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Abstract 

The model developed to simulate the motion of helicopter 
see-saw rotor consists of 
deformable shaft with pitch 

two 
and 

elastic blades attached to the 

skew flap hinges. The deformable 

blades can bend in two perpendicular directions and twist around 

the straight elastic axis. Nonlinear steady two-dimensional 

airfoil data are used for aerodynamic loads calculations. The 

unsteady flow effects are described by dynamic inflow model. 

The equations of motion are generated from Hamilton's 
principle in semi-automatic way with most of algebraic 

manipulations 
dlscretlzed 

blades. 

done by computer. 
vibration 

The 
modes 

blade 

calculated 

deflections are 

by free for rotating 

The model can be incorporated into computer software for 

numerical integration and stability analysis. 

The sample results concern investigation of blade steady 

motion and dynamic 1n£low modeling on rotor behaviour. 

1 . INTRODUCTION. 

Although attempts are made to replace tail rotors by other 
devices [ 1], [ 2], tai 1 rotors st i 11 remain the most often used 
anti-torque and yaw control systems. Tail rotors have often two 
blades of see-saw type. Helicopter two-bladed main rotors are also 
design of this type. 

There are not many references concerning two 
[3-7]. although some aeroelastic stability problems 
typical for see-saw rotors (egs. blade weaving). 

blade rotors 
[8], [9] are 

The model developed in this paper is to be used for 
investigation of see-saw rotor aeroelastic behavior. The 
derivation of equations of motion is done in semi-automatic way. 
The computer program based on this model is incorporated into the 
software developed for rotor motion simulation and stability 
investigation [10]. 

The influence of dynamic inflow and blade steady state 
position on rotor stability is investigated in this paper. 

2. ROTOR MODEL. 

The rotor on helicopter in steady flight or on wind-tunnel 
stand is considered. External flow velocity components can vary in 
time so the influence of gusts and wind can be analyzed. 

The rotor model (Fig. 1) consists of two blades attached 
with stiff elements AO, 08 to the flap hinge placed on the shaft 
axis. The flap hinge axis is skewed by the angle o from the axis 
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perpendicular to the plane of the elements 
of elements AO and 08 and the flap hinge 
into analysis. The shaft and drive system 
is modeled as torsional spring placed near 

A-B. The precone angles 
spring can be included 
tor•sional flexibility 

the hub. 

The rotor shaft angular velocity n is constant. 

For pitch control the blades have feathering hinges axes of 
which are swept by the angle T in the plane of rotation (positive 
T i.s opposite to the azimuth angle ljl). The blade control system 
flexibility is included into boundary conditions for blades 
torsional deflections. The kinematic pitch-flap coupling different 
from flap hinge axis skewing effect is included into analysis. 

Each blade has straight elastic axis parallel to feathering 
axis. The blades are twisted geometrically around elastic axis. 
The blade can bend in two perpendicular directions and twist 
around elastic axis. 

3. EQUATIONS OF MOTION 

3. 1. General remarks. 

The equations of motion have been obtained with the method 
developed in [11]. The derivation of equations of motion is based 
on the Hamilton's principle in the form: 

t2 

f [o (u-T) -ow] dt=o. 

tl 

The blade motion is described by: 
1. "Rigid degrees of freedom": 

- shaft torsion angle ~. 

- flap angle {3. 

2. "Elastic degrees of freedom"; for each blade (k=1,2): 
- in-plane bending deflection v , 
- out-of-plane bending deflecti~n w , 
- torsion of the blade <l>k. k 

(1) 

The vector of generalized coordinates for rotor motion is: 
T T 

q = [ q
1 

1 = [v1 ,w1 ,<1> 1 ,v2 ,w2 ,<1>2 ,f3,~L !1=1,2, ..... ,Nd). (2) 

The deflect ions were discret ized by blades free vi brat ion 
modes. The same numbers of modes were assumed for each blade. 

The variations of T and U in (2) are calculated in terms of 
the generalized coordinates and velocities variations and after 
using identity od=do and integrating by parts, the expressions 
which contain the velocity variations are eliminated. 

Two kinds of equations of 
- for "rigid degrees of freedom" 

~t ( ~~ L- ~~ + ~~ = Qn ' 
1 1 1 

motion are 
(1::1,2, .... N ): 

r 
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- for elastic degrees of freedom 0=1 ,2, ... N 1: 
e 

aT au J - +- '1J dR+ 
aq aq 1 

1 1 

+J[ aau .. ] 'l]"dR = JQ '1J dR. q 1 n 1 

R 1 R 

aT 
-- + aq 

1 

The integration in (2) extends along both blades. 

In these equations: 

au J 'dR 
aq '1]1 

1 

- inertia loads result from derivatives of kinetic energy, 
- stiffness loads come from potential energy, 

(3b) 

- nonconservative loads arise from aerodynamic and damping forces. 

3.2. Inertia loads. 

The kinetic energy T can be defined in the form: 

1 If .2 T = 2 pbx dA
5
dR. ( 4) 

RA 
s 

In [4] the vector x describing the blade point in the inertial 
frame of coordinates is obtained as: 

x = [1(!/l)r = [1(1/1) (r+illx +ills), 
0 1 

where: ill = ill ( i5 Jill (~JIB ( J3 J IC 
1 

( i5 J IC ('JIG ( e J , 
R 8 2 o 

r = r+ill(x +s), 
0 1 

r = ill (o)ill (~JIB(J;3JIC 1 (oJ [e +IC (c)IG(e l£ ], 
R 8 o 2 o o 

X+ S = X +v+lf~ = X+ ~S, (1=1,2,31. 
1 2 I 

Matrices and vectors of (5) are given in Appendix 1. 

After inserting (5) into (4) and then into (3) 
loads (I.L. J are obtained.in the matrix form: 

( 5) 

(Sa) 

(5b) 

(5c) 

(5d) 

the inertia 

(6) 

The matrices 18, IC, [I and vector £ are given in Appendix 2. 
n 

3.3. Stiffness loads. 

Stiff ness loads consist of shaft and flap hinge springs 
deformations moments and forces due to blade deflections. 

The rotor shaft and flap hinge spring deformations can be 
arbitrary functions of the angles ~ and J3 respectively. 

Blade deformation forces and moments are derived from model 
given in [ 11]. It is assumed that deformations are small, and 
there is no section warping. Blade. cross sections have . the 
symmetry of elastic properties about the chord. 
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The general expression for beam elastic strain energy, 
after applying the Hooke's law, has the form: 

lJ = 21 JJ[Ee 2 +2G(e 2 +e 2 
) ]dA dR. (7) 

11 12 13 s 

RA 
s 

After expressing the strain tensor components as the 
functions of generalized coordinates, eliminating blade 
longitudinal extensions, allowing for first terms of v, w and ~ 

and 1 inearizing sin and cos about ~. the expressions for strains 
were put into (7). 

The stiffness loads (S. L.) in the equations of motion due 
to blade deflect ions can be put in the form: 

S.L = Oq + h. ( 8) 

The elements of matrix 0 and vector h are given in [ 11 J . 

This model has been chosen here for its simplicity but any 
other even more sophisticated elastic load model can be easily 
incorporated into the equations of motion. 

3.4. Aerodynamic loads. 

Aerodynamic loads calculations are based on the strip 
theory. In each blade cross section the 2D flow is assumed. The 
aerodynamic loads acting in section aerodynamic center A.C. 
consist of: 

- drag: 1 2 dD=2pc(x)V C
0
(a)dx, (Sa) 

- lift: 1 2 
dL=2pc(x)V CL(a)dx, (9b) 

- moment: 1 2 2 
dM=2pc (x)V CH(a)dx. (9c) 

The airfoil aerodynamic coefficients are calculated from 2D 
steady, nonlinear characteristics for instant angles of attack a. 

The section flow velocity V results from: 
- flight (or wind-tunnel) velocity V , 
- rotor motion relative to the helicBpter fuselage x 
- induced velocity v

1
• 

and can be expressed as: 

V=(Ul-
1(vL+v1+xJ. (10) 

The dynamic inflow model used for induced velocity 
calculations allows to account into analysis the effects of 
unsteady flow. The induced velocity vector consists of only one 
component perpendicular to the plane of rotation. 

Total induced velocity is a sum of constant part obtained 
from momentum theory and perturbations due to dynamic inflow: 

71.=71. +71. . 
0 1 
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Per-tur-bations of induced velocity vector- ar-e calculated using 
coefficients [12]. 

The aer-odynamic loads in the blade section can be expr-essed 
as for-ce and moment vector-s: 

fA=[fi;,f1J,fl;r' 

fi;=O, 

f = dDcos(a)-dLsin(a), 1) 
f<;= dDsin(a)+dLcos(a), 

rnA= [ mi;' m1), mSr, 

m =-dM+1) f 
i; A I;' 

m =0 1) ' 
m<;=O. 

( 12) 

The vector- of r-otor- aer-odynamic loads in the equations of 
mot ion: 

QA=QA(t,q,q)=[QA1]T, (13) 

can be obtained fr-om (12) by successive tr-ansfor-mations. 

The loads (12) ar-e transfor-med to the section coor-dinates system: 

f =1l"f 
A2 A' 

m =1l"m 
A2 A 

( 14) 

and to the equations of motion the components of aer-odynamic 
loading ar-e taken fr-om (14) for-: 

- in-plane bending: QA1 = I1l/ A2YdR, 

R 

- out-of-plane bending: QA1 =I 1J 1 f A22
dR, 

R 

(15a) 

(1=N+N+1, .. ,N+N+N >, 
A v A v w 

(15b) 

- for- tor-sion: Q -J1) m dR 
Al- 1 A2X ' 

( i=N+N+N+l, •. ,N+2•N l,(15c) 
A v w A c 

R N =1 for I blade. 
A 

N =N for II blade. 
A c 

The next steps of aer-odynamic loads calculation ar-e: 
tr-ansfor-mation to the feather-ing axis at the r-oot of the blade, 
calculation of the total blade loads in the feather-ing coor-dinate 
system: 

F = If dR, 
Al At M = I m dR. Al Al 

(16) 

R R 
The aer-odynamic loads in flap hinge coor-dinate system ar-e 

obtained as: 

F =IB(/3)1C (o)IC ("r)G(9 )F , 
AB 1 2 o Al (17) 

H =IB(/3)1C (o) ra:: (o)G(9 )H +exiC (o)G(9 )F J. 
AB 1 L 2 o Al 2 _ o At 

Fr-om ( 17) the moment component along flap hinge axis is 
taken into the r-otor- flap equation: 

Q -M 
Al- ABY' 

(18) 
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Next, the aerodynamic loads in the shaft system coordinates 
are obtained: 

F =lA ( ~) F , 
AR B AB 

M =lA ( ~) M 
AR B AB 

(19) 

and the component along the rotor shaft is taken into the equation 
of shaft deformation: 

Q -M 
Al- ABZ' 

( 20). 

The rotor aerodynamic loads for dynamic inflow model are 
calculated as: 

M =lA ( o) M . 
AS R AR 

( 21). 

3.5. Damping moments 

The damping forces can be described as a vector: 

F -F ( ' ) - [ F ] T 
D- D ql' ql - Dl ' 

(22) 

Moments for shaft torsion and flap hinge damping can be 
arbitrary function of shaft torsion and flap angles and angular 
velocities: 

F =F (q 
01 01 1, 

{l=N +1, .. ,N +2). 
• • 

(23) 

For blades deflections the viscous damping loads are 
modeled in the form: 

(24) 

3.6. Final form of equations of motion 

After collecting together the expressions: (6), (8), (13), 
(22) the equations of motion are put in the form: 

18 ( q)q=-2i: ( q) q-q TID f q)q-f( qHlq-h-F ( q, q ) +Q ( t, q, q). ( 25) n o A 

Most of algebraic manipulations needed for generation of 
these equations are performed by computer. The derivatives of 
transformation matrices and translation vectors were calculated 
analytically to avoid numerical difficulties. The blade 
generalized masses and stiffnesses are obtained from the separate 
computer program before solving these equations, so the inertial 
and structural operators need not be integrated along the blade 
span during the computation of equation right hand sides. 

The equations are adopted to computer software allowing for 
numerical integration, linearization and stability analysis. 
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4.SAMPLE RESULTS 

The mode 1 was applied for 
inflow model and steady motion 
stability motion. This problem has 

investigation of influence of 
parameters on see-saw rotor 

not been investigated so far. 

The dynamic inflow 
analyzed for two cases: 

contribution to the rotor motion was 

A. full model with dynamic 
B. no inflow pertU!"bation, 

inflow coefficients. 
:1. = 0. 

1 

The rotor mot ion for rigid blade is shown in 
influence of inflow modeling is evident. 

Fig 2. The 

The influence of inflow on eigenvalues of sample elastic 
blade deformations is illustrated in Table I. Dynamic inflow 
included into model changes mainly in-plane and pitch deformations 
and has less influence on out-of-plane stability. 

5. CONCLUSIONS 

The model was developed for simulating a see-saw rotor 
motion for helicopter in steady flight. 

The method which was applied for derivation of equations 
of motion enables easy modifications, extensions and 
incorporation of new model elements. 

The mode 1 was used to investigation of inflow modeling on 
rotor mot ion. 
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NOTATION 

A - blade section area, 
• 

~(q) - inertia matrix, 
c(x) - blade section chord, 
~(q) - Coriolis loading matrix, 

C() -aerodynamic coefficients: D-drag, L-lift, M-moment, 

OJ ( q) - gyroscopic loads matrices ( n=t, ... ,N >, 
n e 

T e- vector of feathering hinge location, e = [e ,e ,e ], 
X y Z 

E - Young modulus, 
f vector of elastic axis location, f = 

0 0 

f(q) - vector in the expressions of inertia 
fA() -section aerodynamic force, 

FA() -rotor aerodynamic force, 

FD - vector of damping moments, 

G - Kirkhoff modulus, 
K - control system stiffness, 

p 

Kw - shaft and drive system stiffness, 

mA() -section aerodynamic moment, 

MA() -rotor aerodynamic moment, 

T [f,f,fl. 
X y Z 

loads, 

N - number of blade deflections, N =N +N •N.,., 
c c v w 'II 

N - number of generalized coordinates, N = 2•N +N , 
d d c r 

N - number of "rigid degrees of freedom", N =2, 
r r 

N - number of in-plane bending deflection modes for one blade, 
v 

N - number of out-of-plane bending deflection modes for one w blade, 
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e 

N~ - number of torsion deflection modes for one blade, 

q - vector of generalized coordinates, 
Q- nonconservative forces in Hamilton's equations of motion, 

n 

QA- vector of aerodynamic loading in equations of motion, 

R - rotor radius, 
t - time, 
T - kinetic energy, 
U - potential energy, 
v - blade translation 
v- induced velocity, 

l 

T = T(t,q,q,q' ,q' ), 
U = U(q,q' ,q"), 
vector due to deflections, T v=[O,v,w], 

v - in-plane bending deflections of the k-th blade, 
k 

V- flow velocity in the blade section, V2=V2 +V2 

p L.y Lz' 

V - blade section flow velocity vector, 
V- flight (or wind-tunnel) velocity, 

L 

w - out-of-plane bending deflection of the k-th blade, 
k 

w -
{3 -
{3 -

p 

work of nonconservative forces, W 
angle of rotation in flap hinge, 
blade precone angle, 

= W(t,q,q,q' ,q' ), 

y
1

- blade Viscous damping coefficients ( 1=1,2, ... ,Nd), 

o - flap hinge axis skew angle, 

l J 
- components of blade strain tensor < 1, J=1,2,3), 

1l ( x) 
l 

- blade deflection modes, 

9 - blade geometrical twist angle, 
9 

9 - angle of rotation in the feathering hinge of i-th blade, 
l 

9 - collective pitch angle, 
0 

A - induced velocity coefficient, 
A - induced velocity perturbation coefficient, 

1 

A- constant term of ·induced velocity coefficient, 
0 

~ - advance ratio 
~ - section point coordinates 
p - air density, 
p - blade local density, 

b 

T vector, ~=[0,1),~]. 

T - feathering axis sweep angle, 
~ - shaft torsion angle, 
~k- torsion angle of the k-th blade, 

~ - azimuth angle, 
Q- shaft angular velocity. 

Vectors are written bold, matrices-draw. 
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APPENDIX 1. 

Transformation matrices due to hub angles. 

[ ''"" sin( I#) 0 

l [ ''"'" -sin(o) 0 

l aJ = -si~(</J) cos(</!) 0 All= si~(aJ cos(a} 0 

0 1 0 1 

[ ooo(" sinh:>) 0 

l [ ''''") 0 -sin(/3) 

l IA13= -sl~(") cos(i!) 0 IB = 0 1 0 

0 1 sin(/3) 0 cos(/3) 

[ oo•i'i sin{<l) 0 

]· 
[ o~(<l -sin(T) 0 

]· C1= -si~(d) cos(o) 0 rc
2
= si:(T) cos( T) 0 

0 1. 0 1 

' ·[ 
1 0 

•1~( •• 1 l 0 cosca l 
0 

0 -sin(a ) cos(a ) 
0 • 

Matrix of section rotation due to elastic deformations. 

[ 

1 -v'cos(a ) + w'sin(B ) -v'sin(e ) - w'cos(B J l 
g 9 9 g 

a = v' cos(e ) - ¢ sinCe J sin(a ) + ¢ cos(a ) . 
9 9 9 9 

w' -sln(a ) - ¢ cos(e l cos(l J - ¢ sln(a l 
9 g g g 

Vectors of translations. 

x
1 

"' ( X, y, Z } , 

s ~ {-v'y, v, 0}, 
I 

y=~cos(6 )+~sin(B ), 
9 9 

z=-~sin{l J•~cos(6 ), 
9 g 

x = {x,O,O}. 
2 

APPENDIX 2. 

Inertia matrices. 

s
2
={-w'z, 0, w}, s

3
= {0.-z~. yifl}, 

v = {v,w,O}. 
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blade !I 

6 

thrust 

in hover 

[ 

No azimuth angle (f=O) 
No shaft torsion (~=0) 

Fig.l. Model of see-sa1~ rotor. 

xs 

Table I. REAL PARTS OF EIGENVALUES 

====-=====================-=====================~-==================== 

In-plane bending Out-of-plane bending Torsion 
f 

A B A B A B 
---- --------- =========== !=========== =========== =========== f:======== ---------
.0 .469E-4 .492E-4 -.156E+l -.156E+l .232E-3 .924E-4 

.05 .399E-4 .434E-4 -.l68E+l -.168E+l .571E-3 .340E-3 

.10 .522E-5 .500E-4 -.200E+l -.200E+l .222E-2 .222E-2 

.15 -.750E-4 -.780E-4 -.172E+l -.174E+l .291E-2 .226E-2 

.20 .648E-2 .648E-2 - .ll9E+l -.ll9E+l -.259E-3 .5llE-3 

====~==========~==========-==========-===========-==========-========= 

A -with dynamic inflow, 
B - no dynamic inflow. 
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Fig.2. 

' . ' ' ' ' 
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' . ' ' 
' ' ' ' 
' ' ' ' 
' ' ' . ' ' . ' ' ' ' . 

Shaft torsion angle vs azimuth, ;r. = 0.15. 
(a) - with initial deflection, 
(b) -no initial deflection. 

A - with dynamic inflow, 
B - no dynamic inflow. 
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