THIRTEENTH EUROPEAN ROTORCRAFT FORUM

69 Paper No. 98²

THE DETERMINATION OF ROTOR BLADE LOADING FROM MEASURED STRAINS

S.S. LIU G.A.O. DAVIES

IMPERIAL COLLEGE OF SCIENCE AND TECHNOLOGY

LONDON, U.K.

September 8 - 11, 1987 ARLES, FRANCE

ASSOCIATION AERONAUTIQUE ET ASTRONAUTIQUE DE FRANCE

THE DETERMINATION OF ROTOR BLADE LOADING FROM MEASURED STRAINS

S.S. Liu* and G.A.O. Davies

Imperial College of Science and Technology London SW7 2BY, U.K.

Abstract

In this paper, an approach to the determination of rotor blade loading from measured strains is presented. The basic idea is to use the orthogonality of the blade mode shapes (displacement and/or moments) for solving this inverse problem. Both loading and response (bending moments and displacement) are regarded as series in the orthogonal mode shapes. The finite element method is used for structure dynamic analysis.

The disadvantage of the least-squares procedure is discussed, and the superiority of the "Orthogonal Analysis method" is demonstrated.

The primary numerical study shows that the approach is feasible and worthy of further exploitation in highly complex loading and structure.

1. Introduction

Predicting rotor blade loading continues to be of primary importance for providing and evaluating improved rotor designs. A long-term effort has been made to advance the technology associated with the aerodynamic and aeroelastic behaviour of helicopter rotors [1] [2] [3]. In view of the achievements which have been made and the problems which still exisit, it seems possible and worthwhile to combine the 'inverse' problem with the 'direct' problem in order to seek an engineering approach to determine rotor blade loadings, including rotor loads, blade stresses, and hub forces and moments. For example, based on aerodynamic theory and experiment, we can develop an aerodynamic model and derive relevant formulae from it to predict rotor blade airloads. The model should include all significant effects and the formulae should ideally be simple. There will inevitably be some coefficients and quantities which are determined by identification technology from the test blade loadings, and the loadings need therefore to be deduced from measured strains on the tested blade — that is the 'inverse' problem. After determing airloads, the blade stresses and the hub vibratory forces of a new rotor can be calculated, this is conditions, but they will be easily understood, trusted and can be conveniently used by designers within known limitations. It is this goal that the authors attempt to achieve.

It is obvious that the task is not an easy one, and much research work needs to be done in both the aerodynamics and the structural dynamics areas. This paper presents just part of the effort in the structural dynamics area: that is an approach to the determination of rotor blade loading from measured strains. The determination of airloads from strain guage measurements could of course also be used to gain insight into the nature of airloading distributions for the development of aeroelastic tailoring concepts and vibration reduction.

There are few publications on how to determine a distributed loading on a structure from the response. Tadghighi [4] has proposed a method to determine the aerodynamic loadings from the blade strains, but the author stated: "The accuracy of the results is unknown and the method has not been tested." The model was highly simplified, and could not obtain the response coefficients corresponding to blade modes. Hillary and Ewins [5,6] reviewed the inverse problem and presented a technique which was shown to be successful under some conditions. Unfortunately some problems arose, especially, in the determination of distributed forces over a simple cantilever beam. In their study a harmonic distributed load was represented by discrete point forces and the least-squares method was used, but the results were not totally satisfactory.

A new approach is presented here in which we express both the loading and response as series in orthogonal mode shapes for displacement and/or moments. The "orthogonal analysis method", in this paper is shown to overcome the deficiency of the least-squares method.

The main aim of this paper is only to present the idea mentioned in the first paragraph and an approach and to show its feasibility; so the analysis is limited to the out-of-plane response and a numerical study is conducted using some simulated experimented data. All of the numerical results are listed in the form of tables to avoid the possibility that curves conceal the slight differences among corresponding data.

2. Approach to blade loading Determination

The procedure for blade loading Determination from measured strains now follows. It should be stated that we are only dealing with the steady-state operating conditions, and here the finite element is used for the structural analysis.

i) Determine the bending moments M(r,t) and their harmonic coefficients M(r), $M_{NC}(r)$ and $M_{NS}(r)$ from the blade strain gauge outputs:

Academic visitor. Nanjinj Aeronautical Institute, China.

$$M(r,t) = M_o(r) + \sum_{N} [M_N(r) \cos (N\Omega t) + M(r) \sin (N\Omega t)]$$

where r -- the radial coordinate of the measured station

t -- time

 Ω -- rotor rotational speed

This Fourier analysis is standard strategy and we will assume that this has been achieved using test measurements for moments at a sufficient number of radial stations.

ii) Calcualte generalized coordinates from the measured moments.

There are two methods in this step. One is the least-squares procedure and the other is the "orthogonal analysis method" using the orthogonality of the blade mode shapes (displacement and moments).

a) The least-squares procedure.

The measured bending moments at any particular radial station r, $M_{o}(r)$, $M_{NC}(r)$ and $M_{NS}(r)$, may be

expressed as

$$M_{o}(r) = \Xi q_{o} M_{R}(r)$$

$$j$$

$$M_{o}(r) = \Xi q_{o} M_{R}(r)$$

$$M_{NC} = \Xi q_{M}^{(j)(j)}(r)$$

$$M_{NC} = \Sigma q_{I}^{(j)} M_{R}^{(j)}(r)$$

$$M_{NS} j$$
(1)
(1)

(j) where $M_R^{(r)}$ is the jth modal moments of the rotating blade (at rotational speed Ω), and is readily determined from the blade natural frequency and mode calculation; $q^{(j)}$ is the jth generalized coordinate, where superscript j represents the jth mode, and subscript R represents "Rotating"

Let

$$[q] = \begin{bmatrix} q_{a}^{(1)} q_{1c}^{(1)} q_{1s}^{(1)} \dots q_{Nc}^{(1)} q_{Ns}^{(1)} \\ q_{a}^{(2)} q_{1c}^{(2)} q_{1s}^{(2)} \dots q_{Nc}^{(2)} q_{Ns}^{(2)} \\ \vdots & \vdots & \vdots & \vdots \\ q_{a}^{(m)} q_{1c}^{(m)} q_{1s}^{(m)} \dots q_{Nc}^{(m)} q_{Ns}^{(m)} \end{bmatrix}$$

$$[M] = \begin{bmatrix} M_{a}(r_{1}) & M_{1c}(r_{1}) & M_{1c}(r_{1}) \dots M_{Nc}(r_{1}) \\ M_{a}(r_{2}) & M_{1c}(r_{2}) & M(r_{2}) \dots M(r_{2}) \\ \vdots & \vdots & \vdots \\ M_{a}(r_{n}) & M_{1c}(r_{n}) & M_{1s}(r_{1}) \dots M(r_{n}) \\ M_{a}(r_{2}) & M_{1c}(r_{2}) & M(r_{2}) \dots M(r_{2}) \\ \vdots & \vdots & \vdots \\ M_{a}(r_{n}) & M_{1c}(r_{n}) & M_{1s}(r_{n}) \dots M(r_{n}) \\ M_{R}(r_{n}) & M_{1c}(r_{n}) & M_{1s}(r_{n}) \dots M(r_{n}) \\ M_{R}(r_{1}) & M_{R}(r_{1}) \dots M(r_{n}) \\ M_{R}(r_{2}) & M_{R}(r_{2}) \dots M(r_{n}) \\ M_{R}(r_{1}) & M_{R}(r_{1}) \dots M(r_{n}) \\ M_{R}(r_{2}) & M_{R}(r_{2}) \dots M(r_{n}) \\ M_{R}(r_{1}) & M_{R}(r_{1}) \end{pmatrix}$$

then the least-squares solution to [q] is given by:

$$[q] = ([M_R]^T[M_R])^{-1}[M_R]^T[M]$$
(5)

where n is the number of measured stations, m is the number of used modes and also that of the unknown $q(j)_{per}$ harmonic component, and n > m.

The least-squares procedure is widely used as a "best fit" and is less susceptable to numerical oscillation than collocation where n=m. However it is still found that when the measured data [M] contain significant components of higher order than those used in the least-squares procedure then the results deteriorate and even those corresponding to the lower order modes are corrupted. In order to solve this problem, a new approach is presented using the orthogonality of the blade mode shapes (displacement and moments). In short, this is called "orthogonal analysis method".

(b) Orthogonal analysis method. In this method the measured bending momnets $M_{\circ}(r)$, $M_{NC}(r)$ and $M_{NS}(r)$ are not initially regarded as series in the rotating blade model moments $M_{R}^{(j)}$ but as series in the non-rotating blade model moments $M_{NR}^{(j)}$, i.e.

$$M_{o}(r) = \sum_{j} q_{o}^{(j)} M_{NR}^{(j)}(r)$$

$$M_{NC}(r) = \sum_{j} q_{NC}^{(j)} M_{NR}^{(j)}(r)$$

$$M_{NC}(r) = \sum_{j} q_{NC}^{(j)} M_{NR}^{(j)}(r)$$

$$j$$
(6)

Applying conventional orthogonal analysis to the moments, we obtain ;

$$g^{(j)} = \int \frac{L}{\circ \operatorname{EI}(r)} M(r) M_{NR}^{(j)}(r) dr P_{jNR}^{2} I_{NR}^{(j)}$$
(7)

where $g^{(j)}_{May}$ be $g_{\circ}^{(j)}$, $g^{(j)}_{Nc}$ and $g^{(j)}_{Nc}$ corresponding to $M_{\circ}(r)$. $M_{\circ}(r)$ and $M_{\circ}(r)$; M(r) may be $M_{\circ}(r)$, $M_{\circ}(r)$, $M_{\circ}(r)$. and $M_{NS}(r)$;

and

 P_{iR} ----- the jth natural frequency of non-rotating blade; $I_{\rm NR}^{\,(j)}$ ---- generalized mass in the jth mode of non-rotating blade;

or

wh

 $P_{\rm JNR}^2$ $I_{\rm NR}^{\rm (j)}$ ----- generalized stiffness in the jth mode of non-rotating blade; EI(r) ----- bending stiffness.

(j) Having g $\,$, the displacement W(r) corresponding to the measured bending mements M(r) can be calculated from :

$$[\mathbf{g}] = \begin{bmatrix} \mathbf{W}_{\mathbf{NR}} & [\mathbf{g}] & (8) \\ g_{0}^{(1)} & g_{1c}^{(1)} & g_{1s}^{(1)} & (1) & (1) \\ g_{0}^{(2)} & g_{1c}^{(2)} & g_{1s}^{(2)} & g_{Ns}^{(2)} \\ g_{0}^{(2)} & g_{1c}^{(2)} & g_{1s}^{(2)} & \dots & g_{Nc}^{(2)} \\ g_{Nc}^{(2)} & g_{1c}^{(2)} & g_{1s}^{(2)} & \dots & g_{Ns}^{(2)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ g_{0}^{(m)} & g_{1c}^{(m)} & g_{1s}^{(m)} & \dots & g_{Nc}^{(m)} & g_{Ns}^{(m)} \end{bmatrix}$$
(9)

$$[W] = \begin{pmatrix} W_{o}(r_{1}) & W_{1c}(r_{1}) & W_{1s}(r_{1}) & \dots & W_{Nc}(r_{1}) & W_{Ns}(r_{1}) \\ W_{o}'(r_{1}) & W_{1c}'(r_{1}) & W_{1s}'(r_{1}) & \dots & W_{Nc}'(r_{1}) & W_{Ns}'(r_{1}) \\ W_{o}(r_{2}) & W_{1c}(r_{2}) & W_{1s}(r_{2}) & \dots & W_{Nc}(r_{2}) & W_{Ns}(r_{2}) \\ W_{o}'(r_{2}) & W_{1c}'(r_{2}) & W_{1s}'(r_{2}) & \dots & W_{Nc}'(r_{2}) & W_{1s}'(r_{2}) \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ W_{o}(r_{n}) & W_{1c}'(r_{n}) & W_{1s}(r_{n}) & \dots & W_{Nc}'(r_{n}) & W_{Ns}(r_{n}) \\ W_{o}'(r_{n}) & W_{1c}'(r_{n}) & W_{1s}(r_{n}) & \dots & W_{Nc}'(r_{n}) & W_{Ns}'(r_{n}) \\ \end{pmatrix}$$

$$(10)$$

6.9-3

$$\begin{bmatrix} w_{NR}^{(1)}(r_{1}) & w_{NR}^{(2)}(r_{1}) & \cdots & w_{NR}^{(m)}(r_{1}) \\ w_{NR}^{'(1)}(r_{1}) & w_{NR}^{'(2)}(r_{1}) & \cdots & w_{NR}^{(m)}(r_{1}) \\ \vdots & \vdots & \vdots & \vdots \\ w_{NR}^{(1)}(r_{2}) & w_{NR}^{(2)}(r_{2}) & \cdots & w_{NR}^{(m)}(r_{2}) \\ \vdots & \vdots & \vdots & \vdots \\ w_{NR}^{(1)}(r_{n}) & w_{NR}^{(2)}(r_{n}) & \cdots & w_{NR}^{(m)}(r_{n}) \\ w_{NR}^{'(1)}(r_{n}) & w_{NR}^{(2)}(r_{n}) & \cdots & w_{NR}^{(m)}(r_{n}) \\ w_{NR}^{'(1)}(r_{n}) & w_{NR}^{(2)}(r_{n}) & \cdots & w_{NR}^{(m)}(r_{n}) \\ \end{bmatrix}$$

is the mode shapes of the non-rotating blade.

For a given blade, the same bending moments must correspond to the same displacement whether rotating or non-rotating. So the next analysis can be transformed to the rotating condititon.

Applying the orthogonal analysis to displacement, the unknown $q_{0}^{(j)}$, $q_{N_{C}}^{(j)}$ and $q_{N_{S}}^{(j)}$ can be obtained $[q] = [m_{e}^{-1}] [W_{R}]^{T} [m] [W]$ (12) from

where

ť

anđ

[q] ----- the same as matrix (2)
[m] ----- mass matrix of the blade
[m_e] ----- generalized mass matrix of the rotating blade $[W_R]$ ----- the mode shapes of the rotating blade, similar to matrix (11) [W] ----- displacement obtained from Equation (8)

It is important to note that the accuracy of the orthongonal analysis method in evaluating $q^{(j)}$ should be independent of the number of modes which contained in the measured data M or used in M_{NR} , \dot{W}_{NR} , W_{R}

(iii) Calculate the loading coefficient $[F_j]$ from the generalized coordinate [q].

The distributed blade loading, may now be expanded as a series in the mode shapes. In the commonly used finite element model, the external forces [F] arise naturally as

$$[\mathbf{F}] = [\mathbf{m}] [\mathbf{W}_{\mathbf{R}}] [\mathbf{F}_{\mathbf{j}}]$$
(14)

where

$$[F_{j}] = \begin{bmatrix} F_{\alpha}^{(1)} & F_{1C}^{(1)} & F_{1S}^{(1)} & \dots & F_{NC}^{(1)} & F_{NS}^{(1)} \\ F_{\alpha}^{(2)} & F_{1C}^{(2)} & F_{1S}^{(2)} & \dots & F_{NC}^{(2)} & F_{NS}^{(2)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \cdot & \cdot & \cdot & \cdot & \cdot & \vdots \\ F_{\alpha}^{(m)} & F_{1C}^{(m)} & F_{1S}^{(m)} & \dots & F_{NC}^{(m)} & F_{NS}^{(m)} \end{bmatrix}$$
(15)

The relationships between the reponses, generalized coordinate [q], and model force coefficient $[F_i]$ can be found from the forced vibration analysis of the blade as follows :

- (1) (1)

Let
$$\left\{ F_{o}^{(j)} \right\} = \left\{ F_{o}^{(1)} \\ F_{o}^{(2)} \\ \vdots \\ \vdots \\ F_{o}^{(m)} \\ F_{o}^{(m)} \\ \end{array} \right\} \qquad \left[\left\{ F_{ic}^{(j)} \right\} \\ \left\{ F_{ic}^{(j)} \right\} \\ \left\{ F_{is}^{(j)} \\ F_{is}^{(m)} \\ F$$

then

$$\begin{cases} F_{\circ}^{(j)} \} = \begin{bmatrix} P_{jR}^{2} \\ q_{\circ}^{j} \end{bmatrix} \begin{cases} q_{\circ}^{(j)} \\ \left[\left\{ F_{iC}^{(j)} \right\} \left\{ F_{iS}^{(j)} \right\} \right] &= \left(\begin{bmatrix} P_{j}^{2} \\ j \end{bmatrix} - \begin{bmatrix} (N \Omega)^{2} \\ N \Omega \end{bmatrix} \right) \left[\left\{ q_{iC}^{(j)} \right\} \left\{ q_{iS}^{(j)} \right\} \right] \end{cases}$$
(17)

$$= \begin{bmatrix} P_{jR}^{2} \\ P_{jR}^{2} \end{bmatrix} \text{ and } (N \Omega)^{2} \text{ are diagonal matrices whose elements are the square of the jth rotating blade$$

where P_{jR}^{2} and

1

(11)

natural frequency $P^{2}_{\ \ jR}$ and $N^{2}\Omega^{2}$ repectively.

Equation (17) is for an undamped system, but for damped systems, the relationship can be extended without any difficulty.

iv) Determine the loading [F] from mode force coefficient [F_i].

After calculating $[F_{ij}]$, the loading [F] can be obtained easily from Equation (14);

$$[F] = [m] [W_{p}] [F_{j}]$$

3. Numerical Study and discussion

As an example, a hingless rotor blade with constant section is considered. Firstly, the natural frequencies, the mode shapes for the displacement and the bending moments (in both non-rotating and rotating cases) are calculated using the finite element method. The other related quantities, such as generalized mass $[m_{e}]$ and stiffness $[K_{e}]$ are obtained simultaneously. 25 spanwise stations are used in all calculations.

1) The blade loadings [F] have been calculated in many test cases by using assumed measured bending momnets which are obtained from the given coefficients [q.] multiplying the modal moments of the rotating blade $[M_R]$, however numerical results are presented here for only two cases. One is that the given bending moments only consist of the first four modal moments (case I). The other has the tenth order mode in addition to the first four (case II). In Tables 1,2,3 and 4, the given coefficients $[q_0]$, the determined [q], $[F_1]$ and [F] are tabled for the above two cases respectively. For these results, the orthogonal analysis method is used in the second step of the procedure. When the least-squares method is used, and the number of selected modes \geqslant 10, the results are nearly the same.

In order to check accuracy, the dynamic reponse analysis is conducted by using the derived blade loading[F] for the same structure system. The results(mode force coefficient $[F_{j1}]$ and response $[q_1]$ are tabled in Tables 5 and 6 respectively.

By comparing Table 1 with Table 2,3 with 5, and 2 with 6, we clearly see that the approach is feasible and the methods are accurate.

2) As we mentioned, the least-squares procedure, using given data incorporating large higher order modes, can produce poor results, even for the lower order modes. In table 7, the determined coefficients [q] are tabled corresponding to three successive approximations using two, five and eight modal moments respectively. The given data $[q_o]$ are the same as Table 1 - case II. The results are cases, given in the Table 8, are much better and completely overcome the deficiency of the least-squares method.

3) It is obvious that the accuracy of this approach, especially when using the orthogonal analysis 3) It is obvious that the accuracy of this approach, especially when using the orthogonal analysis method in the second step, depends on the accuracy of the orthogonality analysis for the mode shapes (displacement and non-rotating modal moments). Therefore, it should be emphasised that the finite element method should be used for generating the orthogonal series. But it is not very easy to ensure the accuracy of the modal moments and the necessary orthogonality intergration. We have tried several ways and in this paper we have used the "dynamic stiffness method" [7] for calculating modal moments and the concept of "the continuous mass finite element" [8] for the orthogonal analysis. The results of the orthogonality test for the mode shapes of both rotating and non-rotating displacements and non-rotating moments are given in the Table 9. They are the utility to be accurated to the orthogonal series are the interval. moments are given in the Table 9. They are $\begin{bmatrix} W \end{bmatrix}^T \begin{bmatrix} K \end{bmatrix} \begin{bmatrix} W \end{bmatrix}$. ($\begin{bmatrix} K \end{bmatrix}$ is the stiffness matrix of non-rotating NR N NR N

blade), $\begin{bmatrix} W \end{bmatrix}^{T} \begin{bmatrix} m \end{bmatrix} \begin{bmatrix} W \end{bmatrix}$, and $\int \frac{L}{EL} = \frac{1}{NR} \begin{pmatrix} (j) \\ NR \end{pmatrix} (r) M^{(j)} (r) dr$. The results are obviously very good and it is this

which ensures the accuracy of the approach for the loading determination.

4. Summary and conclusion

At the begining of this paper, an idea was presented for seeking an engineering approach to determine rotor blade loadings by combining the "inverse" problem with the "direct" problem. A part of this inverse problem is to determine blade loading from measured strains, which is the main contents of this paper.

The approach presented in this paper is based on the mode superposition and the orthogonality analysis. The accuracy of the approach depends on the accuracy of measured strains and the number of measured stations, the number of used modes, the accuracy of the mode shape and bending moment calculation, and the accuracy of the orthogonality analysis.

When the measured moments contains some significant components of higher order than those used in the analysis, (for example a discontinuous bending moment ditribution), then the least-squares procedure can produce poor results, even for the lower order modes. The "orthogonal analysis method" presented in this paper can overcome the drawback, and ensure the accuracy of the generalized coordinate.

The accuracy of this approach has been demonstrated on a simple unifrom hingless rotor blade, and it now remains to show that this inverse solution works accurately and conveniently for complex realistically loaded and instrumented rotor blades.

5. Acknowledgement

The authors would like to thank Westland Helicopters, especially, Mr.R.E.Hansford and Mr.Wayland Chan, for their valuable help and Mr.I.Simons for his support during this work.

References

r

1. Alfred Gessow, An assessment of Current Helicopter Theory in Terms of Early Developments, Fifth Nikolsky lecture, 41st Annual Forum of the American Helicopter Society, May 1985.

2. A.J.Landgrebe, overview of Helicopter Wake and Airloads Technology. AHS/NAI Seminar on "The Theoretical Basis of Helicopter Technology", November 1985.

3. J.J.Philippe, P.Roesch, A.M.Dequin and A.Cler, Recent Advances in Helicopter Aerodynamics, AHS/NAI Seminar on "The Theoretical Basis of Helicopter Technology", November 1985.

4. H.Tadghighi, An Investigation into Helicopter Rotor Noise using an Acoustic Wind Tunnel. Ph.D Thesis, Southampton University 1983.

5. B.Hillary and D.J.Ewins. The use of Strain Gauges in Force Determination and Frequency Response Function Measurements, Presented at the 2nd International Modal Analysis Conference, 1984.

6. B.Hillary, Indirect Measurement of Vibration Excitation Forces. Ph.D Thesis, Imperial College, London 1983.

7. Liu Shoushen, Some approaches for improving the accuracy of nonuniform rotor blade dynamic internal force calculation, Presented at Tenth ERF, 1984.

8. Zhang Azhou, Lin Jiakeng. Using the finite element method with continuous mass elements to evaluate the natural frequencies and modal shapes of vibration of dynamic systems, Journal of Nanjing Aeronautics Institute No 4, 1981.

Case	I	-	
j	g(j)	q(j) q _{1c}	q(j) q _{1s}
1	1.004257	2.031637	159987
2	.503406	.574280	657557
3	.000966	018255	076084
4	.000297	022606	.017619
5	.000147	.000174	000154
6	.000084	.000194	000090
7	.000053	.000367	000057
8	.000035	.000043	000038
9	.000024	.000029	000027
10	.000017	.000011	000024

TABLE 2 Determined Generalized Coordinate [g]

TABLE	1	Given	Coefficients	[q_]
-------	---	-------	--------------	------

			······
j	q ^(j)	q(j) 1c	q(j) 91s
1	1.000009	2.022000	160300
2	.500000	.563300	655800
3	.000001	019550	374943
4	.000000	022930	.017980
5	.000000	.000000	.000000
6	.000000	.000000	.000001
7	.000000	.000000	.000000
8	.000000	.000000	.000000
9	.000000	.000000	.000000
10	.000000	.000000	.00000

Case II

j	q(j)	(j) 9 ₁₀	q(j) q _{ls}
1	1.000000	2.022000	160300
2	.500000	.5683.0	655800
3	.000000	019550	374943
4	.000000	022980	.317983
5	.000000	.000000	.000000
6	.000000	.000000	.00000
7	.000000	.000000	.300000
8	.000000	.000000	-000000
9	.000000	.000000	.000000
10	.010000	.010000	.010000

Case 1	II
--------	----

1			
jj	q ^(j)	q(j) q ₁ c	q(j) q _{1s}
1	1.007170	2.034600	157074
2	.503127	.573940	057896
3	.001153	018057	075896
4	.000167	022736	.017489
5	.000218	.000245	000083
6	000010	.000010	000184
7	.000112	.000127	.000003
8	.000045	.000053	000028
9	.000042	.000047	000009
10	.010226	.010221	.010185
L	<u>}</u>		

j	F,(j)	F ^(j) 1c	F ^(j) Is
1	1340.623951	329.809419	-25.971113
2	4739.135697	4789.326521	-5433.838374
3	34.805432	-636.092132	-2653.617115
4	30.143552	-2269.917058	1767.135405
5	34.417257	40.649817	-30.075957
· 6	39.773578	49.001607	-42.720867
7	45.882735	55.164751	-49.014899
8	51.192706	63.169051	-55,991059
9	56.756285	63.564561	-63.972953
10	59.938477	41.217103	-56,823704

TABLE 3 Determined Force Coefficient $[F_j]$

Case I

j	F°(j)	F ^(j) F1c	F(j) 1s
1	1344.517833	330.282317	-15,498223
2	4735.903757	4735.497375	-5436.067520
3	41.575357	-530-142943	-2547.367881
4	15.947387	-2232.965346	1755.387115
5	51.140551	57.289611	-19.436162
6	-4.804641	4.528615	-87.193860
7	97.595344	109.307513	2.527363
8	65.323380	77.793087	-41.367022
9	100.310723	112.097378	-20.440141
10	36903.399772	36877.706903	35749.565095

TABLE 4 Determined loading [F]

Case I

Case I	I		
i	F _o (r _i)	F ₁ (r _i)	$F_{1s}(r_i)$
1	179.950245	158.009754	103.212466
2	1.121553	-30.676035	-128.568159
3	-215.164022	-230.669021	-313.600764
4	6.373888	4.597222	-65.544093
5	292.011938	300.002101	244.104222
6	216.577709	229.425060	193.957191
7	-132.642809	-120.249374	-128.038452
8	-288.573543	-231.485235	-258.128270
9	-50.177374	-51.060430	.952751
10	245.615007	234.715885	311,296155
11	187.612105	168.705392	262.806470
12	-151.393910	-175.233645	-71.357034
13	-317.205512	-342.713387	-275.190039
14	-89.561996	-113.218003	-13.116070-
15	223.304414	204.793542	282.329888
16	201.345035	190.540033	246.297507
17	-124.705442	-120.770531	-93.210249
18	~316.879237	-311.091778	-297,709649
19	-115.764346	-104.507154	-107.581297
20	214-734692	228-585637	214,597876
21	239.523592	253.120079	235.127528
22	-71.984584	-60.912235	-76.485563
23	-312.858827	-305.965694	-315.370933
24	-203.027711	-200.558515	-203.732968

i	f(ri)	^F 1c ^{(r} i)	F _{1s} (r _i)
1	37.725547	15.351473	-38.945821
2	54-327920	32+547123	-\$5,344995
3	49.771091	34.215930	-48.715807
4	37.727949	35.975735	-34.165580
5	27.527363	35.036377	-20,261001
6	17.597157	3ú.541120	-4.926755
7	7.394124	19.772276	11,983198
8	-2.107452	4.913055	23.270020
9	-9.741704	-11.211558	41,401623
10	-15.444275	-20.233732	50.346538
11	-19.999737	-35.755363	55.285716
12	-23.845093	-47.754717	55.171895
13	-20.58+743	-52.169721	52.358627
14	-27.691745	-51.348079	43.753854
15	-27.321114	-45.732590	31,803750
16	-26-131653	-35.847606	13.909819
17	-24.482576	-20.564804	5.995478
18	-22.140115	-16.435336	-3.053207
19	-18.839269	-7.601330	-13.575213
20	-14.867508	÷.981093	-14.953824
21	-10.881965	2.805223	-15.187328
22	-7.280241	3.778194	-11.795168
23	-4.054711	2.742332	-5.662937
24	-1.377801	1.027282	-2.147172

TABLE 6 Generalized Coordinate [q₁]

~

٠. 🛶

j	q(j) q _o j	(j) 91c1	q(j) q _{1s1}
1	1.004257	2.031688	159987
2	-503466	.574278	657556
3	•003966	018255	076084
4	.003297	022636	.017619
5	.000147	.000174	000154
6	.000084	.000104	000090
7	.000053	.000067	000057
8	.000035	.000043	000038
9	-000024	.000029	000027
10	.000017	.000011	000024

Case II

.

ĺ

Case I

j	q(j) q ₀ 1	q(j) q _{1c1}	(j) 9 ₁₅₁
1	1.007170	2.034303	157373
2	.503127	.573932	657902
3	.001153	018059	375898
4	.000167	022736	.017488
5	.000218	.000245	000083
6	000019	.000009	000184
7	-000112	.000127	.000003
8	.000045	.000053	000028
9	.000042	.000047	000009
10	.010226	.010221	10185ء

TABLE	5	Force	Coefficient	[F ₁₁]

Case I

j	F ₀₁ (j)	F ^(j) F ^{1c1}	F ^(j) 151
1	1340.625844	329.809558	-25.971187
2	4789.123731	4739.316150	-5473.325304
3	34.805342	-030.097137	-2053.032431
4	30.145045	-2269.917032	1759.135410
5	34.413047	40.047889	-36.071355
6	39.773476	49.000135	-42.717313
7	45.873725	58.163314	-49.010629
8	51.135382	53.100531	-55.980218
9	55.749974	5~ . 502856	
10	59.933876	41.214657	-80.817209

Case II

j	F(j) 1	F(j) 1c1	F ^(j) F1s1
1	1344.465250	330.234003	-25.546742
2	4785.837515	4736.427748	-5486.713707
3	41.530439	-030.192218	-2647.127512
4	16.893154	-2283.016529	1755.036914
5	51.107133	57.257693	-17.461552
6	-4.852806	4.484067	-87.233352
7	97.574833	109.789583	2.615639
8	65.777129	77.745758	-41.407091
9	103.286657	112.077927	-20.452084
10	36938.773442	35878.085539	36750.053743

<u></u>						
j	ď	q _{1c}	q _{1s}			
	only first two modal moments					
1	.695975	1.727398	-1.041325			
2	.513153	.548778	692038			

0	nly first five m	odal moments				
1	.787462	1.809452	372838			
2	.515747	.584047	640053			
3	~.005734	026234	081674			
4	.004231	018749	.022211			
5	002351	002351	002351			
	·	, , , , , , , , , , , , , , , , , , ,				
or	lv first eight	modal <i>m</i> oments				
1	.832941	1.854941	~.327359			
2	.512921	.531221	542879			
3	035595	025145	080535			
4	.003453	019527	.021433			
5	002151	002151	002151			
б	.001652	.001652	.001652			
7	001083	001033	001083			
8	.001039	.001039	.001039			

TABLE 7	Determined Generalized coordinate	[q]
	by least-squares procedure	

TABLE 8 Determined Generalized coordinate [q] by Orthogonal analysis method

j	, q	q _{1c}	q _{1s}			
	only first two modal moments					
1	1.005396	2.033259	155153			
2	.502354	.574336	656402			
	only first five	e modal moments				
1	1.007173	2.034601	157078			
2	.503119	.573947	-,657886			
3	.001167	013074	075903			
4	.000132	022684	.017545			
5	.000205	.000377	.000069			
			•			
	only first eig	ght modal moments				
1	1.007172	2.034602	157072			
2	.533121	.573934	657902			
3	.001165	018056	075885			
4	.000146	022756	.017469			
5	.000241	.000257	000061			
6	000058	000037	000231			
7	.000137	.000144	.000023			
8	000105	000113	000187			
1	1					

.

TABLE 7 THE FESULTS OF THE OFFICIALITY CEST							
j	1	2	3	4	5		
	$[w_{NR}]^{T}[K_{N}][W_{NR}]$						
t	3.785262	. 300000	.000000	.000000	.000000		
2	.000000	143.661339	.00000	.000000	.000000		
3	.000000	.000000	1165.517311	.000000	.000000		
4	.000000	.000000	.000000	4475.430491	.000000		
5	.000000	.000000	.000000	.000000	12228.524402		
	[W _R]	^T [m] [W _R]					
1	-089296	.00000	. 00000	.000000	.000000		
2	.000000	.057082	.00000	.000000	.000000		
3	.000000	.000000	.366333	.000000	.000000		
4	.000000	.300000	.000000	.072614	.000000		
_5	.00000	.000000	.00000	.000000	.074879		
	$\int_{0}^{L} \frac{1}{E I} M_{NR}^{(i)}(r) M_{NR}^{(j)}(r) dr$						
1	3.785256	.000121	.000064	.001778	007572		
2	.000116	143.064795	.001766	009046	.069860.		
3	.030189	.300473	1165.691250	.022154	122979		
4	.000254	000493	013550	4477.814930	. 502505		
5	_000344	.000532	.007905	.295218	12244.985720		

.

TABLE 9 The results of the Orthogonality test