
41st European Rotorcraft Forum
Munich, 1-4 September, 2015

Paper 133

COMPARISON BETWEEN DIFFERENT GRID METHODOLOGIES
FOR ROTORCRAFT CONFIGURATIONS

Mark A. Woodgate
woodgate@liverpool.ac.uk

Research Fellow
CFD Laboratory, School of Engineering
University of Liverpool, L69 3GH, U.K.

George N. Barakos
G.Barakos@liverpool.ac.uk

Professor
CFD Laboratory, School of Engineering
University of Liverpool, L69 3GH, U.K.

Abstract

There is a wide variety of CFD grid types including Cartesian, structured, unstructured, and hybrids as
well as numerous methodologies of combining grids together to reduce the time required to generate
high quality grids around complex configurations. This paper presents a comparison of some of the
different meshing techniques implemented within the Helicopter Multi-Block CFD method and highlights
the merits of each. The paper also presents some of the challenges in developing CFD solutions that
can cope with a variety of grids, and deliver efficient solutions.

1 INTRODUCTION
Structured, unstructured, or hybrid grids can be
used for helicopter CFD. The grids may also use
either overset or sliding interfaces to account for
the relative motion between components of the he-
licopter or for reducing the complexity of the mesh
generation process. In the literature, established
helicopter CFD codes [1, 2, 3, 4, 5] have been
used with several types of grids without a clear
conclusion as to which mesh type is best for com-
putations. In this paper, the idea of hybrid grids
is put forward as an attempt to compromise be-
tween accuracy of solution and ease of mesh gen-
eration. The basic scheme considered, is to keep
structured zones where accuracy is required (e.g.
around the rotor blades) or in the rotor wake and
use the unstructured parts to alleviate meshing dif-

ficulties in regions with complex geometries (e.g.
complex fuselage shapes). Of course, the use of
hybrid grids brings forward issues related to the
solver (that now has to cope with different mesh
types) and issues related to communication be-
tween different mesh types.

2 BACKGROUND
The choice of CFD grid type has a number of
consequences beyond the ease of generating a
high quality mesh. These include the computa-
tional cost within the CFD solver, the computational
storage, and the accuracy and robustness of the
employed iterative solution method.
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2.1 Cartesian Grids
A Cartesian grid as shown in figure 1(a). It is a spe-
cial case of a structured grid where the cells are all
squares and aligned with the Cartesian axis sys-
tem. They are trivial to generate and have faster
flux evaluations compared to body fitted grids due
to simplified mesh metrics. However, their disad-
vantage is the complexity in how the boundaries
are treated; the cells at the boundary are cut by the
real geometry, which then has to be handed via the
flow solver.

2.2 Multi-Block Structured Grids
A multi block structured grid, as shown in figure
1(b), tries to take advantage of the flexibility of the
unstructured grids in local refinement, and the sim-
plicity and efficiency of structured meshes. In fact a
multi-block mesh can be thought of as an unstruc-
tured hexahedral mesh. Hence the advantages of
body fitted grid around the geometry can be main-
tained while reducing the grid generation time.

2.3 Unstructured Grids
An unstructured grid, as shown in figure 1(c) has
an irregular connectivity and hence cannot be ex-
pressed as a three dimensional array meaning it re-
quires more storage, in general. When a flow has
large gradients in one direction with milder ones
in the transverse directions like for example, in
boundary layers, shear layers, and wakes, this can
lead to highly stretched tetrahedra. This issue is
normally overcome by using prism layers in these
parts of the flow such that the height of the prism
is much smaller than its base.

2.4 Patching Methods
There are a number of techniques for patching mul-
tiple grids together, however, none is totally satis-
factory as shown in figure 2. One such method is
the use of non conformal interfaces between the
grids which has been used to good effect in rotor-
craft aerodynamics by embedding the blades into
a “drum” which allows movement with respect to
the background grid [2]. In this case, the use of dif-
ferent point distributions on either side of a curved
interface leads to gaps and overlaps, between the
rotating drum grid and the stationary background
grid. Hence, in general, non conformal interface
schemes are only conservative when the interface
is planar. The case for the non conformal inter-
face abutting a curved surface is more problem-

atic since it is now possible for the interpolation
scheme to use information from the wrong part of
the boundary. This issue was addressed in [6] by
mapping the finer grids grids onto the the coarse
grid representation of the curve when the interpo-
lation weights are being calculated.

Another method is the grids to overlap one an-
other as in the case of chimera or overset grids [7]
which are also implemented in HMB2 [8]. An exten-
sion to this is the DRAGON (Direct Replacement of
Arbitrary Grid Overlapping by Nonstructured) mesh
is developed by Kao and Liou [9] which stitched
non overlapping structured meshes for the differ-
ent components using tetrahedra.

DRAGON grids have been extended by Wang
et al [10] into the zipper layer method to increase
the robustness in small gaps. This was without us-
ing an overlap or hanging nodes by adding a small
number of tetrahedra and pyramids on either side
of the interface to form a conformal mesh.

3 HMB2 HYBRID METHOD IMPLE-
MENTATION

The ultimate goal of any method that uses hybrid
grids is to exploit the advantages while minimis-
ing the drawbacks. For example, a conformal hy-
brid mesh can be executed entirely within an un-
structured solver with all the extra cost associated
with these types of solvers. These drawbacks could
be reduced by solving the body fitted grids using
a multi block structured solver with the remainder
solved in an unstructured solver. This methodol-
ogy can be extended farther to include a high or-
der method for solving cartesian background grids
without having to extend the high order scheme to
curvilinear grids. Also, it would be possible to solver
a different set of governing equations in different
parts of the flow. All this functionally is obtained
though special treatment of the interface between
two different zones so each separate solver has all
the information required.

3.1 Block Structured Scheme
The Helicopter Multi-Block (HMB2) code [1, 11,
12], developed at Liverpool can solve the discre-
tised Navier-Stokes equations in integral form us-
ing the arbitrary Lagrangian Eulerian (ALE) for-
mulation for time-dependent domains with moving
boundaries. The equations are discretised using a
cell centred finite volume approach on a multi-block
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grid. Osher’s upwind scheme is used to discre-
tise the convective terms and MUSCL [13] variable
interpolation is used to provide third order accu-
racy. The Van Albada limiter [14] is used to reduce
the oscillations near steep gradients. Temporal in-
tegration is performed using an implicit dual-time
step method [15]. The linearised system is solved
using the generalised conjugate gradient method
with a block incomplete lower-upper (BILU) pre-
conditioner.

3.2 Unstructured Scheme
The Helicopter Unstructured Method (HMB2/HUM),
has been implemented using a similar scheme al-
beit with some differences. Firstly, the governing
equations are discretised using a vertex-based
approach on the unstructured mesh. Hence the
solution unknowns are stored at the grid points
instead of the cell centres and the cell control vol-
ume is now obtained using the dual mesh. With
structured grids the second neighbours of each
cell are well-defined and these are used in the
spatial discretisation of the equations (e.g. in the
MUSCL scheme). With unstructured grids this is
not the case, and flow gradients are used instead
to the same effect. The remainder of the function-
ally is the same but due to the differences outline
above, a structured multi-block mesh will not pro-
duce identical results when run using the unstruc-
tured mode.

3.3 Coupling Methods
The method for coupling a block structured zone
to a unstructured zone depends on the restrictions
placed on the interface [16]. The most restrictive
case is the one where the interface is required to
be conformal. An example of a conformal interface
is shown in figure 3(a). An interface is conformal
if both the points and the edges coincide for each
zone. This can either be achieved by splitting the
face on the block structured side and calculate the
flux on each triangle or by using a layer of pyra-
mid on the unstructured side to transition into the
tetrahedral mesh of which the later case was im-
plemented. It should be noted that the accuracy of
the interpolation could be enhanced if instead of
transitioning straight away what the ”halo” layer of
the block structured mesh is also included in the
unstructured pack. This would require that there is
enough space for the halo layer and the halo mesh
information and makes the generation of the un-

structured zone more complex in corners as shown
in figure 3(d).

A slightly less restrictive case is the one where
the two interfaces coincide but the points do not
as shown in figure 3(b). If the interface is curved
this also leads to having both holes and overlaps
in the mesh. This can be reduced greatly if approx-
imately the same density of points are used in both
interface when they have high curvature. Another
option would be to pre process the grid by project-
ing the higher density interface onto the lower with
a method similar to the one described in [6].

The least restrictive case is that of going to non
matching interfaces and using a overset grid or
CHIMERA method. It should be noted that not all
the functionally of a CHIMERA method would be
required if, for example, the grids were built in such
a way that no hole cutting is required and its just
a matter of finding the interpolation weights, which
will now not be close to the edge of the interface,
to connect the two zones together.

4 IMPLICIT FLOW SOLVER
The Navier-Stokes equations can be discretised
using a vertex-centred finite volume approach. The
computational domain is divided into a finite num-
ber of non-overlapping control-volumes, and the
governing equations are applied to each cell in
turn. The spatial discretisation of the NS equations
leads to a set of ordinary differential equations in
time,

(1)
d

dt
(WV ) = −R (W) .

where W and R are the vectors of cell conserved
variables and residuals respectively. Using a fully
implicit time discretisation and approximating the
time derivative by a second order backward differ-
ence equation (1) becomes

(2)
3V n+1Wn+1 − 4V nWn + V n−1Wn−1

2∆t
+R(Wn+1) = 0.

The equation is non-linear in Wn+1 and cannot be
solved analytically. This equation is defined to be
the unsteady residual R⋆. Following the original im-
plicit dual-time approach introduced by Jameson
[15] equation (2) is solved by iteration in pseudo-
time t⋆. This permits the acceleration techniques of
steady state flow solvers to be used to obtain the
updated solution and allows the real time step to
be chosen based on accuracy requirements alone
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without stability restrictions. Using an implicit time
discretisation on the pseudo-time t⋆

(3)
Wm+1 −Wm

∆t⋆
= −R⋆(Wm+1)

V n

where the superscript m+ 1 denotes the time level
(m + 1)∆t⋆ in pseudo-time. In this equation the
flux residual on the right hand side is evaluated
at the new time level m + 1 and is therefore ex-
pressed in terms of the unknown solution at this
new time level. The unsteady residual flux residual
R⋆

(
Wm+1

)
is linearised in the pseudo-time vari-

able t⋆ as follows,

R⋆
(
Wm+1

)
= R⋆ (Wm) +

∂R⋆

∂t⋆
∆t⋆ +O(∆t⋆2)

≈ R⋆ (Wm) +
∂R⋆

∂W

∂W

∂t⋆
∆t⋆

≈ R⋆ (Wm) +
∂R⋆

∂W
∆W,(4)

where ∆W = Wm+1 −Wm. and by using the def-
inition of the unsteady residual

(5)
∂R⋆

∂W
=

∂R

∂W
+

3V

2∆t
I

Substituting the above in equation (3) and rewriting
in terms of the primitive variables P then

(6)
[(

V

∆t⋆
+

3V

2∆t

)
∂W

∂P
+
∂R

∂P

]
∆P=−R⋆(Wm).

4.1 Jacobian Matrix
An approximate Jacobian is used to reduce the
sparsity pattern of the Jacobian matrix as well as
the stillness of the linear system. This is approx-
imation take the form by differentiating the flux
across the face with respect to the left and right
MUSCL states instead of the solution variables.
This scheme is similar to calculating the exact Ja-
cobian matrix for a first order spatial discretisation,
with the modification that the MUSCL interpolated
values at the interface are used in the evaluation
rather than the cell values that would be used for a
first order spatial scheme. In fact these approxima-
tions are exact for a first order spatial discretisation.

In the multi-block structured case, this approx-
imate Jacobian has 7 non zero entries per row. In
the unstructured case for a hexhedral mesh this
is still true since each vertex has 6 edges. How-
ever for a general unstructured mesh using a ver-
tex centred scheme this will increase. For exam-
ple the figure 4 shows a histogram of the number

of edges per point for the ERICA fuselage case of
section (5.4). Most have 9 non zero terms per row
since this occurs from prisms which are grown from
a surface mesh where 6 triangle met at a point. The
average number of terms per row in this case is
10.52 with 6 rows having 24 non zero terms. This
increase from 7 to 10.5 increase the computational
cost of a matrix vector multiply by 50% however the
cost is farther increased due to the non fixed dis-
tance between the columns of any given row which
now have to be accessed from memory - since a
sparse matrix vector multiply is memory bandwidth
limited anything that increase loads from memory
reduces the performance.

4.2 Low Memory Solver
The lower memory solver is based on splitting the
Jacobian matrix into the lower diagonal and uppers
parts.

A = L+D + U = (L+D)D−1(U +D)− LD−1U

where L only consists of block terms which are
strictly below the diagonal, U only consists of block
terms which are strictly above the diagonal and D
is a block diagonal matrix. If it is assumed that the
LD−1U is small and hence can be neglected then
the following equation can be used to solve for the
solution update.

(7) (L+D)D−1(U +D)∆Wn = −R(Wn).

Equation 7 can be inverted by using a forward and
backward sweep procedure:

(8)
{

D∆W ⋆ = −R(Wn)− L∆W ⋆

D∆Wn = D∆W ⋆ − U∆Wn

where ∆W ⋆ is the solution vector updated in the
forward sweep. The property of the Jacobian matrix
has a strong influence on the performance of this
scheme. There are a number of ways to set up the
Jacobian matrix, in the original LU-SGS scheme,
the matrix was constructed based on splitting the
inviscid flux Jacobian according to its spectral ra-
dius. This treatment reduced both the computa-
tional complexity of the scheme and help to en-
sure the matrix is diagonally dominant [17, 18].
However in the case of HMB2 the Jacobian matrix
is the same as the one used in section 4.1. This
means that the memory required to store the pre-
conditioner and the generalised conjugate residual
solver bases are not required, this is at the expense
of taking more iterations to solve the linear system,
usually with a smaller CFL number to keep the sys-
tem more diagonally dominant.
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4.3 Parallel Implementation
The parallel implementation of the Helicopter Un-
structured Method (HMB2/HUM) is done though
partitioning the domain into smaller pieces using
METIS [19]. This is a fast processes taking less
than a 20 seconds for a mesh of 3.5 million cells.
Since the process is linear in the number of cells
even meshes of 100 million cells are not CPU de-
pended. A larger limiting factor is the amount of
memory needed to partition the mesh. This again
is linear in the number of cells and currently about
1.4 Million cells per GByte. Hence a 100 million cell
mesh would take around 10 minutes of CPU time
but also around 70 GBytes of memory.

Since the grid has been partitioned into multiple
domains information must be passed between pro-
cessors. Unlike the structured solver in which is a
double row of halo cells is passed the unstructured
solver needs a single row of both the solution and
its spatial gradients. This is double the amount of
information since the gradient requires three times
the information and the gradient of the temperature
is also communicated.

4.4 Parallel Performance
The parallel performance is shown in table 1. As
the number of processors doubles so is the num-
ber of iterations and hence if the code was 100%
efficient the time would remain the same. The test
problem had 3.55 million cell and was tested us-
ing the explicit two equation turbulence formation
with MUSCL extrapolation, limiting was turned on
and the gradients calculated using weighted least
squares. There are two factors affecting the paral-
lel performance. First, as the mesh is partitioned
into smaller parts the ratio of internal points to halo
points gets larger and so there is less computa-
tion per Mbyte of communication. The second fac-
tor is that as more processes are running on the
same node there are less resources per proces-
sor. For example the fixed memory band width has
to spread across more processors and hence can
be a limiting factor in the parallel efficiency of the
code. Taking both facts into account the 20% drop
off is a good result. To assess the effect the limited
memory bandwidth a second configuration was run
where each node has just two processes and the
messages sent via MPI where sent over a Giga-
bit Ethernet network instead of using the shared-
memory Byte Transfer Layer which is used for com-
munications within a node. This means that each
process will have more memory bandwidth at the

expense of a slower transport layer. As can be
seen from table 1 there is a small increase in effi-
ciency running with less processes per node. In an
environment where processes within a node have
much higher bandwidth and lower latency when
communication across nodes the assignment of
partitioned mesh to nodes is very important. Using
the same test problem and running on 8 processes
each on two nodes it possible to increase the wall
clock time from the 1415 seconds from table 1 to
1740 seconds. In this case the amount of data com-
municated between the nodes increased a factor
of 7 causing a marked slowdown. Ideally, the grid
partitioning process should be done in two stages
firstly the message between nodes should be min-
imised by partitioning on the number of nodes be-
ing used and then each of these partitions should
be re-split based on the number of processes per
node to minimise the amount of traffic over the
slower communication layer.

5 NUMERICAL RESULTS
The following section first examines the difference
performance between HMB2 and HMB2/HUM, the
effectiveness of the Jacobian matrix for the un-
structured scheme as well as two ad three dimen-
sional computational results.

5.1 Performance Comparison Between
HMB2 and HMB2/HUM

An important aspect of any CFD code is its compu-
tational performance and where the code spends
most of its time. Codes that spend a large per-
cent of their time in only a couple of subroutines
are amenable to performance enhancement. The
GCC compiler was used. The code was compiled
with -O2 optimization instead of the normal -O3 so
as to stop the compiler from in-lining certain small
functions, making the timings within functions cor-
rect at the expense of an increased number of func-
tion calls. The table 2 below shows the top 20 func-
tion calls within the explicit part of the HMB2/HUM
code. As can been seen some 70% of the runtime
of the code is in 3 functions.

From the number of calls to any given func-
tion there are three different types. The ones
that are called every iteration, for example,
nsSolverInit which initialises the Navier Stokes
solver, a function that are called number of cells
times per iteration which is used to calculate
the source term of the two equation turbulence
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model, sourceTermKOmega, and finally, functions
that are called number of edges times per iter-
ation, for example the viscous flux calculation,
viscousGradResidual. There is a minor differ-
ence between the number of calls to Osher’s ap-
proximate Riemann solver and the number of vis-
cous flux calls because the Osher solver is reused
for some boundary conditions while the viscous
fluxes has a specialised routine. It should be noted
that a different type of mesh changes the ratio of
the number of edges to the number of cells in the
computations. The calculation of the gradient by
least squares is the highest cost function since the
current version recalculates the matrix every itera-
tion. The limiter values are calculated and stored
so that can be used in both the Navier-Stokes
and two equation turbulence models. It only con-
sists of two loops over the edges neither of which
are very computationally expensive, however, there
is a large number of conditional statements, four
in each loop which have fairly random branching
making the routine slow. After these two routines
it is better to look at the cost of all the functions
that make up the inviscid, viscous, and two equa-
tion turbulence model part of the computation. The
inviscid part is the summation of the two functions
shown in red in table 2 and most of the setup in
viscousResidualUns. This totals around 14% if
the runtime of the code. This is nearly exactly the
same as the viscous parts shown in blue. While
the two equation turbulence model parts (in green)
total around 10%. This is a lot different to the struc-
tured multi-block code where the turbulence mod-
els take longer to calculate. Table 3 shows this
via the relative timings of an explicit residual, of
a 750K cell three dimensional sphere case. The
evaluation of the second order Euler scheme in
the structured code has been scaled to unity to
obtain the relative performance of the structured
and unstructured zones solving three different sets
of governing equations. The increase in cost be-
tween the two unstructured versions is all down
to the extra cost of the gradient calculation. There
is a much larger increase in computation cost go-
ing to the Navier-Stokes equations in the structured
method since now the gradient is needed where its
already required for the second order unstructured
MUSCL. The unstructured solver has a more effec-
tive viscous calculation since it done at the same
time as the inviscid part where as it is done in two
loops in the structured code. The increase in going
to the k-ω turbulence model for the unstructured

code is due to the use of extra storage which is
used to reduce the repeated computation seen the
structured code.

5.2 Performance of the Linear Solvers
The performance of the linear solvers were com-
pared using a NACA0012 aerofoil at 10 degree an-
gles of attack at a Mach number of 0.3 using the
HMB2/HUM solved using the the first order spatial
discretisation of the Euler equations. Figure 5(a)
shows the rate of convergence of the generalised
conjugate gradient with respect to the CFL num-
ber. As the CFL is increased the solution method
tends towards Newton performance and takes very
few iterations to converge to machine accuracy.
Figure 5(b) shows the comparison of the Gauss-
Seidel method of solving the linear system and
the generalised conjugate gradient. With a toler-
ance of 0.1, the updates have converged to the
first significant figure, the computational cost of the
Gauss-Seidel method for 600 iterations was only
two percent higher. Reducing the tolerance to 0.05
increased this cost by another 30%. It should noted
that the computational cost of each Gauss-Seidel
inner iteration is about one third of each inner itera-
tion in the generalised conjugate gradient method.
Adding in the fact that preconditioner is also not
required around 4 to 5 times the number of Gauss-
Seidel steps are possible compared to the gener-
alised conjugate gradient method. It can also be
seen even at the higher tolerance the drop in the
residual is lightly smoother for the Gauss-Seidel
method.

5.3 Two Dimensional Cases
Two two-dimensional cases are presented here.
The first is subsonic flow around the NACA0012
aerofoil at zero angle of attack at a Mach num-
ber of 0.3. This flow was solved on three different
computational grids, one comprising only of hex-
ahedra, one of only tetrahedra and the final one
a mixed mesh. This meshes were constructed so
the grid points were always in the same position
only the connectivity between them was changed.
As can been seen from figure 6 all three answers
are symmetric and very similar. The main differ-
ences can been seen at the interface as the hex-
ahedra where cut in different directions and in the
hybrid mesh at the intersection between the hexa-
hedra and tetrahedra. The second example is the
NACA0012 aerofoil at 1.25o angle of attack and
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mach number 0.8 and the results can be seen in
figure 7. It shows both a limited and unlimited so-
lution. The limiter clips with respect to all the gradi-
ents connected to a grid point and hence is overly
dissipative since its also get turn on when the edge
is parallel to the discontinuity. This is can seen by
the change in the weak shock on the lower surface
which was captured correctly with the unlimited so-
lution.

The next test case is a coarse grid of 37 thou-
sand nodes and was used to calculated the flow
around a cylinder at 10o degree angle of attack,
Mach number of 0.3 and Reynolds number of 1000.
Since the calculation was run second order the flow
is in fact unsteady. Figure 8 shows the results from
a steady state solve at the point where the flow has
just become asymmetric and the vortex will start
shedding behind the cylinder. One can clearly see
the asymmetry in the V -Velocity while the pressure
coefficient still looks nearly symmetric. Figure 9
shows the results of the same configuration run as
an unsteady problem with a non-dimensional time
step of 0.02. This size of non-dimensional time step
was used as the grid is quite coarse. Even with this
coarse grid it is possible to see the pair of vortices
begin to be shed behind the cylinder. It is again
easier to pick these up in the variation of the V -
velocity than the pressure coefficient.

5.4 Three Dimensional Cases
The first fuselage case considers inviscid flow
around the ROBIN [20, 21, 22] body. The mesh
contained just over 1 million vertices and 5.7 million
tetrahedra, there was no prism layer in this case.
There were a total of 414 thousand surface trian-
gles of which nearly all of them where on the fuse-
lage since the grid was not a half model. The sur-
face mesh density can be seen in figure 10 (a) and
(b) for the dog house and nose respectively. The
mesh was split onto 8 processors shown in figure
10 (c) with the surface pressure shown in (d).

The second case is for inviscid flow around
the ERICA fuselage [23] shown in figure 11. The
grid contains 5.3 million nodes and 15.9 million
cells of which 8.5 million are tetrahedra and 7.3
million are prisms in the prism layer which is 12
cells high. There are 718K surface triangular ele-
ments, of which more than 600K are on the fuse-
lage, and 37 surface quadrilateral elements which
is the prism layer cells cut by the symmetry plane.
As can been seen from the surface mesh in figures
11 (b) and (c) there are a large number of points

on the fuselage which is one of the main advan-
tages of using an unstructured mesh. The calcula-
tion was run on 16 processors and the CPU parti-
tion can be seen in figure 11 (d) while the pressure
coefficient can be seen in figure 11 (e).

6 CONCLUSIONS AND FUTURE
WORK

The ability to solver unstructured and hybrid mesh
has been added to HMB2/HUM increasing the
functionally of the Liverpool helicopter CFD code.
Initial calculation have been carried out and the
results and performance look promising. Many of
the coding improvements found within the unstruc-
tured code will be back ported into the HMB2. The
lower memory linear solve has already been imple-
mented and is currently under testing while work
on improving the accuracy of the gradient evalua-
tion, and the performance of both the residual and
Jacobian calculation will be carried out at a later
stage.
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(a) Cartesian Grid (b) Multi Block Structured Grid (c) Unstructured Grid

Figure 1: Different types of grid.

(a) Sliding planes Grid (b) DRAGON Grid (c) Chimera Grid

Figure 2: Different patching methods.

One Node Only Two processes per Node
Number of Processors Wall clock time Efficiency Wall clock time Efficiency

1 19m 20s 100.0% 19m 20s 100.0%
2 19m 27s 99.4% 19m 27s 99.4%
4 19m 56s 97.0% 19m 37s 99.4%
8 21m 12s 91.2% 20m 41s 93.4%
16 24m 23s 79.3% 23m 35s 82.0%

Table 1: CPU time and memory usage for partitioning different size meshes onto 4 proces-
sors.
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(a) Conformal Patching (b) Non Conformal Patching (c) Fully non matching

(d) Interpolation strategy with a double layer of hexahedrons in the unstructured grid.

Figure 3: Different Coupling Methods and interpolation strategies.
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Figure 4: Histogram of the number of non zero per row in the approximate Jacobian matrix
for a 5.3 million node unstructured Erica fuselage mesh used in section 5.4.
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Name of Function Number of Calls Percentage time
leastSquaresGradsUns 600 40.09

calculateLimiter 600 16.04
viscousGradResidual 1423104000 11.35

osher 1437849600 7.97
viscousResidualUns 600 5.70

calcLocalTimeStepUns 601 4.95
viscousGradResidualKOmega 1423104000 3.17

turbulentResidualUns 600 2.92
upwindKOmega 1423104000 1.35

exp flux 1437849600 1.35
sourceTermKOmega 475700400 1.03
updateSolutionUns 600 0.92
calcLamViscosity 602 0.64

subResidual 1423104000 0.56
calcEddyViscosity 602 0.38
scaleResidualUns 600 0.36
subResidual 2eq 1423104000 0.31

addResidual 1423104000 0.30
addResidual 2eq 1423104000 0.20

nsSolverInit 600 0.18

Table 2: CPU time for the top 20 subroutines for the explicit residual evaluation when mod-
elling a turbulent flow with the k − ω two equation turbulence model.

Discretising Structured Unstructured Unstructured
equations Gauss Green Least Squares

Euler 1.00 1.31 2.16
Laminar NS 1.92 1.87 2.59
Turbulent NS 3.19 2.30 3.22

Table 3: Computation comparison between the structured and unstructured solver normal-
ized with respect to the computational cost of the Euler equations in the structured code
HMB2.
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Figure 5: Rate of convergence of the implicit scheme for Euler flow around a NACA0012
at 10o angle of attack and mach number 0.3. Figure (a) shows the can in convergence of
the generalised conjugate gradient scheme with respect to CFL number while (b) shows the
comparisons of the generalised conjugate gradient scheme and the Gauss-Seidel method
at CFL number 250.

.

Quadrilateral Mesh Triangular Mesh Mixed Mesh

Figure 6: The Mesh and Cp for Euler flow around a NACA0012 at zero degrees incidence
and Mach number 0.3.
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(a) (b)

Figure 7: Cp for Euler flow around a NACA0012 at 1.25o angle of attack and mach number
0.8. Figure (a) has no limiter while (b) is limited with Venkatakrishnan limiter [24].

.

(a) The V-velocity component (b) Pressure coefficient

(c) Velocity vectors (d) Velocity vectors

Figure 8: Second order steady laminar flow past a cylinder with angle of attack 10o and a
Reynolds number of 1000.

.

13



(a) The V-Velocity (b) Pressure coefficient

(c) Velocity Vectors

Figure 9: Second order unsteady laminar flow past a cylinder with angle of attack 10o and a
Reynolds number of 1000.

(a) (b)

(c) (d)

Figure 10: Surface mesh, processor partition and pressure solution for the ROBIN fuselage
for zero angle of attack and 0.3 Mach number.
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(a) (b)

(c) (d)

(e)

Figure 11: Surface mesh, processor partition and Cp solution for the ERICA fuselage for
zero angle of attack and 0.3 Mach number.
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