THIRTEENIH EUROPEAN ROTORCRAFT FORUM
6.9

Paper No. $98=$

THE DETERMINATION OF ROIOR BLADE LOADING FROM MEASURED STRAINS

S.S. LIU G.A.O. DAVIES IMPERIAL COLLEGE OF SCIENCE AND TECHNOLOGY LONDON, U.K.

September 8 - 11, 1987
ARLIS, FRANCE

THE DETERMINATION OF ROTOR BLADE LOADING FROM MEASURED STRAINS

S.S. Liu* and G.A.O. Davies

Imperial College of Science and Technology
Londion SW7 2BY, U.K.

Abstract

In this paper, an approach to the determination of rotor blade loading from measured strains is presented. The basic idea is to use the orthogonality of the blade mode shapes (displacement and/or moments) for solving this inverse problem. Both loading and response (bending moments and displacement) are regarded as series in the orthogonal mode shapes. The finite elemert method is used for structure dynamic analysis.

The disadvantage of the least-squares procedure is discussed, and the superiority of the "Orthogonal Analysis method" is demonstrated.

The primary numerical study shows that the approach is feasible and worthy of further exploitation in highly complex loading and structure.

1. Introduction

Predicting rotor biade loading continues to be of primary importance for providing and evaluating improved rotor designs. A long-term effort has been made to advance the technology associated with the aerodynamic and aeroelastic behaviour of helicopter rotors [1] [2] [3]. In view of the achievements which have been made and the problems which still exisit, it seems possible and worthwhile to combine the 'inverse' problem with the 'direct' problem in order to seek an engineering approach to determine rotor blade loadings, including rotor loads, blade stresses, and hub forces and moments. For example, based on aerodynamic theory and experiment, we can develop an aerodynamic model and derive relevant formulae from it to predict rotor blade airloads. The model should include all significant effects and the fommiae should ideally be simple. There will inevitably be some coefficients and quantities which are determined by identification technology from the test blade loadings, and the loadings need therefore to be deduced from measured strains on the tested blade -- that is the 'inverse' problem. After determing airloads, the blade stresses and the hub vibratory forces of a new rotorcan be calculated, this is the 'direct' problem. Perphaps these formulae, especially, the coefficients and quantities may be limited in some conditions, but they will be easily understood, trusted and can be conveniently used by designers within known limitations. It is this goal that the authors attempt to achieve.

It is obvious that the task is not an easy one, and much research work needs to be done in both the aerodynamics and the structural dynamics areas. This paper presents just part of the effort in the structural dynamics area: that is an approach to the determination of rotor blade loading from measured strains. The determination of airloads from strain guage measurements could of course also be used to gain insight into the nature of airloading distributions for the development of aeroelastic tailoring concepts and vibration reduction.

There are few publications on how to determine a distributed loading on a structure from the response. Tadghighi [4] has proposed a method to determine the aerodynamic loadings from the blade strains, but the author stated: "The accuracy of the results is unknown and the method has not been tested." The model was highly simplified, and could not obtain the response coefficients corresponding to blade modes. Hillary and Ewins $[5,6]$ reviewed the inverse problem and presented a technique which was shown to be successful under some conditions. Unfortunately some problems arose, especially, in the determination of distributed forces over a simple cantilever beam. In their study a harmonic distributed load was represented by discrete point forces and the least-squares method was used, but the results were not totally satisfactory.

A new approach is presented here in which we express both the loading and response as series in orthogonal mode shapes for displacement and/or moments. The "orthogonal analysis method", in this paper is shown to overcome the deficiency of the least-squares method.

The main aim of this paper is only to present the idea merioned in the first paragraph and an approach and to show its feasiblity; so the analysis is limited to the out-of-plane response and a numerical study is conducted using some simalated experimented data. All of the numerical results are insted in the form of tables to avoid the possibilty that curves conceal the slight differences among corresponding data.

2. Approach to blade loading Determination

The procedure for blade loading Determination from measured strains now follows. It should be stated that we are only dealing with the steady-state operating conditions, and here the finite element is used for the structural analysis.
i) Determine the bending moments $M(r, t)$ and their harmonic coefficients $M(r), M_{N C}(r)$ and $M_{N s}(r)$ from the blade strain gauge outputs:

[^0]$$
M(r, t)=M_{o}(r)+\sum_{N}\left[M_{N c}(r) \operatorname{Cos}(N \Omega t)+\underset{N S}{M(r)} \operatorname{Sin}(N \Omega t)\right]
$$
where
$r-$ the radial coordinate of the measured station
$t-$ time
Ω-- rotor rotational speed

This Fourier analysis is standard strategy and we will assune that this has been achieved using test measurements for moments at a sufficient number of radial stations.
ii) Calcualte generalized coordinates from the measured moments.

There are two methods in this step. One is the least-squares procedure and the other is the "brthogonal analysis method" using the orthogonality of the blade mode shapes (displacement and moments).
a) The least-squares procedure.

The measured bending moments at any particular radial station $r, M_{o}(r), M_{N c}(r)$ and $M_{N S}(r)$, may be expressed as
where $M_{R}^{(j)}(x)$ is the j th modal moments of the rotating blade (at rotational speed Ω), and is readily determined from the blade natural frequency and mode calculation; $q^{(j)}$ is the j th generalized coordinate, where superscript i represents the jth mode, and subscript R represents "Rotating"

Let

$$
\begin{aligned}
& {[q]=\left[\begin{array}{ccccc}
q_{0}^{(1)} & q_{1 c}^{(1)} & q_{1 s}^{(1)} & \ldots \ldots & q_{N c}^{(1)} \\
q_{N s}^{(1)} \\
q_{0}^{(2)} & q_{1 c}^{(2)} & q_{1 s}^{(2)} \ldots \ldots & q_{N c}^{(2)} & q_{N s}^{(2)} \\
\vdots & \vdots & \vdots & & \vdots \\
\vdots & \vdots \\
q_{0}^{(m)} & q_{1 c}^{(m)} & q_{1 s}^{(m)} \ldots \ldots . & q_{N c}^{(m)} & q_{N s}^{(m)}
\end{array}\right]}
\end{aligned}
$$

then the least-squares solution to [q] is given by:

$$
\begin{equation*}
[q]=\left(\left[N_{R}\right]^{T}\left[M_{R}\right]\right)^{-1}\left[M_{R}\right]^{T}[M] \tag{5}
\end{equation*}
$$

where n is the number of measured stations, m is the number of used modes and also that of the unirnown $q(j)_{\text {per }}$ harmonic component, and $n>m$.

The least-squares procedure is widely used as a "best fit" and is less susceptable to numerical oscillation than collocation where $n=m$. However it is still found that when the measured data [M] contain significant components of higher order than those used in the least-squares procedure then the results deteriorate and even those corresponding to the lower order modes are corrupted. In order to solve this problem, a new approach is presented using the orthogonality of the blade mode shapes (displacement and moments). In short, this is called "orthogonal analysis method".
(b) Orthogonal analysis methoa.

In this method the measured bending momnets $M_{0}(r), M_{N c}(r)$ and $M_{N s}(r)$ are not initially regarded as series in the rotating blade model moments M_{R} but as series in the non-rotating blade modal moments $M_{N R}^{(j)}$, i.e.

$$
\left.\begin{array}{c}
M_{o}(r)=\sum_{j} g_{0}^{(j)} M_{N K}^{(j)}(r) \\
M_{N C}(r)=\sum_{j} q_{N C}^{(j)_{N R}^{(j)}(r)} \\
M_{N S}(r)=\sum q_{N S}^{(j)} M_{N R}^{(j)}(r)
\end{array}\right\}
$$

Applying conventional orthogonal analysis to the moments, we obtain ;

$$
\begin{equation*}
g^{(j)}=\int_{0}^{L} \frac{1}{0 E(r)} M(r) M_{N R}^{(j)}(r) d r / \mathbb{R}_{j N R}^{2} I_{N R}^{(j)} \tag{7}
\end{equation*}
$$

where $g^{(j)}$ may be $g_{0}^{(j)}, g_{N c}^{(j)}$ and $g_{N S}^{(j)}$ corresponding to $M_{o}(r) . M_{N C}(r)$ and $M_{N S}(r) ; M(r)$ may be $M_{0}(r), M_{N c}(r)$ and $\mathrm{M}_{\mathrm{Ns}}(\mathrm{r})$;
and
$P_{j R}----$ the $j t h$ natural frequency of non-rotating blade;
$I_{N R}^{(j)}$ - --meneralized mass in the j th mode of non-rotating blade;
or
$P_{j N R}^{2} I_{N R}^{(j)}-\ldots-$ generalized stiffness in the jth mode of non-rotating blade;

$$
\text { EI }(r) \quad-\infty-- \text { bending stiffness. }
$$

Having $g^{(j)}$, the displacement $W(x)$ corresponding to the measured bending mements $M(r)$ can be calculated from :

$$
\begin{equation*}
[W]=\left[W_{\mathrm{NR}}\right][\mathrm{g}] \tag{8}
\end{equation*}
$$

where

$$
\begin{align*}
& {[g]=\left[\begin{array}{llllll}
(1) & & \\
g_{0}^{(1)} & g_{1 \mathrm{c}}^{(1)} & g_{1 \mathrm{~s}}^{(1)} & \cdots & g_{\mathrm{Nc}}^{(1)} & g_{\mathrm{Ns}}^{(1)} \\
g_{0}^{(2)} & g_{1 \mathrm{c}}^{(2)} & g_{1 \mathrm{~s}}^{(2)} & \cdots & g_{\mathrm{Nc}}^{(2)} & g_{\mathrm{Ns}}^{(2)} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
g_{0}^{(m)} & g_{1 \mathrm{c}}^{(\mathrm{m})} & g_{1 \mathrm{~s}}^{(\mathrm{m})} & \cdots & g_{\mathrm{Nc}}^{(\mathrm{m})} & g_{\mathrm{Ns}}^{(\mathrm{m})}
\end{array}\right]} \tag{9}
\end{align*}
$$

and
is the mode shapes of the non-rotating blade.
For a given blade, the same bending moments must correspond to the same displacement whether rotating or non-rotating. So the next analysis can be transformed to the rotating condititon.

Applying the orthogonal analysis to displacement, the unknown $q_{0}^{(j)}, q_{N c}^{(j)}$ and $q_{N s}^{(j)}$ can be obtained
from

$$
\begin{equation*}
[q]=\left[m_{e}\right]^{-1}\left[W_{F}\right]^{T}[m][w] \tag{12}
\end{equation*}
$$

where
[q] ---- the same as matrix (2)
(m] ----- mass matrix of the blade
[m_{e}] ---- generalized mass matrix of the rotating blade
[WR] -_--- the mode shapes of the rotating blade, similar to matrix (11)
[W] --w- displacement obtained from Equation (8)
It is important to note that the accuracy of the orthongonal analysis method in evaluating $\mathrm{g}^{(\mathrm{j})}$ should be independent of the number of modes which contained in the measured data M or used in $M_{N R}$, $W_{N R}$, W_{R}
(iii) Calculate the loading coefficient $\left[F_{j}\right]$ from the generalized coordinate [q].

The distributed blade loading, may now be expanded as a series in the mode shapes. In the commomly used finite element model, the external forces [F] arise naturally as

$$
\begin{equation*}
[F]=[m]\left[W_{R}\right]\left[F_{j}\right] \tag{14}
\end{equation*}
$$

where

$$
\left[F_{j}\right]=\left[\begin{array}{llllll}
F_{o}^{(1)} & F_{1 c}^{(1)} & F_{1 s}^{(1)} & \ldots & F_{N c}^{(1)} & F_{N s}^{(1)} \tag{15}\\
F_{o}^{(2)} & F_{1 c}^{(2)} & F_{1 s}^{(2)} & \ldots & F_{N c}^{(2)} & F_{N s}^{(2)} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
\cdot & \cdot & \cdot & & \cdot & \vdots \\
F_{o}^{(m)} & F_{1 c}^{(m)} & F_{1 s}^{(m)} & \ldots & F_{N c}^{(m)} & F_{N s}^{(m)}
\end{array}\right]
$$

The relationships between the reponses, generalized coordinate [q], and model force coefficient $\left[F_{j}\right]$ can be found from the forced vibration analysis of the blade as follcws :

$$
\left\{F_{0}^{(j)}\right\}=\left\{\begin{array}{c}
F_{0}^{(1)} \tag{16}\\
F_{o}^{(2)} \\
\vdots \\
F_{0}^{(m)}
\end{array}\right\}
$$

$$
\left[\left\{F_{i c}^{(j)}\right\}\left\{F_{i s}^{(j)}\right\}\right]=\left[\begin{array}{cc}
F_{i c}^{(1)} & F_{i s}^{(1)} \\
F_{i c}^{(2)} & F_{i s}^{(2)} \\
\cdot & \cdot \\
\cdot & \cdot \\
F_{i c}^{(m)} & F_{i s}^{(m)}
\end{array}\right]
$$

then

$$
\begin{align*}
& \left\{F_{0}^{(j)}\right\}=\left[P_{j R}^{2}\right]\left\{q_{0}^{(j \lambda}\right\} \tag{17}\\
& \left.\left[\left\{F_{i c}^{(j)}\right\}\left\{F_{i s}^{(j)}\right\}\right]=\left(F_{j}^{p^{2}}\right]-\left[(N \Omega)^{2}\right]\right)\left[\left\{_{i c}^{(j)}\right\}\left\{\left\{_{i s}^{(j)}\right\}\right]\right.
\end{align*}
$$

where $\left[P_{j R}^{2}\right]$ and $(N \Omega)^{2}$ are diagonal matrices whose elements are the square of the jth rotating blade
natural Erequency $P_{j R}^{2}$ and $N^{2} \Omega^{2}$ repectively.
Equation (17) is for an undanped system, but for damped systems, the relationship can be extended without any difficulty.
iv) Determine the loading $[F]$ from mode force coefficient $\left[F_{j}\right]$. After calculating [F_{j}], the loading $[F]$ can be obtained easily from Equation (14);

$$
[F]=[m]\left[W_{R}\right]\left[F_{j}\right]
$$

3. Numerical Study and discussion

As an example, a hingless rotor blade with anstant section is considered. Firstly, the natural Erequencies, the mode shapes for the displacement and the bending moments (in both non-rotating and rotating cases) are calculated using the finite element method. The other related quantities, such as generalized mass [m_{e}] and stiffness [K_{e}] are obtained simultaneously. 25 spanwise stations are used in all calculations.

1) The blade loadings [F] have been calculated in many test cases by using assumed measured bending momnets which are obtained from the given coefficients [q_{0}] multiplying the modal moments of the rotating blade $\left[M_{R}\right.$], however numerical results are presented here for only two cases. One is that the given bending moments only consist of the first four modal moments (case I). The other has the tenth order mode in adaition to the first four (case II). In Tables 1,2,3 and 4 , the given coefficients [q_{0}], the determined [q], $\left[F_{j}\right]$ and [F] are tabled for the above two cases respectively. For these results, the orthogonal analysis method is used in the second step of the procedure. When the least-squares method is used, and the number of selected modes $\geqslant 10$, the results are nearly the same.

In order to check accuracy, the dynamic reponse analysis is conducted by using the derived blade loading[F] for the same structure system. The results (mode force coefficient $\left[F_{j 1}\right]$ and response $\left[q_{1}\right.$] are tabled in Tables 5 and 6 respectively.

By conparing Table 1 with Table 2,3 with 5 , and 2 with 6 , we clearly see that the approach is feasible and the methods are accurate.
2) As we mentioned, the least-squares procedure, using given data incorporating large higher order modes, can produce poor results, even for the lower order modes. In table 7, the determined coefficients [q] are tabled corresponding to three successive approximations using two, five and eight modal moments respectively. The given data [q_{0}] are the same as Table 1 - case II. The results are clearly not good. On the other hand, the results from the orthogonal analysis method for the same cases, given in the Table 8, are much better and completely overcome the deficiency of the least-squares method.
3) It is obvious that the accuracy of this approach, especially when using the orthogonal analysis method in the second step, depends on the accuracy of the orthongonality analysis for the mode shapes (displacement and non-rotating modal moments). Therefore, it should be emphasised that the finite element method should be used for generating the orthogonal sexies. But it is not very easy to ensure the accuracy of the modal moments and the necessary orthogonality intergration. We have tried several ways and in this paper we have used the "Jynamic stiffness method "[7] for calculating modal moments and the concept of "the continuous mass finite element" [8] for the orchogonal analysis. The results of the orthogonality test for the mode shapes of both rotating and non-rotating displacements and non-rotating moments are given in the Table 9. They are $\left[W_{N R}\right]^{T}\left[K_{N}\right]\left[W_{N R}\right] .\left(\left[K_{N}\right]\right.$ is the stiffness matrix of non-rotating blade,$\left[W_{R}\right]^{T}[m]\left[W_{R}\right]$, and $\int_{0}^{L} \frac{1}{E I} M_{N R}^{(i)}(r) M_{N R}^{(j)}(r) d r$. The results are obviously very good and it is this which ensures the accuracy of the approach for the loading determination.
4. Summary and conclusion

At the begining of this paper, an idea was presented for seeking an engineering approach to determine rotor blade loadings by combining the "inverse" problem with the "direct" problem. A part of this inverse problem is to determine blade loading from measured strains, which is the main contents of this paper.

The approach presented in this paper is based on the mode superposition and the orthogonality analysis. The accuracy of the approach depends on the accuracy of measured strains and the number of measured stations, the number of used modes, the accuracy of the mode shape and bending moment calculation, and the accuracy of the orthogonality analysis.

When the measured moments contains some significant components of higher order than those used in the analysis, (for example a discontinuous bending monent ditribution), then the Ieast-squares procedure can produce poor results, even for the lower order modes. The "orthogonal analysis method" presented in this paper can overcone the drawiback, and ensure the accuracy of the generalized coordinate.

The accuracy of this approach has been demonstrated on a simple unifrom hingless rotor blade, and it now remains to show that this inverse solution works accurately and conveniently for complex realistically loaded and instrumented rotor blades.

5. Acknowledgement

The authors would like to thank Westland Helicopters, especially, Mr. R. E. Hansford and Mr.Wayland Chan, for their valuable help and Mr.I.Simons for his support during this work.

References

1. Alfred Gesscw, An assessment of Current Helicopter Theory in Terms of Early Developments, Fifth Nikolsky lecture, 41st Annual Forum of the American Helicopter Society, May 1985.
2. A.J.Landgrebe, overview of Helicopter Wake and Airloads Technology. AHS/NAI Seminar on "The Theoretical Basis of Helicopter Technology", November 1985.
3. J.J.Philippe, P.Roesch, A.M.Dequin and A.Cler, Recent Advances in Helicopter Aerodynamics, AHS/NAI Seminar on "The Theoretical Basis of Helicopter Technology", November 1985.
4. H.Tadghighi, An Investigation into Helicopter Rotor Noise using an Acoustic Wind tunnel. Ph.D Thesis, Southampton University 1983.
5. B.Hillary and D. Ewins. The use of Strain Gauges in Force Determination and Frequency Response Function Measurements, Presented at the 2nd International Modal Analysis Conference, 1984.
6. B. Hillary, Indirect Measurement of Vibration Excitation Forces. Ph.D Thesis, Imperial College, London 1983.
7. Liu Shoushen, Some approaches for improving the accuracy of nonuniform rotor blade dynamic internal force calculation, Presented at Tenth ERF, 1984.
8. Zhang Azhou, Lin Jiakeng. Using the finite element method with continuous mass elements to evaluate the natural Erequencies and modal shapes of vibration of dynamic systems, Journal of Nanjing Aeronautics Institute No 4, 1981.

TRABLE 1 Given Coefficients $\left[q_{0}\right]$

Case I

j	$q^{(j)}$	$q_{1 c}^{(j)}$	$q_{1 s}^{(j)}$
1	1.000000	2.022000	-. 100303
2	.500003	. 503300	-.055803
3	.000009	-. 019550	-. 374943
4	. 000007	-. 022930	. 017980
5	. 000000	. 000000	. 000000
6	. 000000	. 000030	. 300007
7	. 000000	. 000000	. 000000
8	.000003	. 000000	. 000003
9	.000007	. 000000	.000000
10	. 000003	. 000003	. 303000

j	$q_{0}^{(j)}$	$q_{1}^{(j)}$	$q_{1 s}^{(j)}$
1	1.004257	2.031697	-.159987
2	.503406	.574230	-.657557
3	.003906	-.019255	-.076084
4	.003297	-.022606	.017619
5	.003147	.000174	-.000154
6	.000084	.000194	-.000090
7	.000053	.000357	-.000057
8	.000035	.000043	-.000038
9	.000024	.000029	-.000027
10	.000017	.000311	-.000024

Case II

	$q^{(j)}$	$q_{1}^{(j)}$	$q_{15}^{(j)}$
1	1.007179	2.034600	-.157074
2	.503127	.573940	-.057996
3	.001153	-.018057	-.075895
4	.003107	-.022736	.017489
5	.003218	.000245	-.000083
6	-.000010	.000010	-.000184
7	.003112	.000127	.000003
8	.000045	.000053	-.000028
9	.000042	.000047	-.000009
10	.013226	.010221	.010185

Case I TABLE 3 Determined Force Coefficient $\left[F_{j}\right]$

j	$F_{0}^{(j)}$	$\mathrm{F}_{1 \mathrm{c}}^{(j)}$	$F_{1 s}^{(j)}$
1	1342.623951	329.809419	- 25.971113
2	4739.135697	4739.326521	-5433.333374
3	34.305432	-536.092132	-2053.617115
4	30.143552	-2259.017053	1757.135405
5	34.417257	40.049817	- 30.375957
6	39.773578	49.001537	-62.720867
7	45.382735	55.164751	-47.014897
8	51.172736	63.109051	-55.901057
9	56.753235	63.534551	-63.772953
10	59.933477	4:.217123	-55.323704

j	$F_{0}^{(j)}$	$F_{1 c}^{(j)}$	F (${ }_{\text {j }} \mathrm{S}$)
1	1344.517835	339.2323177	-:5.4032??
2	4735.903757	4730.407375	-5435.067523
3	41.575957	-330.142943	$-\underline{247.367381 ~}$
4	13.947387	-2222.965346	:750.787115
5	51.140551	57.289511	-17.436162
6	-4.804641	4.523615	-37.19326J
7	P7.575344	100.507513	2.327903
8	55.32358 ?	77.773037	-41.36702?
9	130.313723	112.097373	-23.443141
10	35973.309772	35877.7007う3	30747.065075

TABLE 4 Determined loading [F]

IABLE 5 Force Coefficient [$\mathrm{F}_{j 1}$]
Case I

j	$\mathrm{F}_{0}^{(j)}$	$\mathrm{F}_{1 \mathrm{c} 1}^{(\mathrm{j})}$	$\mathrm{F}_{1 \mathrm{~s} 1}^{(\mathrm{j})}$
1	1340.625844	329.809558	-25.971187
2	4739.123731	4739.310150	-5423.325304
3	34.805342	-030.097137	-2053.032431
4	30.145045	-2209.917032	1759.135410
5	34.413047	40.047889	-30.371355
6	37.773476	49.000135	-42.717313
7	45.875725	53.163314	-49.010629
8	51.135382	33.100531	-55.980218
9	55.749074	50.502330	-5.9807155
10	59.933870	41.214057	-90.817200

Case II

j	$\mathrm{F}_{0}^{(j)}$	$\mathrm{F}_{1 \mathrm{c} 1}^{(\mathrm{j})}$	$\mathrm{F}_{1 \mathrm{~s} 1}^{(\mathrm{j})}$
1	1344.465253	333.234033	-25.546742
2	4785.837515	4736.427748	-5496.713707
3	41.523439	-030.192218	-2647.127512
4	15.803154	-2283.010529	1755.036914
5	51.137133	57.257693	-17.461552
6	-4.852800	4.494057	-87.23535
7	97.574833	107. 789583	2.015039
8	05.777129	77.745738	-41.407091
9	103.280657	112.077927	-20.452034
10	36918.771442	35872.085539	36750.053743

Case $1 \quad$ TABLE 6 Generalized Coordinate $\left[q_{1}\right]$

j	$q_{o}^{(j)}$	$q_{1 \mathrm{c} 1}^{(j)}$	$q_{1 \mathrm{~s} 1}^{(j)}$
1	1.004257	2.031688	-.159987
2	.533400	.574278	-.057556
3	.003966	-.018255	-.076084
4	.003297	-.022636	.017619
5	.003147	.000174	-.000154
6	.000084	.000134	-.000090
7	.000053	.000057	-.000057
8	.000035	.000543	-.000038
10	.000024	.000020	-.000027

Case II

j	$q_{0}^{(j)}$	$q_{101}^{(j)}$	$q_{1}^{(j)}$
1	1.007170	2.034303	-.157373
2	.503127	.573932	-.657902
3	.001153	-.018057	-.075898
4	.000167	-.022736	.017488
5	.003218	.000245	-.000083
6	. .000019	.000039	-.000184
7	.000112	.000127	.000003
8	.000045	.000053	-.000023
9	.000042	.000047	-.000009
10	.013226	.010231	.010185

TABLI: 7 Determined Generalized coordinate [q] y least-squares procedure

j	q_{0}	$\mathrm{q}_{1 \mathrm{c}}$	$\mathrm{q}_{1 \mathrm{~s}}$
only first two modal moments			
1	. 695975	1.727378	-1.341325
2	. 513153	. 548778	-. 692038
only first five modal moments			
1	T.737462	1.809432	-. 372838
2	. 515747	. 584047	-.640053
3	-. 005734	-. 026234	-. 081674
	.004231	-. 018749	. 022211
5	-. 002351	-. 002351	-. 002351
	ly first e	moments	
1	.332041	1.854941	-. 327357
2	. 512921	. 531221	-. 542879
3	-. 035595	-. 025145	-. 080535
4	. 003453	-. 019527	. 321433
5	-. 032151	-. 002151	-. 002151
6	. 001652	. 001652	. 001652
7	-. 001083	-. 001033	-. 301083
8	. 051039	. 001039	. 001037

TABLE 8 Deternined Generalized coordinate [q] by Orthogonal analysis method

j	q	$\mathrm{q}_{1 \mathrm{c}}$	q_{15}
only first two modal moments			
1	1.005376	2.033259	-. 155153
2	. 502354	. 574336	-. 656402
	only first	moments	
1	1.007173	2.034631	-. 157078
2	. 503119	. 573947	-. 657886
3	. 001167	-. 019074	-. 075903
4	. 003132	-. 022585	. 017545
5	.033235	.000377	. 000069

only first eight modal moments

1	1.007172	2.034632	-.157072
2	.533121	.573934	-.657902
3	.001105	-.018050	-.075885
4	.033145	-.022756	.017469
5	.093241	.000257	-.000061
6	-.000058	-.000037	-.000231
7	.003137	.000144	.000023
8	-.003105	-.000113	-.000187

TABLE 9 The results of the Orthogonality test

j	1	2	3	4	5
$\left[W_{N R}\right]^{T}\left[K_{N}\right]\left[W_{N R}\right]$					
1	3.785202	． 300909	.900000	． 000000	． 000000
2	． 000000	143.061330	． 200003	.000000	.000000
3	． 000000	． 000000	1155.517311	． 000000	.000002
4	．000000	． 000000	． 000000	4475.430491	． 000000
5	． 000000	.000000	.200000	． 000000	12228．524402
$\left[W_{R}\right]{ }^{T}[m]\left[W_{R}\right]$					
1	． 089290	．030000	－300000	． 000000	． 300007
2	． 000000	． 057382	． 000000	.000000	.000003
3	． 000000	． 000000	． 360333	． 000000	． 000005
4	． 000000	.300000	． 000000	． 072614	． 000000
5	． 000005	．3nこうコ	． 200000	． 000000	.074272
$\int_{0}^{L} \frac{1}{E I} M_{N R}^{(i)}(r) M_{N R}^{(j)}(r) d r$					
7	3.755256	.000121	． 000064	． 001778	－． 007572
2	． 003110	143.004795	． 001756	－．009046	．06986？
3	． 020159	.300479	1165.601250	． 022154	－． 12207°
4	． 000254	－．000473	－． 013550	4477.814930	． 302505
5	． 093344	.000332	.007005	． 295218	12244.995720

[^0]: - Academic visitor. Nanjinj Aeronautical Institute, China.

