
Vk(ψ, ζi)

(6)

which is an ODE in rk(ψ, ζi). The subscript k denotes any
of the three coordinate directions, e.g., (1, 2, 3) = (x, y, z).
At the two ends of the ζ-domain, slightly different discretiza-
tions are needed. These are [31]

∂rk(ψ, ζ1)

∂ζ
≈ 1

12Δζ

h
− 25rk(ψ, ζ1) + 48rk(ψ, ζ2)

− 36rk(ψ, ζ3) + 16rk(ψ, ζ4) + 3rk(ψ, ζ5)
i(7)

∂rk(ψ, ζ2)

∂ζ
≈ 1

12Δζ

h
− 3rk(ψ, ζ1) + 10rk(ψ, ζ2)

+ 18rk(ψ, ζ3) − 6rk(ψ, ζ4) + rk(ψ, ζ5)
i(8)

∂rk(ψ, ζ3)

∂ζ
≈ 1

12Δζ

h
rk(ψ, ζ1) − 8rk(ψ, ζ2)

+ 8rk(ψ, ζ4) − rk(ψ, ζ5)
i(9)

and

∂rk(ψ, ζNζ )

∂ζ
≈ 1

12Δζ
[3rk(ψ, ζNζ−3)

− 16rk(ψ, ζNζ−2) + 36rk(ψ, ζNζ−1)

− 48rk(ψ, ζNζ ) + 25rk(ψ, ζNζ+1)],

(10)

where Nζ is the number of collocation points if the domain is
split into Nζ − 1 intervals. Combining Eqs. (6) for all interior
collocation points and Eqs. (7) through (10) at the ends of
the domain results in a system of Nζ ODEs describing the
wake geometry along any spatial axis k:

(11) ṙk(ψ, ζ) = −[Aζ ]rk(ψ, ζ) +
1

Ω
Vk[r(ψ)]

This semi-discretization is generally known as the method
of lines. In Eq. (11), ˙( ) = ∂/∂ψ, ζ = [ ζ1 ζ2 . . . ζNζ ]T

is the vector containing the wake age values of the Nζ collo-
cation points that describe the geometry of the vortex, and
[Aζ ] is a finite-difference matrix, the specific form of which
depends on the ζ-discretization scheme used. In this case,
the finite-difference matrix takes the values of the leading
coefficients of the 5PBU4 scheme (see Refs. [13, 31] for a
more detailed description of the differencing schemes), i.e.,

(12) [Aζ ] =

1

12Δζ

2
666666664

−25 48 −36 16 3
−3 10 18 −6 1

1 −8 0 8 −1
−1 6 −18 10 3

. . . . . . . . . . . . . . .
−1 6 −18 10 3

3 −16 36 −48 25

3
777777775

where all the terms outside the diagonal band are equal to
zero. Regardless of the specific ζ-discretization used, the
resulting system of ODEs has the same general form as
Eq. (11). Only the values of the constant coefficient matrix
[Aζ ] change with different discretization schemes.

The complete state-space model couples the system
of ODEs in Eq. (11) for all three spatial components, and
thus, the governing wake equations for each vortex (trailed
or shed) are

(13)

8<
:

ṙx(ψ, ζ)
ṙy(ψ, ζ)
ṙz(ψ, ζ)

9=
; =

2
4 [Aζ ] 0 0

0 [Aζ ] 0
0 0 [Aζ ]

3
5

×
8<
:

rx(ψ, ζ)
ry(ψ, ζ)
rz(ψ, ζ)

9=
; +

8<
:

Vx[r(ψ)]
Vy[r(ψ)]
Vz[r(ψ)]

9=
;

Equation (13) needs to be written as many times as there
are wake vortices. The coupling among the vortices is then
introduced by the velocity terms Vk[r(ψ)]. The solution of
the system of ODEs yields the solution of the original PDEs.
The quantities rk(ψ, ζi), i = 1, 2, . . . , Nζ become the states
of the model. Each rk(ψ, ζi) represents the position of a
collocation point on a vortex filament along the x-, y- or z-
axis.

It should be noted that, because the velocity vectors Vk

on the right-hand-side of the governing equations are not af-
fected by the finite-difference discretization, they are treated
identically in the SSFW and the MFW. This simplifies con-
siderably the computer implementation of the wake model
because much of the computational and implementation ef-
fort lies in the proper handling of those vectors, which can
be shared between the two wake formulations.

The equation of vorticity transport, Eq. (1), is first-order
in ψ and ζ. Therefore, it requires an initial condition and a
boundary condition. In Ref. [13], the initial and boundary
conditions were taken from the exact solution to the rigid
wake problem. The same approach is taken here for the ini-
tial conditions, with the only exception that the dependency
on the shaft angle is removed (because of a rotation of the
coordinate system by the shaft angle). The boundary con-
ditions are based on the instantaneous tip position of each
blade. The initial conditions for all three spatial components
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are thus:

rx(0, ζ) = Rμζ + rv cos β0 cos ζ(14)

ry(0, ζ) = −rv cos β0 sin ζ(15)

rz(0, ζ) = Rλiζ + rv sin β0(16)

The boundary conditions for all three components are:

rx(ψ, 0) = rv cos β cos ψ(17)

ry(ψ, 0) = rv cos β sin ψ(18)

rz(ψ, 0) = rv sin β(19)

where β = β(ψ).

2.3. Shed Wake Aerodynamics

For computational efficiency, the effects of the shed wake
were captured in the present study by using an unsteady
airfoil model. This model, which is valid for incompressible,
attached flow, is described in detail in Ref. [30], therefore
only the key features are summarized here. The model is
used to calculate the aerodynamic coefficients at a given
blade cross section, therefore, it must be repeated for a
sufficient number of cross sections on each blade to ob-
tain the spanwise airload distribution with the desired accu-
racy. The model is available in two equivalent mathematical
forms, i.e., in state-space form and in finite-difference (re-
currence) form. Either form can be used with both the MFW
and the SSFW. However, for consistency, in the present pa-
per the finite-difference form will be used with the MFW, and
the state-space form with the SSFW.

2.3.1. State-space Form

For arbitrary blade motion, the governing equations for the
circulatory component Cc

l of the lift at a blade cross section
along the blade can be represented in state-space form as

j
ẋ1

ẋ2

ff
=

2
4 0 1

−b1b2

„
2V

c

«2

(b1 + b2)

„
2V

c

« 3
5 j

x1

x2

ff

+

j
0
1

ff
α(t)

(20)

plus the output equation,

Cc
l (t) =

"
b1b2

„
2V

c

«2

(A1b1 + A2b2)

„
2V

c

«# j
x1

x2

ff

+Clα(1 − A1 − A2)α(t)

(21)

The coefficients A1, A2, b1, and b2 come from the R. T. Jones
approximation to the Wagner function, where A1 = 0.165,
A2 = 0.335, b1 = 0.0455, and b2 = 0.3, V is the local flow
velocity, c is chord length, α is the instantaneous angle of
attack, and Clα is the lift-curve-slope.

To represent the response to changes in the vertical
gust velocity (which includes inflow perturbations), two ad-
ditional aerodynamic states are needed at each blade sta-
tion. The governing equations are similar to Eq. (20) except
that the angle of attack is replaced by a perturbation in the

vertical gust velocity wg over the local flow velocity V (an
approximate angle of attack). These equations represent
the additional contributions to the circulatory component of
the lift and are given in state-space form as

j
ż1

ż2

ff
=

2
4 0 1

−b1b2

„
2V

c

«2

(b1 + b2)

„
2V

c

« 3
5

×
j

z1

z2

ff
+

j
0
1

ff
Δwg(t)

V

(22)

with the output equation

ΔCc
l (t) =

"
b1b2

„
2V

c

«2

(A1b1 + A2b2)

„
2V

c

«#

×
j

x1

x2

ff
+ Clα(1 − A1 − A2)

Δwg(t)

V

(23)

The coefficients in this case are A1 = 0.5, A2 = 0.5, b1 =
0.13, and b2 = 1.0, which come from an approximation to
the Küssner function.

2.3.2. Finite Difference (Recursive) Form

In this formulation, the effects of the shed wake are rep-
resented by a change in the effective angle of attack, αe.
Therefore, the circulatory component of the lift at each blade
section can be represented simply as

(24) [Δ] Cc
l (s) = Clααe(s)

where the Δ is an optional symbol which represents the
additional lift created by a gust perturbation Δwg, and s is
the distance traveled by the airfoil in semichords, or

(25) s =
2V t

c
=

2V

c

„
ψ

Ω

«

The effective angle of attack is given by the expression

(26) αe(s) = α(s) − X(s) − Y (s)

where α(s) is the instantaneous angle of attack on the blade
element. The terms X(s) and Y (s) are one-step recursive
formulas, which are based on the mid-point rule of integra-
tion, and contain all the time history information of the un-
steady aerodynamics. They are given as

(27) X(s) = X(s − Δs)e−b1Δs + A1Δαse
−b1Δs/2

(28) Y (s) = Y (s − Δs)e−b2Δs + A2Δαse
−b2Δs/2

The coefficients A1, A2, b1, and b2, are the same as those
used in the state-space formulation depending on whether
we are dealing with arbitrary blade motion (Wagner’s func-
tion) or vertical gust response (Küssner’s function). Thus,
the model consists of four recursive formulas at each blade
station. The term Δαs represents the change in angle of
attack between successive steps, i.e.,

(29) Δαs = α(s) − α(s − Δs)
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2.3.3. Other Considerations

Along with the circulatory component of the lift, the non-
circulatory part must also be considered. In coefficient form,
this is expressed in Ref. [30] as

(30) Cnc
l = πb

„
α̇

V
+

ḧ

V 2
− baα̈

V 2

«

where ḧ is the plunging acceleration of the blade station,
which is the result of flap motion, and a is related to the
position of the pitch axis (not the lift-curve-slope). The total
lift coefficient is then the combination of the circulatory and
non-circulatory components, or

(31) Cl = Cc
l + ΔCc

l + Cnc
l .

From here, the lift per unit span at every blade station can
be computed using the expression

(32) L(y) =
1

2
ρV 2(y)cCl = ρV (y)Γb(y)

which can also be formulated in terms of the blade bound
circulation as shown. After rearranging, the bound circula-
tion at every blade station becomes

(33) Γb(y) =
1

2
V (y)cCl =

L(y)

ρV (y)

where ρ is the air density. Finally, the flapping moment act-
ing on the blade is given by

(34) Mβ =

Z R

0

L(y)y dy

and the circulation strength of the tip vortex is taken to be
the maximum value of the bound circulation of the blade,
i.e.,

(35) Γv = max [Γb(y)]

2.4. Rotor Equations

The model used in the present study includes an elemen-
tary representation of rotor dynamics, in which the blades
are assumed to be rigid, hinged at the axis of rotation, and
possessing only the flap degree of freedom. The hub is
assumed to be fixed, so that there is no dynamic coupling
among the rotor blades. The governing equation for each
blade is then simply

(36)
∗∗
β +β =

Mβ

IβΩ2

where
∗∗
( )= ∂2( )/∂ψ2, β is the flap angle, Iβ is the blade

mass moment of inertia about the flapping hinge, Ω is the
rotor speed and Mβ is the aerodynamic flapping moment,
which is given by Eq. (34).

2.5. Summary of the Equations of Motion

The overall coupled system of blade-wake-airfoil ODEs is
written in the implicit form:

(37) f (x, ẋ,u; ψ) = 0.

The vector f is partitioned as:

(38) f =

j
fAC

fFW

ff

where fFW is the system of wake ODEs, and fAC is the
system of all the remaining ODEs. In turn, fAC is partitioned
as:

(39) fAC =

j
fRB

fUA

ff

The vector fRB denotes the system of rotor blade flapping
equations. It consists of Eq. (36) written once for each
blade, e.g., a total of 8 first-order ODEs for a 4-bladed ro-
tor. The vector fUA denotes the system of unsteady aerody-
namic equations. It consists of four ODEs, two from Eq. (20)
and two from Eq. (22) for each blade cross section. There-
fore, if the rotor has Nb blades, and the unsteady aerody-
namic model is written at Nc cross sections for each blade,
then the total number of ODEs in fUA is 4NbNc. The corre-
sponding output equations, Eq. (21) and Eq. (23), complete
the model.

The unsteady aerodynamic equations are coupled with
the blade flap equations because they determine the local
lift coefficient, and therefore the flap moment acting on the
blade. They couple with the wake equations again by de-
termining the spanwise distribution of blade lift, and there-
fore of circulation, which affects the strength of the tip vor-
tex. Conversely, the blade flap equations and the wake
equations couple with the unsteady aerodynamic equations
by determining the angle of attack α in Eq. (21), and the
change in vertical velocity Δwg in Eq. (23), respectively.

The state vector x is partitioned as:

(40) x =

j
xFW

xAC

ff

where xFW contains the states of the free-vortex wake. The
vector xAC contains all the other states of the model, and
in the present study is defined as

(41) xAC =

j
xRB

xUA

ff
.

The vector xRB contains the rotor blade flapping states. For
example, for a four-bladed rotor it is:

(42) xT
RB =

» ∗
β1

∗
β2

∗
β3

∗
β4 β1 β2 β3 β4

–

The vector xUA contains the unsteady aerodynamic states.
For a four-bladed rotor it is partitioned as:

(43) xT
RB =

h
xT

UA1 xT
UA2 xT

UA3 xT
UA4

i
where the numerical subscript denotes the blade. The vec-
tor xUAi for the i-th blade in turn is partitioned as:

(44) xT
UAi =

h
xT

UAi1 xT
UAi2 . . .xT

UAin

i
where the second subscript denotes the cross-section. Fi-
nally, the vector xUAij of aerodynamic states at the j-th
cross-section of the i-th blade is given by:

(45) xT
UAij = [x1 x2 z1 z2]ij
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where x1 and x2, and z1 and z2, are the states that appear
in Eq. (21) and Eq. (23), respectively. Therefore, if the ro-
tor has Nb blades, and the unsteady aerodynamic model is
written at Nc cross sections for each blade, then the total
number of elements in xUA is 4NbNc.

3. Solution Techniques

3.1. Numerical Integration of the Equations

The ODEs making up the state-space free-vortex wake model
can be integrated in time (or azimuth angle) with any ODE
solver. These ODEs are in the explicit form ẋ = f(x, t),
however, in the present study, they are implemented in the
more general implicit form f(ẋ,x, t) = 0. This reduces the
number of suitable ODE solvers and increases the compu-
tational effort [13], but greatly simplifies the coupling with
modern rotorcraft dynamic models that are based on non-
linear finite elements and multibody dynamics.

Two ODE solvers were used in the present study. The
first is DASSL, Ref. [32], a variable-step, variable-order DAE
solver based on backward difference formulas, which can
solve a system of implicit ODEs as a special cases of DAEs
with no algebraic equations. The second is the Hughes–
Hilber–Taylor (HHT) method [33], which is a fixed-order in-
tegration scheme used to solve systems of second-order
differential equations and is typically associated with struc-
tural dynamic calculations. The method was implemented
in the version proposed by Negrut et al. for systems of si-
multaneous first- and second-order ODEs [34].

The wake equations are integrated in time to obtain two
types of solution, namely, steady-state and transient so-
lutions. The former are appropriate for steady-state flight
conditions, and are obtained by starting the integration with
some initial wake geometry, typically from a prescribed wake
solution or from the free-vortex wake solution of a similar
problem. The difference between the initial and the true
solutions generates a numerical transient. The integration
then continues until this transient dies out and a periodic
solution is achieved as indicated by some convergence cri-
terion. In the present study, the convergence criterion is
based on the absolute change of the wake geometry be-
tween successive revolutions (n and n − 1), i.e.,
(46)

RMSn:n−1 =

vuut 1

3NvfNζ

NvfX
i=1

NζX
j=1

3X
k=1

“
rn

i,j,k − rn−1
i,j,k

”2

which must be below some given value, RMSn:n−1< ε, to
signify convergence. In some flight conditions a precisely
periodic wake geometry does not exist, and the error de-
creases initially, but then oscillates in an aperiodic manner
inside a convergence band. When this occurs, the integra-
tion is terminated arbitrarily, a few revolutions after the error
has stopped decreasing monotonically.

The second type of solution is a truly transient solution,
in which the flight condition is altered, for example, by a
time-varying change in rotor controls. In this case, the gov-
erning ODEs are integrated starting from the steady-state
solution, and until desired.

It should be pointed out that a by-product of the present
state-space wake formulation is a new methodology for a

true “tight” coupling between the free-wake model and the
rotor-fuselage equations. In fact, they can all be solved
simultaneously as a single system using the same ODE
solver. Therefore, there is no need for the separate integra-
tion of wake and rotor-fuselage equations, with periodic re-
synchronizations of the solution (which is the basis of cur-
rent “tight” coupling methodologies). Additionally, the MOL
can be applied to most CFD problems of interest to the ro-
torcraft community, and therefore it can also provide a new
methodology for true tight CFD/CSD coupling. In this case,
however, particular care should be used in the generation of
reduced-order models, as the baseline state-space models
could be prohibitively large.

3.2. Linearized Models

With the free-vortex wake formulated as a system of ODEs,
it is straightforward to extract a linearized state-space model,
for example using conventional numerical perturbation tech-
niques. Begin by setting to zero the first-order differential of
f :

(47) 0 = df =
∂f

∂x

˛̨̨
˛
0

dx +
∂f

∂ẋ

˛̨̨
˛
0

dẋ +
∂f

∂u

˛̨̨
˛
0

du +
∂f

∂ψ

˛̨̨
˛
0

dψ

where the subscript “0” indicates that the derivatives are
evaluated at a steady-state condition x(ψ) = x0(ψ), ẋ(ψ) =
ẋ0(ψ), u(ψ) = u0(ψ), and ψ = ψ0. In general, all matrices
and vectors will be a function of blade azimuth ψ. Defining
now:

A1(ψ)
def
=

∂f

∂x

˛̨̨
˛
0

A2(ψ)
def
=

∂f

∂ẋ

˛̨̨
˛
0

B1(ψ)
def
=

∂f

∂u

˛̨̨
˛
0

F1(ψ)
def
=

∂f

∂ψ

˛̨̨
˛
0

(48)

and changing the infinitesimal increments d(. . .) to small fi-
nite increments Δ(. . .), the linearized system can be rewrit-
ten as

(49) A1(ψ)Δx + A2(ψ)Δẋ + B1(ψ)Δu + F1(ψ)Δψ = 0.

where all the terms can be obtained numerically, using finite-
difference approximations. For example, using forward dif-
ferences, the i-th column of the matrix A(ψ) at the azimuth
ψk is given by:

{A1(ψk)}i

def
=

∂f

∂xi

˛̨̨
˛
0

≈ Δf

Δxi

˛̨̨
˛
0

=
f (x0 + hei, ẋ0,u0; ψk) − f (x0, ẋ0,u0; ψk)

h

(50)

where h is a small increment, and ei is a vector with all
elements equal to zero except for the i-th, which is equal
to one. The matrices A2(ψk) and B1(ψk), and the vector
F1(ψk) are calculated in the same way. Finally, Eq. (49)
can be rewritten as

(51) Δẋ = A(ψ)Δx + B(ψ)Δu + F(ψ)Δψ

with A(ψ) = −A−1
2 (ψ)A1(ψ), B(ψ) = −A−1

2 (ψ)B1(ψ), and
F = A−1

2 (ψ)F1(ψ). The stability of the system can now
be assessed by examining the eigenvalues of the A-matrix
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averaged over one rotor revolution, or the characteristic ex-
ponents of Floquet theory if periodicity is taken into account.

The inflow λ does not appear explicitly in the linearized
model, although its effects are fully taken into account. If
desired, explicit perturbation inflow information can be ex-
tracted by adding the equivalent of an output equation to
Eq. (51), which would take the form:

(52) Δλ = C(ψ)Δx + E(ψ)Δψ

where the vector Δλ contains the inflow perturbations at a
number of preassigned locations, e.g., at a series of span-
wise cross-sections of the blade. In this case, the output
matrix C(ψ) and the vector E(ψ) could be obtained numer-
ically, using finite-difference approximations, in the same
way as for the state-space matrices A(ψ) and B(ψ). Be-
cause the inflow is calculated anyway as part of the extrac-
tion of A(ψ) and B(ψ), the matrix C(ψ) and the vector E(ψ)
can be calculated at the same time with minimum additional
computational effort.

4. Reduced-Order Free-Vortex Wake

The application of the MOL to the governing wake equa-
tions can result in a large number of states. For example,
if the wake of a four-bladed rotor is modeled using a single
tip vortex per blade, and each vortex is discretized in seg-
ments of Δζ = 5◦ wake age, and assumed to have a length
equal to four rotor revolutions, or ζ = 1440◦, then the total
number of states will be 4 × 288 × 3 = 3456. Therefore, it is
important to explore the possibility of reducing the order of
the system of wake ODEs through appropriate coordinate
transformations.

4.1. Basic Formulation

The order reduction is based on the assumption that the
position of the vortex collocation points, and therefore, the
geometry of the wake can be approximated by a linear com-
bination of suitable shape functions:

(53) rk(ψ, ζ) =

NmX
i=1

ci(ψ)φi(ζ)

where φi(ζ) is the i-th shape function, which depends only
on wake age, ci(ψ) is the i-th generalized coordinate, which
depends only on blade azimuth, and Nm is the number of
terms (or modes) in the series. The coordinates ci(ψ) be-
come the state variables of the reduced-order model.

Equation (53) can be written for a discrete number of
points in matrix form as

rk(ψ, ζ) =

2
64

φ1(ζ1) · · · φNm(ζ1)
...

. . .
...

φ1(ζNζ ) · · · φNm(ζNζ )

3
75

8><
>:

c1(ψ)
...

cNm(ψ)

9>=
>;

k

=Uck(ψ)

(54)

Substituting this expression into Eq. (11) gives

(55) Uċk(ψ) = −[Aζ ]Uck(ψ) +
1

Ω
Vk[c(ψ)]

where the notation Vk[c(ψ)] simply indicates that the veloc-
ity vector V is now a function of the reduced coordinates ck.
Premultiply by UT to obtain

(56)
“
UT U

”
ċk(ψ) = −UT [Aζ ]Uck(ψ) +

1

Ω
UT Vk[c(ψ))

which is the reduced-order system of wake equations, of
size Nm.

If the wake geometry rk(0, ζ) at ψ = 0 is known, then
the initial conditions ck(0) can be obtained from Eq. (54)
with ψ = 0:

(57)
“
UT U

”
ck(0) = UT rk(0, ζ)

If rk(0, ζ) is not available, then the integration of the reduced-
order wake ODEs can start from some approximate ck(0),
but the integration must continue until the numerical tran-
sient caused by the approximate initial conditions disap-
pears, and a steady-state solution is found.

The boundary conditions, i.e., the conditions for zero
wake age, can be found from Eq. (53) with ζ = 0, i.e.,

(58) rk(ψ, 0) =

NmX
i=1

ci(ψ)φi(0)

or, in matrix form:

(59) rk(ψ, 0) =
ˆ

φ1(0) · · · φNm(0)
˜

8><
>:

c1(ψ)
...

cNm(ψ)

9>=
>;

k

This equation is used to satisfy the boundary conditions ex-
plicitly at each time step.

4.2. Basis Functions

Several types of shape functions were explored, including
the eigenvector of the full-order linearized matrix A(ψ), av-
eraged over one rotor revolution, Chebyshev polynomials,
and Fourier series.

Conventional Chebyshev polynomials Tn(x) were used,
i.e.,
(60)

φn(ζ) = Tn(x) = cos(n arccos(x)) x = 2

„
ζ

ζmax

«
− 1

where ζmax is the total length of the trailed vortex.
The third set of shape functions consisted of Fourier se-

ries augmented by constant and linear terms. Two slightly
different sets were used. In the first set, the period is the
total length [0, ζmax] of the trailed vortex:
(61)

φ1 =

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

φ1(ζ)
φ2(ζ)

...
φNm/2(ζ)

φNm/2+1(ζ)
...

φNm−1(ζ)
φNm(ζ)

...

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

=

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

1
cos(2πζ/ζmax)

...
cos[πζ (Nm − 2) /ζmax]

sin(2πζ/ζmax)
...

sin[πζ (Nm − 2) /ζmax]
ζ/ζmax

...

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;
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In the second set the period is the length [0, 2π] of one
revolution of the trailed vortex:
(62)

φ2 =

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

φ1(ζ)
φ2(ζ)

...
φNm/2(ζ)

φNm/2+1(ζ)
...

φNm−1(ζ)
φNm(ζ)

...

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

=

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

1
cos(ζ)

...
cos[(Nm − 2) ζ/2]

sin(ζ)
...

sin[(Nm − 2) ζ/2]
ζ/ζmax

...

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

.

5. Results and Discussion

This section presents three types of numerical results ob-
tained with the SSFW model, namely: (i) converged solu-
tions for steady-state conditions; (ii) eigenvalues of the lin-
earized system; (iii) transient wake response to pitch inputs.
The converged and the transient solutions are compared
with the finite-difference-based MFW, which is taken as the
reference solution.

Unless specified otherwise, all the results in this pa-
per refer to the coupled blade/wake/unsteady aerodynamic
model with the following parameters: number of blades Nb =
4; length of each trailed tip vortex NWT = 3 rotor revolutions,
for a total wake age ζmax = 1080◦ and Nζ = 216 collocation
points, spaced Δζ = 5◦ apart; and unsteady aerodynamic
model applied at Nc = 10 equally spaced spanwise stations
for each blade. This results in 4 × 216 × 3 = 2,592 states
for the wake, 160 states for unsteady aerodynamics, and 8
states for blade flapping, for a total of 2760 states.

Also, unless specified otherwise, the control angles for
the hover and axial flight cases are: collective θ0 = 28◦, lat-
eral cyclic θ1c = 0◦, longitudinal θ1s = 0◦, and longitudinal
shaft angle αs = 0◦. The corresponding values for the for-
ward flight cases are: θ0 = 28◦, θ1c = 0◦, θ1s = -5◦, and αs =
5◦. The blades have a linear twist, θTW , or −18◦. Note that
these angles do not generally correspond to trimmed con-
ditions. In fact, while the control angles are prescribed, ro-
tor force and moment quantities, such as CT /σ, take what-
ever values result from the converged wake solution with the
given control. This was done because the primary objec-
tive for the results shown in this section was to evaluate the
agreement between the new state-space wake and those of
the existing finite-difference version. Any discrepancy be-
tween the two versions would have resulted in different trim
solutions, and therefore in additional differences not directly
related to the solution techniques.

In all figures, the results marked with “MOL” are those
obtained using the state-space free-vortex wake. The re-
sults marked with “PC2B” are those obtained using the ex-
isting PC2B-based, finite-difference, MFW model.

5.1. Converged Wake Solutions

This section presents converged wake solutions, obtained
by integrating the governing equations in time, starting from
an initial geometry and proceeding until the change in ge-
ometry between successive revolutions falls below a certain

threshold, see Eq. (46). The initial wake geometry is the
rigid wake solution, Eqs. (14)-(16).

5.1.1. Full-Order State-Space Wake

Five flight conditions were considered, namely, three hover
and axial flight conditions (λc = 0.05, 0, -0.025), and two
forward flight conditions (μ = 0.15, 0.30).

The side views of the wake geometries obtained us-
ing the two methods are shown in Fig. 1 for the case of
hover. The root mean square of the error (RMSE) is also
shown in the figure to provide a global quantitative mea-
sure of the agreement between the state-space wake and
the finite-difference wake. The results show that the agree-
ment is excellent at the rotor disk and up to about half a
rotor radius and then it deteriorates somewhat further down-
stream. These discrepancies coincide with increased vor-
tex bundling, which, however, is not necessarily physical
and can be caused by truncating the wake prematurely with
no far wake boundary conditions, as in this example.

In the climb case, Fig. 2, the SSFW geometry shows
better agreement with the MFW over the majority of the
wake with a much lower RMSE. Only slight discrepancies
are seen toward the bottom of the wake where very little
bundling takes place. In the descent case (Fig. 3) on the
other hand, the bundling intensifies as compared with the
hover case, and the RMSE between the two methods is the
highest for the hover and axial flight conditions, although
there is still very good agreement at the rotor disk and just
below it.

-2.5 
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-1.5 

-1 

-0.5 
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0.5 

-1.5 -1 -0.5 0 0.5 1 1.5 

Z
 /
 R

 

X / R 

PC2B 

MOL 

�
c
 = 0.00 

RMSE = 0.20481 

Figure 1: Full-order wake geometry in hover λc = 0.0, com-
pared with PC2B solution (solid line).

Figures 4 and 5 show, respectively, the wake geome-
tries for forward flight at μ = 0.15 and 0.30. In each fig-
ure, the top, middle, and bottom plots show the side, rear,
and top views, respectively. At μ = 0.15 there is excellent
agreement within about half a rotor radius. Further down-
stream, the SSFW shows bigger differences with respect to
the MFW. A better agreement, however, might be obtained
by using longer trailed vortices and a finer discretization for
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Figure 2: Full-order MOL wake geometry in a climb λc =
0.05, compared with PC2B solution (solid line).
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Figure 3: Full-order MOL wake geometry in a descent λc =
-0.025, compared with PC2B solution (solid line).

the SSFW. The trends for the μ = 0.30 case are similar, but
the agreement between the two methods is much better, as
indicated by the lower value of the RMSE.

From these results, it appears that the agreement be-
tween the two methods improves with increasing flight speed
(in axial or forward flight). Higher free-stream velocities in-
crease the separation distance between adjacent vortices,
which weakens the contribution of the mutually-induced ve-
locities acting on each vortex filament as compared the ef-
fects of the free-stream velocity. Therefore, the wake is
more likely to converge to a periodic geometry, possesses
fewer distortions from the initial rigid wake, and so it is eas-
ier to numerically capture the physical wake behavior.

Figures 6 through 10 show spanwise inflow distributions
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Figure 4: Full-order MOL wake geometry in forward flight μ
= 0.15, compared with PC2B solution (solid line)
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Figure 5: Full-order MOL wake geometry in forward flight μ
= 0.30, compared with PC2B solution (solid line)

at 90-degree azimuth intervals for the five flight conditions
and converged wake geometries previously shown in Figs. 1
through 5. The four curves for the hover and axial flight
cases are essentially superimposed in the scale of the fig-
ures.
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Figure 6: Spanwise inflow distribution for the full-order MOL
and PC2B solutions in hover at 90◦ azimuth intervals.
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Figure 7: Spanwise inflow distribution for the full-order MOL
and PC2B solutions in a climb with λc = 0.05 at 90◦ azimuth
intervals.
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Figure 8: Spanwise inflow distribution for the full-order MOL
and PC2B solutions in a descent with λc = - 0.025 at 90◦

azimuth intervals.

Figures 6 through 10 show spanwise lift distributions at
90-degree azimuth intervals for the same five flight con-
ditions and converged wake geometries. Again, the four
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Figure 9: Spanwise inflow distribution for the full-order MOL
and PC2B solutions in forward flight μ = 0.15 at 90◦ azimuth
intervals.
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Figure 10: Spanwise inflow distribution for the full-order
MOL and PC2B solutions in forward flight μ = 0.30 at 90◦

azimuth intervals.

curves for the hover and axial flight cases are superimposed
in the scale of the figures.

Taken together, Figs. 6 through 15 clearly indicate that
the differences between the SSFW and the MFW geome-
tries in the downstream regions of the wake have a negligi-
ble influence on the spanwise lift and inflow distributions in
all five flight conditions. The excellent agreement between
the wake geometries up to a distance of at least half a ro-
tor radius is sufficient to ensure nearly identical blade inflow
and lift distributions.

5.1.2. Reduced-Order State-Space Wake

Three types of modes (or shape functions) were considered
to reduce the order of the state-space wake model, namely,
eigenvectors of the averaged A(ψ) matrix, Chebyshev poly-
nomials, and Fourier series. The results presented in this
section all refer to the Fourier series based shape functions,
which proved the most successful of the three.

As a preliminary step to actual wake geometry calcula-
tions, and to determine how many functions would be re-
quired to approximate the wake geometry, the wake vor-
tices corresponding to MFW converged solutions for all five
flight conditions were interpolated using the Fourier-based
shape functions of Eq. (61). A single-bladed rotor was used
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Figure 11: Spanwise lift distribution of the full-order MOL
and PC2B solutions in hover at 90◦ azimuth intervals.
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Figure 12: Spanwise lift distribution of the full-order MOL
and PC2B solutions in climb λc = 0.05 at 90◦ azimuth inter-
vals.
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Figure 13: Spanwise lift distribution of the full-order MOL
and PC2B solutions in descent λc = -0.025 at 90◦ azimuth
intervals.

for these preliminary calculations. The relative accuracy be-
tween the interpolated solution and PC2B solution for vary-
ing mode number is shown in Fig. 16 in terms of the RMSE.
By inspection, the steep climb case has a low spatial (or
wake age) frequency as indicated by its high accuracy at
low mode number. The accuracy decreases and the spatial
frequency increases when moving from hover to descent.
In forward flight the error and spatial frequency reach their
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Figure 14: Spanwise lift distribution of the full-order MOL
and PC2B solutions in forward flight μ = 0.15 at 90◦ intervals
around the azimuth.
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Figure 15: Spanwise lift distribution of the full-order MOL
and PC2B solutions in forward flight μ = 0.30 at 90◦ intervals
around the azimuth.

highest values because of the proximity of vortices and the
strengths of their interactions.

The RMSE between the full-order and reduced-order
MOL solution for actual wake calculations, and for varying
number of modes is shown in Fig. 17. The results cover
the three hover and axial flight conditions, and the two for-
ward flight conditions. There is a clear decrease in the error
for all flight conditions around the eighth mode. This oc-
curs because the frequency of the reduced-order formula-
tion matches up exactly with the frequency of the boundary
conditions. For example, three wake turns are used in this
analysis, so for the wake geometry to match up with the
one-per-rev boundary conditions then three harmonics (or
6 functions) plus a constant and a linear term are needed,
for a total of eight modes. Increasing the number of modes
slowly decreases the approximation error, although not al-
ways monotonically for hover and descending flight condi-
tions.

Examples of reduced-order wake geometries in hover,
axial and forward flight using the Fourier series-based shape
functions can be seen in Figs. 18 through 24. The hover ge-
ometry is shown in Fig. 18 (for clarity, only one trailed vortex
is shown). The 8-mode solution is not very accurate after
the first revolution. The 20-mode solution is much closer,
and the 40-mode solution is essentially indistinguishable
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Figure 16: Root mean square of the interpolation error of
converged PC2B geometries as a function of number of
modes.
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Figure 17: Root mean square of the error between the full-
order MOL solution and reduced-order MOL solution as a
function of number of modes.

from the full-order solution. A 40-mode solution for a four-
bladed rotor consists of 4 × 40 × 3 = 480 ODEs, compared
with the 2592 ODEs of the full-order wake, i.e., a reduction
of 81% of the number of states.

Fewer modes are needed to match the full-order climb
geometry (Fig. 19) and just eight modes are sufficient. Con-
versely, slightly more modes than for the hover case are
needed to capture precisely the wake geometry in the de-
scending flight case, as shown in Fig. 20. In forward flight
at μ = 0.15, eight modes can easily capture the x and y dis-
placements of the wake geometry, as shown in Fig. 21. As
to the z-coordinate, 8 modes are sufficient to capture the
general behavior of the vortex wake, but as many as 60 are
needed to capture all the details (Fig. 22), which shows the
z displacements of the wake as a function of wake age, ζ.
The same behavior can be observed at μ = 0.30, as shown
in Figs. 23 and 24.

Taken together, Figs. 18 through 24 indicate that the
number of modes required to capture the wake geometry
varies not only with the flight condition, but also with the
geometrical component of the vortex wake that is being ap-
proximated. The gross geometrical features can be cap-
tured with as few as four to eight modes, and this may be
sufficient to study problems that are driven by integrated
rotor quantities, such as flight dynamics problems. More
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Figure 18: Reduced-order wake geometry in hover using
Fourier based shape functions; solid line: full-order MOL
solution, λc = 0.0.

modes will be necessary for problems that require more ac-
curate local descriptions, such as rotor vibration and loads
predictions.
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Figure 19: Reduced-order wake geometry in hover using
Fourier based shape functions; solid line: full-order MOL
solution, λc = 0.05.
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Figure 20: Reduced-order wake geometry in hover using
Fourier based shape functions; solid line: full-order MOL
solution, λc = -0.025.

Figures 25 through 29 show converged wake geome-
tries computed using a reduced-order model based on the
second type of Fourier series-based shape functions given
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Figure 21: Reduced-order wake geometry in forward flight
using Fourier based shape functions; solid line: full-order
MOL solution, μ = 0.15.
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Figure 22: Reduced-order wake geometry in forward flight
using Fourier based shape functions; solid line: full-order
MOL solution, μ = 0.15.
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Figure 23: Reduced-order wake geometry in forward flight
using Fourier based shape functions; solid line: full-order
MOL solution, μ = 0.30.

by Eq. (62). These functions have the fundamental period
T = 2π, i.e., only one rotor revolution instead of T equal
to the full length of the trailed vortex, T = 6π, as in the
previous set of results. Each figure shows the x-, y-, and z-
components of the vortex wake displacements as a function
of wake age for each of the five flight conditions analyzed in
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Figure 24: Reduced-order wake geometry in forward flight
using Fourier based shape functions; solid line: full-order
MOL solution, μ = 0.30.

-1.5 

-1 

-0.5 

0 

0.5 

1 

1.5 

0 360 720 1080 

X
 /
 R

 ,
 Y

 /
 R

 ,
 Z

 /
 R

 

Wake Age (deg) 

MOL Nm = 4 

��

��

��

Figure 25: Reduced-order wake geometry in hover using
Fourier based shape functions with period T = 2π; solid
line: full-order MOL solution, hover.

this section. The figures show the special case of 4 modes,
i.e., 4 ODEs per coordinate. In all cases, this very low-order
model captures well the x and y coordinates of the vortices,
and the basic behavior in the z coordinate. This shows that,
through a careful selection of the family of shape functions,
it is possible to obtain very low-order free-vortex wake mod-
els of good fidelity.

5.2. Eigenvalues

With the free-vortex wake in state-space form, it is straight-
forward to extract linearized dynamic models. This sec-
tion presents eigenvalues in the five flight conditions used
throughout the paper.

Full-order, SSFW eigenvalues (or poles) are shown in
Figs. 30 through 34 for hover, climb, descent, and forward
flight at μ = 0.15 and 0.30. In all cases, the general arrange-
ment of the poles is qualitatively similar to that of the poles
of the numerical scheme used to discretize ζ in the method
of lines. In Ref. [13], where simple rigid wake solutions
were calculated, this trend was clear. In the present study,
the effect of the nonlinearities and the couplings introduced
by the velocity vector V[r(ψ, ζ)] on the right-hand-side of
the governing wake equations (Eq. (1)) is to slightly alter
this pattern. As vortex bundling and mutual interactions
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Figure 26: Reduced-order wake geometry in hover using
Fourier based shape functions with period T = 2π; solid
line: full-order MOL solution, λc = 0.05.
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Figure 27: Reduced-order wake geometry in hover using
Fourier based shape functions with period T = 2π; solid
line: full-order MOL solution, λc = -0.025

become stronger, as in descent (Fig. 32) and low-speed,
forward flight (Fig. 33) flight conditions, the eigenvalues be-
come much more diffuse and spread out. For the forward
flight cases, it should be pointed out that the poles are those
of the state matrix A(ψ) averaged over one revolution, i.e.,
the effects of periodicity have been neglected. The strength
of such effects, and therefore the possible need for Floquet
theory, will be explored in upcoming phases of the present
research.

It should also be noted that the poles in the figures are
coupled wake/unsteady aerodynamics/rotor flapping. These
are the first such poles presented in the literature, and are
made possible by the availability of the new state-space
free-vortex wake model.

Reduced-order poles have also been computed for all
five flight conditions, and increasing number of modes, but
the results are not shown here for brevity. In general, the
reduced-order poles follow the same pattern as the full-
order poles. For small numbers of modes, the poles closest
to the origin are retained. As the number of modes increase,
more poles appear away from the origin, progressively form-
ing the same circular pattern as the full-order case
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Figure 28: Reduced-order wake geometry in forward flight
using Fourier based shape functions with period T = 2π;
solid line: full-order MOL solution, μ = 0.15.
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Figure 29: Reduced-order wake geometry in forward flight
using Fourier based shape functions with period T = 2π;
solid line: full-order MOL solution, μ = 0.30

5.3. Transient Solution

The coupled rotor/free-vortex wake/state-space model was
compared with the equivalent finite-difference model for a
transient response case. In this case, the collective was
ramped from 0◦ to 12◦ at a pitch rate of 200◦/sec (note that
these conditions are similar to those of the classic test by
Carpenter and Fridovich [35]). The time history of the ro-
tor thrust during the transient is shown in Fig. 35. The full-
order SSFW and MFW solution are seen to be in nearly per-
fect agreement. The reduced-order solution with 60 modes
matches very well the full-order response except for some
small discrepancies in the second following the end of the
thrust transient (from about 1.5 to about 2.5 sec) and some
high frequency oscillations toward the end of the simulation.
The solution with 8 modes is also in reasonably good agree-
ment. The solution with 4 modes misses the CT drop at the
end of the transient, but still captures the first portion of the
transient and the peak value.

6. Conclusions

This paper has presented the initial development of a free-
vortex wake model in state-space form. Because it is based
on vortex theory the model is more rigorous than momentum-
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Figure 30: Eigenvalues of the full-order MOL solution in
hover.

−25 −20 −15 −10 −5 0 5
0

2

4

6

8

10

12

Im
a
g
in

a
ry

 A
x
is

Real Axis

Figure 31: Eigenvalues of the full-order MOL solution in
climb λc = 0.05.
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Figure 32: Eigenvalues of the full-order MOL solution in de-
scent λc = -0.025.

based theories for all applications for which an accurate,
first-principles representation of the details of the rotor wake
is necessary. With the new state-space model, free-vortex
wake poles can now be extracted, both for the uncoupled
(wake only) and coupled (wake, rotor, and unsteady aero-
dynamics) cases. Furthermore, free-vortex wake modeling
can now be included in all the applications that require rotor-
craft models in the mathematical form ẋ = Ax + Bu, such
as aeroelastic stability analyses, handling qualities studies
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Figure 33: Eigenvalues of the full-order MOL solution in for-
ward flight μ = 0.15.
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Figure 34: Eigenvalues of the full-order MOL solution in for-
ward flight μ = 0.30.
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Figure 35: Rotor CT response to a ramp change in collec-
tive at 200 ◦/second; PC2B, full-order MOL and reduced-
order MOL solutions.

(poles, bandwidth/delay), flight control system design, and
active rotor control.

The main conclusions from the study are:

1. The Method-of-Lines is a viable methodology to for-
mulate rotor free-vortex wake models in state-space
form, starting from the governing equations of the vor-
tex wake written in partial differential equation form.

2. Good agreement of wake geometry with finite-difference

solutions near the rotor disk can be obtained, whereas
away from the rotor disk the quality of the agreement
depends on flight condition, solution method, and other
solution details.

3. Excellent agreement of blade spanwise distributions
of inflow and lift can be achieved, even in case of wake
geometry mismatches away from the rotor disk.

4. No numerical convergence problems appear to exist,
in that the numerical solution did not become unstable
for any flight conditions, including hovering flight.

5. Excellent agreement with finite-difference solution can
be obtained for transient wake conditions such as flight
maneuvers.

6. Substantial reductions in the size of the state-space
free-vortex wake model can be achieved with simple
Fourier series-based transformations. However, the
number of ODEs required depends on the application
and the complexity of the wake geometry .
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