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Abstract 

Aiming at increasing the fidelity of aeroelastic simulations for helicopter configurations without excessively 
penalizing the computational cost, a novel hybrid flow solver is proposed. The widely used domain decomposition 
technique is given a different twist by also differentiating the method used in the sub-domains. The proposed 
solver combines grid based CFD with particle methods. To every blade a confined CFD grid is defined with an 
extent of ~1 chord. To this set-up a background flow is added defined in particle form. The formulation is 
compressible and so particles carry mass, vorticity, dilatation and pressure. A two-ways coupling of the two solvers 
is implemented. The background flow is used in providing the outer boundary conditions of the CFD grids while 
the CFD solution is used in order to update the information carried by particles that are contained in the CFD grids. 
For the aeroelastic simulations a multi-body structural solver is used. The blades are considered slender 
Timoshenko beam structures. Geometrical non-linearities are accounted for by subdividing every blade into sub-
bodies that are subsequently treated separately while the equilibrium equations are implicitly formulated with 
respect to the coupling with flow through an iterative flow-to-structure interaction. The present work includes the 
description of the methodology and representative results taken from the HeliNoVi data base.  
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1 INTRODUCTION 

It is widely recognized that high fidelity simulations 
are needed in order to advance the current 
understanding of the complex flow induced 
interactions that appear on helicopters. At research 
level, high fidelity in modeling has been achieved by 
coupling CFD (Computational Fluid Dynamics) with 
CSD (Computational Structural Dynamics). However 
high fidelity comes along with high cost which can 
become a bottleneck to a productive use of advanced 
modeling. This explains why primarily CFD is always 
in search of methods that reduce cost without 
compromising accuracy. In this regard, domain 
decomposition is a commonly used technique [1] 
which has significantly reduced the user time of CFD 
simulations. In standard domain decomposition, the 
same formulation is used in all sub-domains which is 
not always optimal. At increasing distances from 
solid boundaries, the grid becomes coarser which 
increases numerical diffusion. Furthermore, far field 
conditions are necessarily applied at finite distances 
which in some cases makes it necessary to introduce 
vortex corrections. In this respect, Lagrangian 
(Particle) methods have several advantages. They 
are grid-free and self-adaptive, having (in theory) 
zero numerical diffusion; domain truncation is not 
needed and the far field conditions are exactly 
embedded in the formulation [2], [3]. However, in 
particle methods wall boundary conditions constitute 
a major challenge, involving costly convolution 
operations and large number of particles [4], [5]. 

Therefore, since particle methods appear so 
complementary to Eulerian CFD, it is natural to 
combine the two in one single package following a 
domain decomposition approach.  

Such a hybrid approach by the name HoPFlow, has 
been recently developed at NTUA [6] and is here 
adapted to helicopter applications. HoPFlow 
combines conventional grid based CFD with particle 
(Lagrangian) methods. For the CFD part, the in-
house developed MaPFlow solver is used while for 
the Lagrangian part the incompressible vortex 
particle code GenUVP [7] is adapted. MaPFlow is a 
multi-block, MPI enabled, unstructured finite volume 
compressible URANS solver for deformable grids 
with pre-conditioning for low Mach numbers, and 
equipped with the k-ω SST turbulence model. 

The CFD grid is confined around the solid boundaries 
and may be composed of more than one disjoint sub-
domains (one per solid component). In this way, the 
wall conditions can be accurately imposed. By 
limiting the extent of the CFD subdomains, their outer 
boundaries are no longer in the far field and become 
interfaces on which the complete flow information is 
needed. This is provided by a background flow field 
defined in particle form. Particles carry mass, 
dilatation, vorticity and pressure and cover the entire 
flow domain. By overlapping the CFD and particle 
domains, the communication of flow information can 
be consistently defined. The coupling of the two 
solutions is strong and is established through an 



iterative process carried out in every time step. In 
order to achieve the highest possible saving, the 
Particle Mesh method is used combined with Fast 
Poisson Solvers [8]. In addition to that, by confining 
the CFD grid, faster convergence is achieved since 
the balance with the outer boundary condition is done 
at significantly smaller distances from the solid 
boundaries and by that the overall cost drops 
substantially [9]. 

In the present paper, pure aerodynamic and 
aeroelastic simulations for the BO105 helicopter are 
presented and compared to the HeliNoVi 
experimental data base. Structural dynamics is 
included by coupling HoPFlow with the hGAST code 
[9] which is based on the multi-body approach and 
considers the blades as flexible Timoshenko beams. 
Geometrical non-linear effects introduced by large 
displacements and rotations are taken into account 
by splitting every component into smaller sub-bodies 
[9]. In this way, the deflections of previous sub-
bodies are accumulated and introduced as rigid body 
motions to the next sub-body. Strong aeroelastic 
coupling is implemented by converging the coupled 
equations at every time step. 

Fully coupled aeroelastic simulations have been 
reported in the past in contexts of varying complexity 
including that based on CFD-CSD coupling. The 
novelty of the present contribution is mainly on the 
cost required. The hybrid approach here presented 
differs from previous formulations of the same type 
[10],[11] in the following aspects: the conditions at 
the interfaces include the full flow information and not 
only vorticity; the coupling is strong; and the coupling 
does not require the solution of expensive integral 
equations at the interfaces. Furthermore, the present 
contribution assesses the capabilities of hybrid 
modeling in terms of cost effectiveness and accuracy 
which will eventually open its range of applicability to 
other problems as for example that concerning noise. 
In this respect minimizing numerical diffusion is of 
particular importance. 

2 FORMULATION OF THE METHOD 

2.1 The flow solver 

The proposed methodology combines conventional 
grid based CFD with particle (Lagrangian) methods. 
In HoPFlow the CFD grid is confined around the solid 
boundaries and may be composed of more than one 
disjoint sub-domains (one per solid component). In 
this way, all solid boundaries are associated to the 
CFD part of the solver which can efficiently impose 

the appropriate conditions. The CFD subdomains 
also need outer boundary conditions which are no 
longer in the far field. They are interfaces on which 
the complete flow information is needed. This is 
provided by a background flow field defined in 
particle form. Particles carry mass, dilatation, 
vorticity and pressure and cover the entire flow 
domain and thus overlap with the CFD domains. 
Such an overlapping allows the communication of the 
flow information from the CFD solution to the 
Particles. To ensure continuity and compatibility of 
the CFD and the particle solution a strong coupling 
between the two is imposed through an iterative 
process. 

 

Figure 1. The domain decomposition 

2.1.1 The Lagrangian part 

Every particle is associated to a volume )(tV p , 

centered at )(tpZ  and carries mass pM , dilatation 

)(tp , vorticity )(tpΩ  and pressure )(tp  

collectively denoted by pp MQ },,,{=  Ω ;  
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),(),,(),,(),,( tpttt xxωxx  . The above volume 

averaging is combined with a smooth volume 
distribution also known as cut-off function. When the 
Particle Mesh (PM) technique is adapted, this role is 
taken over by the projection / interpolation function 
that passes the flow information from the particle 
positions to the PM grid nodes and vice-versa. Let 

ppp VqQ =  denote any flow quantity carried by the 

particles. Then for  Iq  at node 𝐼,   
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 where 
Ix  denotes the position of the kjiI ,,=  grid 

node, )/()/()/(=)( 111 hrWhrWhrWrW zyx


, h  denotes the 

grid spacing, pIzyx rrr Zxr =),,(=  and 
1W  the 1D 

interpolation function which is used. In the present 

work, the '4M  interpolation function is used which 

conserves the moments up to 3rd order (for other 
options see [2]). Any quantity defined on the grid, can 
be interpolated back to the particles positions using 
the same interpolation function:  
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The above approximations are introduced in the 
Lagrangian flow equations that are solved with a 
Runge-Kutta time marching scheme:  
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where DtD/  denotes the material time derivative, 

p)(  indicates evaluation at the particle position pZ  

and σ  denotes the viscous stress tensor.  

The above system is supplemented with the 
Helmholtz velocity decomposition which splits the 
velocity field in two parts: an irrotational (curl free) 
defined by the scalar potential φ  and a solenoidal 
one (divergence free) defined by the vector potential 
ψ  (also known as stream function):  

(5)  ψ=u,=u,uuU=u ωφ  φωφ   

In which both potentials satisfy a Poisson equation:   

(6) ωψ  =,= 22   

leading to the following convolution expression:  
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where )(rG denotes the Green function and yx=r 

. In (7) un   and un  correspond to the normal and 

tangential disturbance velocity components on S . It 

is important to note that dSdD un ,  as well as dDω

, dS)( un  are associated to the same kernel and 

hence they can be regarded respectively as singular 

(surface) dilatation 
S  and vorticity 

Sω  and 

subsequently treated as particles without distinction.  

The presence of convolutions in (7) is known to 

increase the cost 2N . Decisive cost reduction can 

be accomplished by using the Particle Mesh (PM) 
technique [12] especially when combined with multi-
block Fast Poisson solvers [8]. In PM the equations 
for   and ψ  are solved on a Cartesian grid, and 

subsequently the solution is interpolated at the 
particle positions. It is noted that interpolation does 
not only concern the velocity but also the right hand 
side of (4). Terms containing differentiation are first 
calculated at the grid nodes using finite differences 
and then interpolated. 

Remarks:  

1. In HoPFlow, the implementation of the PM 
technique makes use of the James Lackner 
algorithm [8] which was found to outperform all 
others options that were tested. 

2. In order to remedy the gradual loss of regularity in 
the particle representation, remeshing is applied. 
This is similar to grid adaptation/ refinement used 
in CFD. It consists of  interpolating the data known 
at the PM grid nodes, to regularly distributed 
positions. In the present implementation re-
meshing is carried out at the end of every time 
step and makes use of the same interpolation 

function W  that was associated to (2) and (3). 

3. The PM grid is by definition finite and therefore 
particles may exit depending on the duration of 
the simulation. Discarding these particles will 
violate the balance of momentum and by that the 
loads on the solid boundaries. So they must be 
retained. In case the main focus is on the loads as 
in the present case, the following simplifications 

are introduced: particles in  
PD  retain their 

vorticity but are convected by the free-stream 
velocity while dilatation that corresponds to 
outgoing acoustic waves is exponentially 
damped.    



2.1.2 The coupling procedure 

The coupling between the two solvers in HoPFlow is 
carried out in two ways: on one hand the particle 
information within the CFD grids is updated at every 
time step using the CFD solution and on the other the 
particle solution provides the outer boundary 
conditions needed in CFD. Aiming at ensuring that at 
the end of every time step, the two solutions match 
over DE (except very close to solid boundaries), an 
iterative procedure is followed.  

The updating of the particle information in DE, is done 

in two steps. First the velocity 
cu  at the grid cell 

centers, is differentiated to give ω,  and then 

combined with   and p  to get },,,{= pqc ω . Next 

qc is interpolated at regular positions in every CFD 
cell  leading to a set of particles PE. For this operation 
iso-parametric finite element approximations are 
used which also determine the associated volumes. 
The number of particles per CFD grid cell depends 
on its size with respect to that of the PM grid. It is 
important to assure full coverage of the PM grid and 
adequate spacial density of particles. In the cases so 
far considered, 4 and 8 particles per cell have been 
found adequate in 2D and 3D simulations 
respectively.   

While the above correction is valid well within DE, 
close to SE there will be a projection error which is 

defined at the beginning of every time step. Let pQ̂  

denote the particle solution obtained by advancing in 
time the converged solution of the previous step. 

First pQ̂  is projected to the PM grid nodes and 
Iq̂  is 

obtained. Then 
Iq̂  is interpolated at the PE positions 

and finally back projected to the PM grid nodes (see 
Fig. 3).  
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The corrected solution is then readily defined by 

subtracting error{qI } from 
Iq̂  and adding 

Eq  which is 

obtained from CFD,  
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Once convergence between the two solvers is 

reached, 
Iq  is transformed into particles.  
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Figure 2:  Definition of error{qI }.  

2.2 The structural solver 

In the present work, only the main rotor is simulated. 
The equilibrium equations (balance of forces and 
moments) are formulated in the context of the multi-
body approach and solved with the Finite Element 
Method. Accordingly, every component is considered 
as a body undergoing rigid motions that are specified 
at the origin of its local system with respect to which 
elastic deflections are added. In order to synthetize 
the complete configuration, kinematic and dynamic 
continuity is imposed at all points connecting the 
components. In the present formulation, the 
components are divided into sub-bodies and 
therefore the need of imposing kinematic and 
dynamic continuity is extended to their connecting 
points.  

The kinematic conditions are defined with respect to 
a set of displacements and rotations collectively 

denoted as  n qq ,n 1, N q . A nq  can be one of 

the following: a pre-defined rigid motion (as the tilt 
angle and rotor speed); a control parameter (as the 
pitch setting), an existing degree of freedom (as the 
elastic displacements and rotations at the sub-body 
interconnections). In the third case a simple 
assignment equation is added to the system while in 
the second case the corresponding control equation. 
By considering all motions defined in q as rigid body 

motions, the deformation along a component will 
gradually build up in a non-linear way. As explained 
next, another advantage is that linearization of the 
dynamic equations becomes straightforward which is 
important for defining an implicit solver.  

An element nq will either correspond to a translation 

or a rotation with respect to a space direction “dirn”. 
The first will define a displacement vector: 

 n nq ;dird  while the second a rotation matrix 



n n(q ;dir )t . By defining specific sequences of 

rotations and translations the position Gr  of any 

point of the configuration can be expressed in global 

coordinates starting from its local position Lr : 
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In the above L 0L r r w where 0Lr denotes the un-

deformed position and w the elastic deformation 

given with respect to the elastic axis displacements 
and rotations. Note that with respect to q the above 

expression is non-linear. Also because of this 

dependence R,T will vary in time.  

With respect to the dynamic continuity at all 
connection points, the principle in the multi-body 
approach is that one of the connected bodies 
contributes displacements and rotations to all others, 
which in turn contribute their internal (reaction) loads. 
So, at the rotor center all blades contribute to the hub 
loads while the hub itself defines the kinematics. At 
the sub-body interconnections, the preceding sub-
body provides the kinematics while the following one 
feeds back the reaction loads. 

 

Figure 3: The sub-body concept.  

2.2.1 Implementation of the sub-body concept 

R,T operators are defined for every component “k” 

that position the local system k k k kO x y z with respect 

to the fixed system G G G GO x y z (Figure 3). Such 

operators are also defined for every sub-body v(k) 
with respect to the component local system 

k k k kO x y z it belongs to. They are denoted as 
k

R , 

k
T  and k

vR , k

vT  respectively.  

Based on the above it is possible to project the 
dynamic equations to the local directions with respect 
to which elastic deformations and aerodynamic 
loading are usually defined. Taking the acceleration 
as an example, the following expression at 
component level is obtained,  
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A similar expression is derived also at sub-body 
level.  

 

Then as regards the linearization mentioned, by 

assuming small perturbations q  about a reference 

state 
0

q , q  and its time derivatives (velocity and 

acceleration), are approximated as: 
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In the above expressions repeated indexes mean 

summation while j jk jkm(.), (.), (.)    denote 1st, 

2nd, 3rd derivative with respect to the corresponding 
q’s. Following a similar procedure, all non-linear 
terms in (11) can be linearized. 
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2.2.2 Aeroelastic coupling 

Aeroelastic coupling includes two distinct interfaces. 
The first communicates the surface aerodynamic 
loads to the structure while the second updates the 
geometry and specifies the velocity at all points of the 

CFD grids. Let Fσ  denotes the stress tensor of the 

fluid and n  the normal to the deformed solid 

boundary. The aerodynamic load is defined as 
T

Fσ n

When a beam structural model is used, the 
aerodynamic loads must be integrated along the 
beam axis. Assuming that the relative position of a 
surface point with respect to the beam axis remains 

the same, 
T

Fσ n is first projected to the local 

coordinate system of the component (or 
corresponding sub-body) and then transferred to the 

beam axis. In doing that the moment of 
T

Fσ n must be 

included (for a straight blade the main moment 
component is the pitching one).  

Then as regards the updating of the CFD grid 
kinematics, expression (10) is applied to all grid 
points. This operation always starts from the initial 

un-deformed position 0Lr  and by that grid 

deformation is exact. By differentiating (10) in time 
the grid velocity is also obtained. It is noted that 
because the CFD grids have limited extent, their 
deformation will not risk of having line crossing that 
would lead to negative volumes. Furthermore, 
contrary to other grid deformation strategies the outer 
boundary will deform which is regarded as one of the 
advantages the specific hybrid solver has.  

3 RESULTS 

In the present work, simulations of the four-bladed 
BO105 rotor in forward flight at two different 
conditions are considered defined in Table 1. The 
specific values correspond to the values determined 
during the experimental campaign.    

Case U Pitch Roll Col Cos  Sin 

1 32.8 1 0 5.9 1.9 -1.2 

2 50.5 -2.6 2.8 7.2 1 -2.7 

Table 1: Definition of test cases 

Comparisons are made between the proposed solver 
(HoPFlow), the incompressible panel based vortex 
particle code (GenUVP) [7] and available 
experimental data [15] both sharing the same 

structural solver. All simulations are considered 
inviscid.  

For the GenUVP solver, a surface grid of 51x17 
points covering the aerodynamic part of the blade 
(starting at r/R=0.6). For the HoPFlow solver, a grid 
of ~190k cells per blade has been defined that 
covered a volume around the blade surface of 1.5c 
width. These grids were embedded into a PM box 
covering the complete rotor area and the near part of 
the wake. In the present simulations, most of the 

wake was contained in the
PD  part of the flow domain 

(see Figure 4).  

 

 

Figure 4: Overview of the computational set-up 

 

In order to determine the numerical parameters for 
the two flow solvers, preliminary tests have been 
conducted. In the HoPFlow solver the PM spacing 
specifies the free-length that a particle is expected to 
cover within a time step and is therefore closely 
connected to the time step. On the other hand the 
time step is determined by the CFL condition of the 
CFD grids that are used. An indication was obtained 
from the Caradonna test cases [14] . In Figure 5 pure 
aerodynamic predictions obtained with HoPFlow and 
its full CFD version MaPFlow are compared to 
measured data. The case corresponds to hovering 
flight at local Ma=0.877 For a PM grid spacing of 
0.2c, good correlation in terms of pressure 
distributions has been obtained. At the specific 
stations shock waves appear that are correctly 
predicted both in position and intensity. Predictions 
of similar quality were obtained for all the Caradonna 
tests [14]. 

Next the case of a forward flight at 50.5m/s for the 
BO105 is considered which turned out to be 
significantly more challenging. Convergence in terms 
of the PM spacing is shown in Figure 6.  

 



  

   

Figure 5: Pressure distributions at r/R=87%, 95%. 
Case study: Caradonna rotor in hover at Ma=0.877 

Results from spacing of 0.15, 0.2 and 0.3c are 
compared all calculated with 480 steps per rotation. 
Over the advancing side the 0.2c spacing provides 
convergence for most of the blade length and 
certainly the lift producing part. This is clear at the 
180deg azimuth position. On the contrary, over the 
retreating side, convergence is slower indicating the 
need for smaller spacing. The reason for that is the 
asymmetry of the loading conditions between the two 
sides that generates a significantly thicker wake over 
the retreating side where load balancing requires 
trimming to higher angles of attack 

3.1 Aerodynamic simulations 

In this section, purely aerodynamic results are 
presented for Cases 1 and 2. Instantaneous pressure 
distributions at 8 azimuth positions are shown in Fig 
7,8 in which measured data are also included for 
comparison. The specific simulations use the trim 
given in Table 1 and do not include any account of 
the torsion that is by default present in the tests. 
Furthermore, the fuselage which was present in the 
tests is not included. 

 

 

Figure 6: Convergence in terms of the PM spacing. 
The pressure distribution over the blade at 180 
(upper) and 270deg (lower) of azimuth. Case study: 
forward flight at 50.5m/s 

In Figure 7 and Figure 8 the pressure distributions at 
r/R=0.87 at 8 azimuth positions are depicted. The 
measured data are added to the plots as simple 
reference, since the response of the blade in torsion 
will change the aerodynamic conditions and 
therefore the pressure distributions will be different. 
In both flight conditions, the two simulations give 
overall similar behavior. At 90 and 120deg of azimuth 
HoPFlow predicts the formation of shock waves 
which GenUVP is not capable to predict by definition. 
It can be noted that the shocks appear more intense 
in the low speed case. This is due to the combined 
effect of rotor pitch attitude and blades pitching which 
in the low speed case lead to higher geometrical 
angle of attacks around the position of ψ=90ο – rotor 
pitch is higher by 3.6o while lateral cyclic 
compensates the difference in the collective trim 
value. This is shown in Figure 9 that gives the 
variation of the angle of attack as estimated in the 
GenUVP simulations.  

Besides the above the balancing of the pressure field 
over the disk is different. From ψ=30ο up to ψ=210ο 
the loading HoPFlow gives is higher than that of 
GenUVP. The opposite is noted over the rest of the 



disk. In fact, the sector over which HoPFlow predicts 
lower loading corresponds to positions where the 
effect of the wake over the retreating side is expected 
to be more intense. As already mentioned, a PM 
spacing of 0.2c is not adequate. For the higher speed 
case results corresponding to PM spacing of 0.15c 
have been added. This increase in resolution mainly 
affects this sector directing the results to higher 

loading. This is also clearly seen in the azimuth 
variation of the normal loading given in Figure 10.   

Finally, in Figure 11 and Figure 12 the azimuth 
variation of the resulting main loads at blade root are 
given. In the 50.5m/s case the comparison between 
the two solvers is better than that seen in the lower 
speed case.  

    

    

Figure 7: Pure aerodynamic simulations. Pressure distributions at r/R=0.87. BO105 in forward flight at 32.8m/s.  

 

    

    

Figure 8: Pure aerodynamic simulations. Pressure distributions at r/R=0.87. BO105 in forward flight at 50.5m/s  

This difference is mainly due to the level of angles of 
attack that the blade experiences. Over the 

advancing side at 32.8m/s the higher angles of attack 
that as previously seen give rise to shock waves that 



lead to higher flap moments. On the contrary over the 
retreating side the agreement is quite good. A similar 
behavior is seen also in the 50.5m/s case that is less 
intense due to the lower angles of attack that are 
formed. With respect to torsion moment, in both 
cases HoPFlow predicts lower values over the 
second half of the retreating side which is again 
attributed to the PM resolution.    

3.2 Aeroelastic simulations 

In this section results from fully coupled aeroelastic 
simulations are presented. When aeroelastic 
coupling is activated it is common practice to correct 
the loads provided by potential aerodynamic 
modelling. The usual way is to use look up tables in 
combination with a dynamic stall model. In this way 
viscous effects but most importantly Ma effects that 
are not included in the baseline flow solver, can be 
taken into account. In the GenUVP aeroelastic 
results this is done through the estimation of the 
effective angle of attack and effective relative inflow 
and the application of the ONERA dynamic stall 
model. Estimation of the effective conditions in CFD 
solvers, regardless whether they include or not 
viscous effects, is an open issue. In potential flow 
solvers, it is possible to isolate the conditions over a 
strip of the blade. In GenUVP the angle of attack is 
estimated from the total force while the effective 
relative velocity is calculated by excluding the self- 

  

 

Figure 9: Pure aerodynamic simulations. Azimuth 
variation of the angle of attack at r/R=0.87 of the 
BO105 in forward flight, as estimated in the 
GenUVP simulations  

 

 

Figure 10: Pure aerodynamic simulations. Azimuth 
variation of the normal force coefficient at r/R=0.87 of 
the BO105 in forward flight at 32.8m/s (upper) and 
50.5m/s (lower).  

induced effect of the strip. In CFD such an “isolation” 
for the inflow conditions per strip is not 
straightforward. So, for the present simulations with 
HoPFlow the aerodynamic loads have not been 
corrected. 

Another important aspect in aeroelastic simulations 
concerns the trimming. As already mentioned the 
values in Table 1 and the ones defined during the 
tests by the pilot so that the hub loads correspond to 
flight tests. Due to uncertainties in the model 
definition and the difficulty in exactly simulating the 
test conditions, the usual practice is to re-trim the 
control angles [16]. This process requires several 
revolutions until convergence is reached. In the 
present work, the rotor was not trimmed due to time 
constraints and limitations in the available computer 
resources. For consistency with the pure 
aerodynamic simulations, the measured trim was 
also used here. 



 

 

Figure 11: Pure aerodynamic simulations. Azimuth 
variation of the resulting torsion moment at blade 
root for the BO105 in forward flight at 32.8m/s 
(upper) and 50.5m/s (lower). 

Pressure results for the two cases considered are 
given in Figure 13 and Figure 14. In the 32.8m/s case 
the effect of blade flexibility is clearly seen. The 
shocks that appeared in the purely aerodynamic 
simulations disappeared. The aerodynamic moment 
in the torsional direction is negative resulting in lower 
angles of attack. The two simulations compare well 
over the majority of the rotor disk. Only within the 
second half of the retreating side there is important 
difference. The HoPFLow predictions underestimate 
the loads which is due to the poor PM spacing. In 
comparison to measured tests, predictions show 
acceptable agreement. The differences are such that 
can be minimized with proper trimming. 

Similar quality of results is also obtained in the 
50.5m/s case. It is worth noticing that at all positions, 
the HoPFlow predictions give lower loading. This is 
due to the higher aerodynamic pitching moment that 
is calculated. It is reminded that the GenUVP 
predictions are based on an aeroelastic coupling that 

makes use of the ONERA modelling while in the 
HoPFlow simulations the inviscid calculations are 
used directly. This results in higher negative 
moments which lead to higher torsional angles and 
by that to lower angles of attack as  also indicated in 
Figure 16. 

 

 

Figure 12: Pure aerodynamic simulations. Azimuth 
variation of the resulting flapping moment at blade 
root for the BO105 in forward flight at 32.8m/s (upper) 
and 50.5m/s (lower). 

In Figure 15 results in terms of normal force 
coefficients are given from the GenUVP simulations. 
For the 50.5m/s case results with a lower by 1deg 
lateral cyclic value is provided. The shape and the 
level is similar to the one obtained in the tests for a 
slightly higher speed at 60m/s [17]. In Figure 17 and 
Figure 18 the azimuth variation of the main loads at 
blade root are provided. In the flapwise bending 
moment results at 50.5m/s, comparison to 
measurements are also shown. It is clear that by 
reducing the lateral cyclic value better correlation to 
the measurements is obtained.  An important effect 
of the trimming is also seen in the variations of the 
torsional moment (Figure 18). 



    

    

Figure 13: Aeroelastic simulations. Pressure distributions at r/R=0.87.BO105 in forward flight at 32.8m/s 

 

    

    

Figure 14: Aeroelastic simulations. Pressure distributions at r/R=0.87. BO105 in forward flight at 50.5m/s 

 

 

 



 

 

Figure 15: Aeroelastic simulations. Azimuth variation 
of the normal force coefficient at r/R=0.87 of the 
BO105 in forward flight at 32.8m/s (upper) and 
50.5m/s (lower).  

 

 

Figure 16: Aeroelastic simulations. Azimuth 
variation of the angle of attack at r/R=0.87 of the 
BO105 in forward flight, as estimated in the 
GenUVP simulations  

 

 

 

Figure 17: Aeroelastic simulations. Azimuth variation 
of the resulting flap bending moment at blade root for 
the BO105 in forward flight at 32.8m/s and 50.5m/s 
(upper)  and comparison with experimental data 
(lower). 

4 DISCUSSION and CONCLUSIONS 

A hybrid aerodynamic model (HoPFlow) has been 
presented which was coupled to a multi-body 
structural model for helicopter applications. Pure 
aerodynamic as well as fully coupled aeroelastic 
simulations of two forward flight cases for the BO105 
helicopter have be conducted and compared to 
measurements. These results have been 
supplemented with similar ones obtained with a 
incompressible vortex flow solver (GenUVP) which 
was originally used in its thin wind version in the 
HeliNoVi project [17] while here is used in its thick 
wing version.  

With reference to the pure aerodynamic simulations, 
it was found that the hybrid solver can provide 
meaningful results. In this respect, the quality of the 
predictions was found to depend on the PM grid 
spacing. In hover conditions, a spacing of 0.2c was 
sufficient while in forward flight a significantly smaller 



value was necessary. Even the spacing of 0.15c was 
not found sufficient to properly simulate the flow over 
the last quadrant of the rotation. Besides this sector 
of the rotor disk, the rest was found consistent. On 
the other hand, the pure particle solver was found to 
be robust having however the disadvantage of being 
incompressible and therefore incapable of predicting 
shock waves – and compressibility effects in general. 

 

 

 

Figure 18: Aeroelastic simulations. Azimuth variation 
of the resulting torsion moment at blade root for the 
BO105 in forward flight at 32.8m/s (upper) and 
50.5m/s (lower) 

 

With respect to the aeroelastic simulations, on one 
hand the two sets of simulations were found in better 
agreement. This is due to the torsion angle that 
reduces the angles of attack and therefore limits the 
effect of compressibility. Both solvers converged to 
periodic states in approximately 5 full revolutions. 
The cost of such an aeroelastic simulation with 
HoPFlow is equivalent to 2000 core hours. It should 
be noted that trimming was not carried out and 
therefore the specific estimate of cost is too 

optimistic. Depending on the flight conditions 
trimming may require a significant number of full 
rotations.  

In conclusion, the results presented are regarded 
promising. In order to further reduce the PM spacing 
would require some modifications in the 
parallelization of the code in order to have good 
scalability. Then it is expected that accuracy will 
improve and the cost will be affordable to allow the 
trimming of the rotor.      
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