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Abstract 
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paper. The first one combines the design by optimization method based on the 
complex method of nonlinear programming with a new approach to the choice of 
design variables, providing an effective tool to satisfy several aerodynamic and 
geometric constraints simultaneously. The second one is designing an airfoil with 
prescribed chord or arc length pressure distribution at a given Mach number by 
solving the nonlinear transonic inverse problem. 

List of symbols 

CL 
CDw 
Cmo 
Cp 
D 
L 
M 
Mdd 
I 

s 
t 
z 

e 

lift coefficient 
wave drag coefficient 
pith moment at zero lift coefficient 
pressure coefficient 
drag 
lift 
Mach number 
dJ:ag divergency Mach number 
polar coordinate in circle plane 
distance along airfoil surface 
maximum thickness of airfoil 
complex variable in airfoil plane (=x+iy) 
complex variable in circle plane (=r exp iO) 
polar coordinate i.n circle plane 
trailing edge angle divided by n. 

Introduction 

To design an advanced lifting rotor blade it is important to have airfoils which 
can effectively operate in a wide range of flow conditions. Usually for the 
simplicity three specific regions are considered: 

M=0.4; CL=CLmax - retreating blade, 
M=0.6, (CL/CD)max- hover, 
M=Mdd, CL=O -advancing blade. 
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lJso the curve Cmo(M) has to be considered at CL=O. 
These performance provide an appropriate level of maximmn lifting capability, 

L/D ratio and control system loads of lifting rotor. In general, some geometric 
conditions (such as maximum thickness and trailing edge angle limitations) also 
must be satisfied. Usually the nonlinear programming methods are used to 
optimize one of the aerodynamic characteristics with a set of aerodynamic and 
geometric constraints. 

1. Design by optimization 

This approach includes the following basic features: the choice of design 
variables to define and modify an airfoil contour and generation the objective 
function and constraints based on the design variables, the choice of flow field 
model and numerical method to solve a direct problem of an airfoil, the choice of 
nonlinear programming method to optimize the objective function. 

1.1 Direct solver 

Aerodynamic parameters are calculated by two-dimensional inviscid transonic 
analysis code BG KJ [ 1], which solves the full potential equations (FPE) of fluid 
flow about an airfoil. A coordinate system for the treating the flow past a profile 
is generated by mapping the exterior of the profile conformally onto the exterior 
of a unit circle. The real part of the mapping function derivative ldz/d:;l can be 
presented as the power series: 

n=oo 

ln(ds/d8)- (1-s) ln2sin8/2= :z An cosrie+ Bn sinne 
n=O 

1.2 Design variables 

( 1) 

A common practice is to define the airfoil coordL'1at~s by poJ.i,.~onlial spline and 
different incremental algebraic shape functions. In this case the design variables 
are the coefficients and parameters of these functions, that is, in the form: of: 

y= f (x; a1 , ... , an ), 
where the coefficients an are design variables. 

An alternative choice of design variables, based on equation (1) is suggested in 
this paper. If s(8) is given, then the airfoil coordinates are easy to define: 

v:here 

e 
x(8)= f dsjde cos \jJ de 

0 

6 
y(O)= S ds/dB sin\j.f de. 

0 

n=oo 

'JI +1/2 [e+s (8-n)]= :z An sinne- Bn cosne 
n=O 

II.18-2 



The design variables are Fourie coefficients An and Bn. The coefficients An 
define the thickness of a profile and Bn define its meanline. Such a choice has an 
additional advantage bec.ause of two useful relations: 

s =1- A1 

Cmo =4nB2 

These relations allow to satisfy the subsonic pitch moment condition and the 
trailing edge angle limitation easily. 

1. 3 ·Optimization technique 

Two the most used types of optimization technique are k11own. The 
constrained function minimization progra111, CONMIN,[2,3] employs the gradient 
method of feasible directions to seek the minimum value of the objective function 
and simultaneously to satisfy a set of constraints. The present program is based on 
the nongradient complex method [4]. For comparison of these two methods and 
two types of the design variables, the test example of wave drag minimization of 
NACA-0012 profile was considered. Fig.l shows pressure curves and wave drag 
values with i < 12% constraint, fig.2 shows the sa111e values with extra s < s "<ACA 

condition. Similar results were presented in Ref.3, where the munber of the 
design variables was equal to six .. In the present paper the number was equal to 
three and the cost of computations was about two times lower, thus 
demonstrating the suscessful choice of design variables. 

1.4 Application 

As has been mentioned earlier, the helicopter airfoils should operate in a wide 
range of flow conditions. The inviscid flow computations by BGKJ method have 
showed, when compared with the experimental data, that it reasonably predicts 
the increments of the Mdd value by CDw(M) cmve, of the CLmax value by 
Cpmin(CL) curve for a similar behaving of Cp(x) curves in trailing edge regions, 
of the (CL/CD)max by CL(CD) curve and also Cmo(M). The increments are 
added to the correspoding profile prototype values. In the most cases considered 
only some under/overprediction of absolute values but not signes of these 
increments was obtained. Nevertheless at the later stages of the airfoil design 
more accurate prediction codes are desirable. 

At the earlier design stages for lower cost consider the following parameters: 

Cpmin- suction peak at M=0.4, CL=CLmax 

Cdw6- CDw at M=0.6, CL=0.7 

Cdws- CDw at :\1=0.8, CL=O 

Cmo at M=0.4, CL=O. 
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The design task is to provide the following improvemets of Lf-te initial airfoiil 
parameters: to increase CLma,-x by 0.05 and to minimize CDw at M=O.S. The 
values of CDw at M=0.6 and Cmo should not change significantly. 

Using the appropriate weighting coefficients ~i, the objective can be written as: 

to minimize G (X), 

where G(X)= PI (Cpmin- Cpmino )+ P2 (CDw6 -CDwoo )+ p; CDw& , 

X=(A2, ... ,A4; B2, ... ,B4) is the design variables vector, index 0 means design 
value. 

It is an uncoditional optimization problem, because ihe pncn moment and 
trailing edge constraints are satisfied automatically (Eqs.2 ) . The results are shown 
in Figs.3,4. In comparison with the initial proflle, the optimized proflle has a 
more thin and flat upper surface providing practically shockless flow on it. TI1e 
lower surface thickness distribution is strongly changed in accordance with the 
pitching moment constraint. The wave drag is reduced to zero, and the maximtm1 
thickness is equal to the initial one. The design constraints are satisfied and 
computed Mdd value is by 0.01 greater than initial one. 

2. Design by inverse problem 

An alternative approach to design an airfoil is to solve inverse problem. that 
is, to defu1e an airfoil contour for prescribed pressure distribution. Known is a 
method of reference 5, based on Dirichlet problem for full potential equation, but 
trailing edge closure constraints were not exactly assured. Here briefly described 
are the method, generalizmg the method of lighthill [6], based on Newmann 
problem for FPE and the way to accurately satisfy closure conditions. 

2.1 Inverse solver 

For incompressible fluid flo~yv an exact solution of inverse problem [ 6] is 
known by means of_ conformal mapping of the exterior of the proflle onto the 
exterior of a circle. The modulus of mapping function derivative is written as: 

ds/d8=us(8)/us(s) (3) 

The magnitude us(s) of the velocity along the airfoil surface is prescribed. The 
magnitude of the circle plane velocity ue(O) is universal for any airfoil for 
incompressible case but obtained by iterations for FPE, so Eq.3 is solved by 
successive approximations: 

i. Initial proflle gives ds/d8 

ii. BGKJ code predicts ue(8) for the given ds/d8 

111. Eq.5 gives a new ds/d8. Items ii-iii are repeated until convergency is reached. 
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2.2 Integral constraints 

To satisfy trailing edge closure conditions and ldz/d;i= 1 condition it is 
nesessary to meet three integral constraints: 

2n 

f ln(ds/d8) d8 =0 
0 
2n 

f ln(ds/d8) cose d6=0 
0 

2n 
j ln(ds/d8) sine d8=0 

0 

For this reason after item iii an additional item is included: 

iiii. Modification of ds/d8: ds/d8m=ds/d8 expE , 

(Jt \ 
\.') 

where a modification interval [81,82) ordinary agrees with some fraction of the 
lower surface ir• order not to disturb upper surface pressure distribution and E is a 
finite Fou.rie series in t.bJs interval. The least squares procedure makes it possible 
to obtain the exact relations for Fourie coefficients, solving a problem. So, the 
full procedure is to repeat items i-iiii. It is of interest to notice the similarity of 
inverse problem and viscid-inviscid interaction iteration rrocesses. The same ;~ 
valid for the cost of computation<. 

2.3 Examples 

Test examples are presented m Figs.S-7. In all cases initial presstu·e 
distributions are modified in the supersonic region as follows: 

Cpmod=Cp*+(Cpi-Cp*) fct, 

where Cpi- initial pressure coefficient, 
Cp*- critical pressure coefficient, 
Cpmod-prescribed pressure coefficient, 
fct<l -reduction factor. 

The calculated curves differ from prescribed ones on the lower airfoil surface due 
to integral constraints (Eqs.4) imposed. 
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3. Conclusions 

The application of nonstandard design variables provided a good statement of 
airfoil design procedure excluding two constraints from consideration and lowing 
cost of computations. 

A possible way to employ the inverse problem for helicopter airfoil design may 
consist in proper parametrizing of the pressure distribution at one of design points 
and using these parameters as design variables. It is the subject of future 
applications. 
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Fig.l. Cp distributions and wave drag values for NACA- 0012 airfoil 
and modified airfoil, t< 12% constraint. 

"' 
0 

I 

=r 
0 

I 

r~; ITL\ L CDw~0.0064 

"'""'"'--'· Ol'Tl.\-llZED CDw=O.OOI6 
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Fig.2. Cp distributions and wave drag vahtes for NACA- 0012 airfoil 
and modified airfoiL t< 12% , E. < E >.:ACA constraints. 
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INITIAL CDw=0.0239 

++++ OPTIMIZED CDw=O.Ol66 

I 

Fig.3. Initial TsAGI helicopter airfoil compared with designed airfoiL 
M=O.S design point. 
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