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FREQUENCY-DOMAIN METHODOLOGY FOR PRACTICAL GROUND RESONANCE  ANALYSIS  AND TEST
 

 Richard L. Bielawa

R. L. Bielawa Associates, Inc.
Sequim, WA USA

Abstract

A new method for analyzing helicopter ground
resonance is presented that rectifies two important
deficiencies that traditional eigenvalue-based
methodologies can only address approximately: the
presence of system nonlinearities and the practical
use of vibration test data for analysis validation.  This
new methodology is based on frequency-domain
characterizations of both the rotor and fuselage
components of the problem.  Additionally, this new
methodology enables the analysis of the doubly
anisotropic problem of one dissimilar lead-lag damper
(either inoperative or with reduced effectiveness)
without recourse to Floquet theory.  Results are
presented showing the utility and effectiveness of the
methodology.

Nomenclature

Cb = blade lead-lag damping rate, lb-ft-s
CxF, CyF = damping coefficients for fuselage 

(hub) in longitudinal and lateral 
 directions, respectively, lb-s/ft
c = blade chord, ft
e = radial offset distance of lead-lag 

hinge, ft
FRF = frequency response function
G1 = mobility matrix of fuselage (with 

included rotor mass)
G2 = impedance matrix for the rotor
 lead-lag motion
H = hub distance above the pivot
 point, ft
H11 = impedance matrix of fuselage 

(with included rotor mass)
H12, H21 = rotor to fuselage and fuselage to

 rotor coupling matrices, 
respectively

H22 = impedance matrix of rotor lead-lag 
motion

Ib = second mass moment of inertia of 
rotor blade about lead-lag hinge,

 lb-ft-s2

 Ke = blade lead-lag damper effectivity 
factor

 KxF, KyF = effective hub stiffness in the
 longitudinal and lateral directions, 

respectively, lb/ft
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MDF = nonlinear dry friction damping 
moment coefficient, lb-in 

MHD = nonlinear hydraulic damping moment 
coefficient, lb-in-s2

mb = mass of rotor blade, lb-s2/ft
n = number of blades
R = rotor blade radius, ft
Sb = first mass moment of rotor blade about 

the lead-lag hinge, lb-s2

t = time, s
XF = state vector of fuselage (hub) 

variables
XR = state vector of rotor lead-lag response 

variables
x, y = longitudinal and lateral deflections, 

respectively, of the rotor hub
θ = pitching deflection of fuselage/shaft 

mass about the base pivot point, 
(= x/H ), rad

Λ = characteristic multiplier
ΛEQUIV(α) = equivalent characteristic multiplier of 

conventional eigenvalue, for 
comparison with Λ, [=exp(ασ)]

λ = eigenvalue, (= σ ± iω), s-1

λGR = eigenvalue corresponding to the 
ground resonance instability, s-1

εx, εy = blade lead-lag multi-blade coordinates 
in the longitudinal and lateral 
directions, respectively, rad

ηi = blade damping coefficient for the ith 
blade group, [= (Cb/Ib)i], s

σ = real part of the eigenvalue, s-1

σEFF = effective (approximate) real part of 
eigenvalue of a characteristic 
multiplier for comparison with σ, s-1

ω = alternatively, scan frequency and 
imaginary part of the eigenvalue, 
rad/s

ωe = blade lead-lag natural frequency at 

rotor speed, [= Ω (eSb/Ib)
½], rad/s

Ω = rotor speed, alternatively, rad/s and 
RPM

(…)* = for conditions when a characteristic 
multiplier crosses the real axis

(…)(i) = index on blade group, i = 
(1, opposing undifferentiated blades,
 2, the one dissimilar blade,
 3, remaining undifferentiated blade
     opposing the differentiated blade)
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Introduction

With the increased attention to operational
requirements, the assurance of ground resonance
stability in the operational envelope requires
increasing attention to nonlinearities.  Several
traditional sources of nonlinearities continue to
require attention. Hydraulic lead-lag dampers do not
give forces exactly proportional to velocity and
typically have significant saturation characteristics.
Likewise, landing gear oleo dampers have significant
nonlinear characteristics, including hysteretic
breakout forces.  Tires, an important source of
damping, likewise have nonlinear characteristics.
Even with skid landing gears, the presence of friction
as a source of landing gear damping, defines a
classic form of nonlinearity.  However, even apart
from these usual sources of nonlinearities, there are
increasing operational requirements imposed on
modern helicopters that define significant nonlinear
processes (landing skid friction on a variety of set-
down surfaces, the presence of specialized
restraining mechanisms, etc.)

Apart from the consideration of nonlinearities is
the ever-present chore of validating the analytic
ground resonance model with experimental test data
to characterize the fuselage dynamics.  As with any
analytic prediction, validation of ground resonance
calculations with test data is always in order.  The
problem here is that the usual data required for all
eigenvalue-based analyses is the identification and
evaluation of the separate equivalent (linearized)
parameters, i.e., masses, stiffnesses and damping
levels for each of the various modes.  The charac-
terization of these parameters with test data is
confounded by the fact that modern vibration testing
is done in the frequency domain.  Indeed, much effort
has been expended in producing test equipment and
data processing algorithms capable of measuring,
with a high degree of accuracy, frequency response
functions, FRF’s (consisting of frequency dependent
amplitudes and phase angles) for selected ranges of
frequencies.  Thus, the subsequent evaluations of the
required equivalent masses, stiffnesses and damping
levels must be made judiciously from frequency-
domain data.  This process invariably requires
ingenuity, needlessly introduces additional sources of
error, and is required only because of the data
requirements of an eigenvalue analysis.

The new frequency-domain based metho-
dology presented herein corrects these deficiencies.
It requires the separate use of frequency dependent
“rotor impedance” and “fuselage mobility” charac-
teristics. “Fuselage mobility” is essentially a multi-
variant form of a frequency response function that
can be either calculated and/or measured directly.
Calculation of the fuselage mobility is a straight-
forward process when the dynamic description of the
fuselage is linear.  When significant nonlinearities
occur, numerical integration of the nonlinear

equations of motion must be used to obtain these
dynamic characteristics, since all conceivable
nonlinearities can be modeled in the time-domain.
Hence, frequency response functions, as obtained
either analytically or experimentally, can be directly
applied to the ground resonance evaluation with
maximum accuracy.  The rotor subsystem is usually
quite linear except for the presence of nonlinearities
in the lead-lag dampers. Even for this case, however,
the required dynamic characteristics can again be
obtained using numerical integration of the
appropriate equations of motion.

Description of the Methodology

Basic Mathematical Idea

The new methodology is a multi-variant form of
the classic Nyquist stability criterion, a well-
established element of control system technology for
single degree-of-freedom dynamics (Ref 1, e.g.). The
new methodology, as originally outlined by the author
18 years ago in a different context (see Ref 2),
expands on the Nyquist criterion idea, to include
multiple degree-of-freedom dynamics.  The basic
idea is to partition the dynamic problem into two
distinct and interacting subsystems:

Fig. 1  Conceptualization of the rotor-airframe
interaction

For purposes herein we define G1 to be the pylon
(i.e., fuselage) mobility, (displacement per force) and
G2 to be the rotor impedance, (i.e., force per
displacement), both of which are at the same time
matrix quantities and functions of frequency, ω. The
crux of the method is to reconnect these subsystems
with the introduction of a set of characteristic
multipliers, Λ(ω), thereby forming a new matrix
eigenvalue problem.  Since both G1 and G2 are
functions of frequency, so too, the characteristic
multipliers will also be frequency dependent: 

                
   (1)

  

The eigenvalues of this equation, Λ(ω), (i.e., the
characteristic multipliers), are then easily determined

{XF1}

{XF2}

Rotor Lead-Lag
Dynamics, G2

Fuselage Dynamics, G1

{ZF} ,

 Hub
Loads

Hub Motion

Assuming sinusoidal motion:
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by conventional matrix eigenvalue methods.  The
variations of the eigenvalues commensurate with an
arbitrarily selected variation in frequency define loci in
the complex plane.  Instability or stability is
determined, respectively, by whether or not any
of these loci encloses the point 1 + i0 in the
complex plane. Experience has shown that the
frequency variation need only be performed in the
frequency range where ground resonance instability
would be an issue. Fig. 2 depicts this criterion and
contrasts it with the usual eigenvalue stability
criterion.

Fig. 2  Comparison of stability criteria

Application to the Ground Resonance Problem

The [G1 • G2 ] matrix product required for the ground
resonance problem is obtained from the basic
equations of motion (e.g., Refs 3,4).  For sinusoidal
motion the equations governing the fuselage hub &
rotor mass displacements and rotor lead-lag degree-
of-freedom variables, XF  = XFUSELAGE+ROTOR MASS  &
XR = XLEAD-LAG MOTION, can be expressed as:

                
   
   (2)

The H11 and H22 matrices represent the uncoupled
fuselage hub (plus rotor mass) and rotor lead-lag
mode dynamics, respectively.  The H22 matrix
consists of the usual terms, as identified in the
ground resonance literature.  The H12 and H21
matrices are those involving simple mass-related
coupling, also as identified in the literature.  The
requisite [G1 • G2 ] matrix product is then formed from
the H11, H12, H21 and H22 matrices.  Eq. 2 can be
rewritten as two equations representing respectively
the fuselage dynamics with rotor excitation and the
rotor lead-lag motion dynamics with fuselage
excitation:

              (3a)

                                                 (3b)

The component vectors are then isolated:

              (4a)

                           (4b)

and related to each other as a matrix eigenvalue
problem:

                (5)

where:

                                                 (6a)

                           (6b)

Note that the methodology works equally well when:

                                        (7a)

              (7b)

The choice of decomposition (i.e., using Eqs. 6a,b or
7a,b) is arbitrary, but some computation time would
be saved by using the resulting smaller-sized
[G1 • G2 ] matrix.    For instance,  if  the  fuselage
dynamics involved a full complement of degrees of
freedom of six, then Eqs. 7a&b would be preferable
since the size of the [H22]-1 matrix is generally only
2 × 2, whereas the [H11]-1 matrix would be 6 × 6.

Analytically, either G1 and/or G2 can be
calculated using a straightforward numerical
integration of the nonlinear fuselage (or rotor)
equations of motion.  A standard high performance
Runge-Kutta method (fourth order with Gill coeffi-
cients is typically used, see Ref 5), and then the time
histories are Fourier analyzed for their fundamental
harmonic cosine and sine components.  [Note that
these calculated quantities are the exact dynamic
quantities that would be directly measured in
subsequent ground vibration tests!]  One practicality
of this methodology is that, although either G1 and/or
G2, can always be calculated in the time domain, for
many conditions G2, the rotor impedance, is defined
by linear terms.  The required matrix inversion can
then be performed quite simply and accurately
without the integration of the equations of motion.
The fuselage mobility requires the calculation of the
matrix, [H11]–1, which actually constitutes identically
the fuselage x- and y- direction sinusoidal responses
due to sinusoidal (test) forces at the hub in the x- and
y- directions i.e., FRF’s, (frequency response
functions).  For weakly nonlinear systems the choice
of amplitude for the sinusoidal test forces would be of
some concern.  It would be prudent to keep the 
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amplitude small enough to maintain linearity and yet
large enough to keep the results out of the “round-off
noise”.  

The issue of the presence of nonlinearities in
the system is implicitly addressed in this
methodology, in that the fuselage mobilities thus
calculated are “linear-effective” mobilities.   (Note that
these would consequently vary with response
amplitude for nonlinear systems).  While this
procedure forms a “neat” way of addressing the
nonlinearities, it needs to be stated that this form of
linearization is no less valid than (and is actually
equivalent to) the use of  “describing functions” which
are routinely used as a standard basis for
linearization (e.g. Ref 6).  Furthermore, as is
presented later, the new methodology easily enables
the prediction of limit cycle conditions resulting from
nonlinearities.  The analysis of limit cycle conditions
requires that suitable variation of the sinusoidal test
loads be made.   Lastly, although not a nonlinearity
per se, the condition of a failed or partially failed lead-
lag damper (the doubly anisotropic problem) is also
addressable by this methodology without recourse to
Floquet theory.

Practical Implementation Issues

As formulated above, the basic equation, Eq. 1,
is a matrix eigenvalue equation whose solution yields
discrete values of the characteristic multipliers, Λj, as
functions of discrete values of the scan frequency, ωj.
The search for the point of crossing of the real axis
(in order to assess stability) must then be accom-
plished using supplementary techniques.  First off, a
suitable range of scan frequencies must be estab-
lished.  A convenient method is to identify a median
frequency, ωM, and then define the scan range using
selected frequencies below and above that
frequency.  For the ground resonance problem the
appropriate median frequency would be the “center of
instability” frequency, defined by the slower blade
progressive mode (i.e., the degenerate regressive
mode after the rotor has gone supercritical).  This
frequency, as is well identified in the literature, is then
given by:

                                                             (8)
where ωe is the blade lead-lag natural frequency (at
rotor speed).  It is then a straightforward program-
ming exercise to evaluate the phases (or alterna-
tively, the imaginary parts) of the characteristic
multipliers to identify the real-axis crossing value.
Specifically, a point in the frequency scan can be
detected (JJ) wherein two consecutive values of the
test quantity, Im(Λj), are negative (i.e., Im (Λj) < 0,
for j = JJ, JJ – 1) and the next two values are
consecutively positive (i.e., Im(Λj) > 0,  j = JJ + 1, 

JJ + 2).  The use of cubic spline interpolation
(Ref. 11) enables reasonably accurate interpolations
of the function and its first derivative to be calculated,
thereby enabling the use of a Newton-Raphson
solution for calculating the value of frequency and
characteristic multiplier at the point of zero phase,    
ω = ω* and Λ = Λ(ω*), respectively. 

The use of cubic spline fit interpolation also
enables the (approximate) calculation of the second
derivative of Λ(ω) at ω*.  As described in Appendix
A, the first and second derivatives can be used to
calculate effective modal stability exponents, σEFF,
using analytic continuation.  One post-processing
chore that is recommended is to evaluate the
maximum amplitude of each of the characteristic
multipliers in the scan frequency range to verify that a
possible significant characteristic multiplier doesn’t
get missed.  The interested reader can devise any
variety of post-processing operations with the
characteristic multipliers to make the methodology
most efficient for the purposes at hand. 

Consistency of Eigenvalue Results with Charac-
teristic Multiplier Results

The two basic methods for determining stability
(i.e., linear eigenvalue vs. characteristic multiplier)
use the basic matrix eigenvalue solution in distinctly
different ways.  In an attempt to show mathematical
consistency between the two methods, they were
separately used on exactly the same (linear) ground
resonance equations of motion for a selected typical
application.  [It should be pointed out that the use of
the characteristic multiplier approach is not restricted
to either linear or nonlinear equation sets.] To this
end the linear lead-lag damper value for a selected
ground resonance configuration was artificially
adjusted to produce three conditions: stable, exactly
neutrally stable, and unstable.  The results of this
exercise are shown in Figs. 3a, 3b and 3c,
respectively: 

 Fig 3a  ~ stable case

eM ωω −Ω=
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Fig 3b ~ neutrally stable case

Fig. 3c ~ unstable case

Fig. 3  Characteristic multiplier vs. phase angle
(representative results for linear systems)

These figures show the parametric variations of the
respective characteristic multiplier magnitudes and
phase angles with scan frequency, ω.  Included in
each of these figures are the values of the stability
critical eigenvalues, as separately determined by the
conventional eigenvalue solution.  The figures clearly
show that the methods do, indeed, give consistent
qualitative indications of the stability of the system.

Quantitative Stability Characteristics

The principal utility of the characteristic
multiplier approach is that it (numerically) gives
qualitative stability vs. instability indications (i.e., the
characteristic multiplier is either less than or greater
than 1., as the system is stable or unstable).  For
even reasonably “small” systems, the method cannot
directly give stability boundary information.

This situation is similar to the stability boundary
information afforded by the Routh-Hurwitz criterion
for linear systems: For relatively small systems, the
criterion can be used to formulate an analytic
expression for the stability boundary, but otherwise it
likewise gives just stability vs. instability information.
Usually this information is sufficient for engineering
purposes, however.

Now for some cases of instability it might be
desirable to know quantitatively how much stability
margin might be available.  The conventional way to
quantify this is to calculate the time to double ampli-
tude from the modal damping exponent (as defined
for linear systems).  It can be safely assumed that the
relative magnitude of the characteristic multiplier as it
crosses the positive real axis is in some way an
indicator of the relative stability (i.e., a small magni-
tude would indicate more stability than one close to
unity).  Thus, there is motivation to define an effective
modal damping exponent from the characteristic
multipliers.  Such information would also serve to
bridge the understanding of how results from the two
methods (conventional eigenvalue analysis and
frequency-domain analysis using characteristic
multipliers) relate to each other.  To this end
formulations have been developed to approximate an
“effective” modal damping exponent for each of the
characteristic multipliers found using the frequency
domain methodology.  These formulations are
provided in Appendix A.

The Dissimilar Lead-Lag Damper Problem

The frequency-domain methodology can also
be extended to the case of dissimilar blades, as
would be the case with a failed or partially failed lead-
lag damper.  A brief description of the extension of
the basic methodology to this case is presented
herein, while the details are presented in Appendix B.
In order to retain the methodology in a form that still
uses non-rotating coordinates, and especially the use
of multi-blade coordinates, i.e., εx and εy, the
following requirements must be met:
1. The rotor description must include the use of
separate rotor mode coordinates (i.e., εx and εy pairs)
for:
a)   the one blade with the dissimilar characteristics,
b) the one blade opposite it, and
c) the remaining blades that each have a matched

blade opposite it.
As developed so (for only the four-bladed case), it
would appear, by inference, that the methodology
would require six multi-blade coordinates for rotors
with an even number of blades and four for rotors
with an odd number of blades.
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2. The presence of the anisotropy in the rotor
means that hub motions of frequency, ω, will produce
excitations in the rotor of ω, (2Ω + ω) and (2Ω − ω),
all of which can couple with the dynamics of the
fuselage.  Thus, in obtaining the appropriate fuselage
hub FRF’s, in addition to sweeps in frequency ω,
additional frequency sweeps must be obtained for the
additional frequencies, as well.  This requires that
both the fuselage- and rotor-related state vectors
contain components with each of these three
frequencies:

                                                                     (9a)

                                                 (9b)

3. Using the formulation defined by Eqs. 3a&b,
the G1 and G2 matrices are then expressible as:

                                                (10a)

                       
                                                                             (10b)

The resulting eigenvalue equation relating XF and XR
then becomes:

 
                                                 (11) 

                               
Within each partition, it is to be noted that both the G1
and G2 matrix factors are evaluated using the same
frequency as that indicated for the G2 matrices.

Representative Applications of the Methodology

Linear Systems

Application of the frequency-domain metho-
dology to strictly linear systems is quite straight-
forward in that the component mobilities can be
calculated directly without numerical integration of
differential equations to obtain the frequency
response functions.  The results presented in Figs.
3a,b&c reflect the application of the methodology to a

strictly linear system.  The new methodology has
significant practicality from the standpoint that the
frequency response functions resulting from (linear)
finite element modeling or shake-tests could be used
directly and would not have to be converted to
equivalent mass, damping and stiffness matrices.

For purposes of demonstrating the practicality
of the frequency-domain methodology, two archived
publications were used.  The work of Tang and
Dowell (Ref  8) was selected because it provides
experimental results for a configuration with
nonlinearities.  The work of Hammond (Ref. 9) was
selected because it provides results for a config-
uration with one lead-lag damper inoperative.  It thus
could be used as a touchstone for accurately
duplicating the Floquet Theory calculations and
thereby for validating the ground resonance calcu-
lations generally.

Application to Nonlinearities 

The use of the new methodology to examine
ground resonance instability characteristics of
configurations with nonlinearities represents a
straightforward computation.  For present purposes,
nonlinearities can be classified according to whether
or not the nonlinearities are dominant at “small”
amplitudes or only as the responses become large.
In other words, is the configuration basically linear for
the “small” displacements typical of incipient
instability?  For those cases wherein the system is
nonlinear only for “large” responses, the
determination of stability using the new methodology
would give the same stability information for any
selection of test force values that is reasonably
“small” when calculating the frequency response
function time-histories.  The investigation of the limit-
cycle characteristics associated with the
nonlinearities is outwardly straightforward.  All that is
required is to vary the vibratory test force amplitudes
until the system achieves the neutral stability
condition, (i.e., unit values for Λ*). 

This is the approach followed herein for using
the available experimental nonlinear ground
resonance data.  However, it should be kept in mind
that the investigation of limit cycle conditions
inherently involves macroscopic, i.e., “large”
responses rather than infinitesimal ones.  Thus, for
consistency, the equations of motion must then
address any nonlinearity resulting from the
assumption of macroscopic responses.    

The data from the experimental ground
resonance model research performed by Tang and
Dowell (Ref 8) were used to demonstrate the utility of
the methodology in addressing conditions with
nonlinearities. The data were obtained with a
mechanical model originally designed to provide
approximations to the separate dynamics of an 
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elastically connected fuselage and shaft (with
attached rotor).  These features are shown in Fig. 4:

Fig. 4   Schematic of experimental apparatus
(Tang & Dowell, Ref. 8)

The basic model system parameters, as gleaned
from Ref. 8 and dimensionalized, are presented in

Table 1.  The “fuselage” parameters have been
reduced to equivalent x-direction parameters.  The

given damping coefficient, CxF, represents the
residual linear damping exclusive of that provided by

the discrete nonlinear dampers. The use of these
data was compromised to a certain extent in that

some of the pertinent data were not directly available.  

Table 1  System parameters for the Tang &
Dowell model (Ref. 8)

Rotor blade parameters:
mb =  0.01158 lb-sec2/ft
Sb =  0.0076 lb-sec2

Ib =  0.008108 lb-ft-sec2

Cb =  0.00425 lb-sec-ft
e =  0.2083 ft.
R  =  1.5 ft
c =  0.2083 ft.
n =  3

Fuselage + shaft pitch (x-direction) parameters:
MxF =  0.3944 lb-sec2/ft
CxF =  0.0248 lb-sec/ft
KxF =  16.517 lb/ft
H =  1.520 ft

 

However, with some reasonable engineering
assumptions the data were put in a form for use with
the new methodology.

The model was provided with nonlinearities in
the form of hydraulic dampers and dry-friction 
dampers, whose measured characteristics are
respectively presented in Figures 5 and 6.  Of the
various cases examined by Tang and Dowell, only
the “A” model, variation 1 (with only the (2) hydraulic
dampers operating), and variation 2 (with both the (2)
hydraulic and (2) dry-friction dampers operating),
were addressed.  The “A” model was defined as
having the “shaft” and “fuselage” components ganged
together with the “roll” motion locked out.

Fig. 5   Fixed system hydraulic damper
characteristics

Difficulties were experienced with the system
parameter data regarding the modeling of the
dampers.  Since the frequency-domain methodology
uses integrations of the nonlinear equations (to
obtain the FRF’s), the complete empirically defined
nonlinearities can be used directly.  No idealizing to
simple analytic functions is required.

The empirical descriptions of the damping
characteristics were entered into the equation
descriptions using cubic spline interpolations.  Since
some of the rates of motion experienced by the
model were considerably in excess of the range
originally given in Ref. 8, some extrapolation of the
given experimental data was required.  The cubic
spline interpolation method automatically extends the
data beyond the given range using the “end” slope
(i.e, the first derivative calculated for  the end point).
Thus, one possible extrapolation scheme would be to
use the results of the spline fit directly.  Alternatively,
a second extrapolation scheme, and the one used
herein, was to continue the experimental data with a
curve continuous with the end of the experimental
data, but matching the Ref 8 idealization at an
arbitrarily selected high pitch rate.  Since the
idealized hydraulic damping was given as:
MHD = 3.04 (dθ/dt)dθ/dt, the “match” continuation
was selected to duplicate the idealized value of MHD
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at a pitch rate of 3 rad/s.  Thus, the continuation
function (a quadratic function also) was set to give
27.36 lb-in at a pitch rate of 3 rad/s and then to
maintain that “saturation” level for all pitch rates
greater than 3 rad/s. 

With regard to the dry friction damping, the
idealization presented in Ref. 8 uses a constant value
whose sign is determined by the sign of the angular
rate: MDF  = 0.054 sgn(dθ /dt).  For the present study
the measured characteristics were also used directly
and continued at a constant value equal to the end
value.  The dry friction damping characteristics from
Ref. 8 and those used herein are graphically defined
in Fig. 6:

 

Fig. 6   Fixed system dry friction damper
characteristics

It should be noted that a rigorous modeling of dry
friction damping should probably include hysteretic
effects, which could have easily have been included
in the mathematical modeling, if the functionality were
in fact known. 

The second difficulty with damping parameters
was with regard to the blade lead-lag damping.
Simple quasi-steady aerodynamics shows that the
aerodynamic damping available at rotor speed is of
the same order-of-magnitude as the mechanical
damping value given in Ref. 8.  Furthermore, since
the mechanical lead-lag dampers on the model are
known to be of a primitive design (Ref. 10), it is
unlikely that the damping is even linear or equal, at
rotor speed, to any value that was determined by
simple log decrement tests at zero rotor speed.  The
blade lead-lag damping was therefore varied and set
at a value where the experimental results at the peak
value could be duplicated, and then maintained at
that value for the remainder of the study.

Results for Model A, Variation 1, Model with Only
Hydraulic Dampers   Since the hydraulic dampers are
indeed nonlinear, the frequency response charac-
teristics of the fuselage/shaft subsystem will be
variable with the amplitude of the excitation force.

The resulting FRF results for variation in excitation
force amplitude are given in Fig. 7:

(a) amplitude

(b) phase angle

Fig. 7  Frequency response characteristics of the
A Model with the hydraulic damper

The results of applying the frequency-domain metho-
dology to the model in the A-1 configuration are
presented in Fig. 8:

 

Fig. 8   Fuselage pitch limit cycle amplitude vs.
rotor speed: A-model with hydraulic nonlinear

damper only

The figure shows that the prediction of the basic
stability boundary for incipient motion, i.e., where the
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limit cycle approaches zero, is in excellent agreement
with the experimental data.  Of lesser importance is
that much of the limit cycle character was also
duplicated, with the rotor speed for maximum
amplitude displaced from that found with the
experimental results.    

Results for Model A, Variation 2, Model with both
Hydraulic and Dry-Friction Dampers  The results of
applying the frequency-domain methodology to the
case where there are both types of nonlinear
damping are shown in Fig. 9:

 

Fig. 9   Fuselage pitch limit cycle amplitude vs.
rotor speed: A-model with both hydraulic and dry

friction nonlinear dampers

Here the new methodology actually predicts two limit
cycle boundaries: the obvious upper (limit cycle)
branch, and a lower (threshold) branch with stable
operation above the upper limit cycle branch and
below the lower threshold branch.  An explanation of
this “threshold” behavior can be seen from the
linearized (equivalent) damping coefficient for the dry
friction model, CE, using equivalent work per cycle
(WD) considerations:

             
                                               (12)

where ADF is the magnitude of the dry friction
moment (≈ 0.054).  Using Eq. 12, the results
presented in Fig. 9 can be meaningfully interpreted.
At small amplitudes, the equivalent damping from dry
friction would thus be expected to predominate, and
at large amplitudes the hydraulic damping should
predominate.  Fig. 9 shows that the peak limit cycle
conditions for the A-1 and A-2 variations are
essentially identical. The frequency-domain
methodology predictions are seen to capture the
reduced higher rotor speed boundary quite well.   The
lower rotor speed boundary is not so well predicted,
however.

Real World Considerations

 The limit cycle calculations presented in Figs. 8
and 9 are not intended to show actual correlation with
the experimental data, but rather to show that the
methodology can actually address the nonlinearities.
A number of  “real world” considerations can be
identified and should be kept in mind in interpreting
these results.  First, the peak limit cycle results are
heavily dependent on the damping characteristics of
the nonlinear fuselage dampers at the high pitch
rates, where the characteristics are only assumed.
Likewise, the assumptions of linearity and effective
damping coefficient for the lead-lag dampers are both
suspect.  Lastly, and perhaps most importantly, the
usual linearized infinitesimal amplitude version of the
blade equations was used in both the present study
and in Ref. 8.  An indication of the possible error
engendered by this assumption is afforded by consi-
dering the blade lead-lag response amplitude at the
maximum limit cycle conditions (i.e., rotor speed of
105 RPM, limit cycle amplitude of 0.4 radians and an
oscillation frequency of 6.124 rad/sec).  Using Eq. 4b,
the blade inplane responses can be calculated from
the fuselage motion:

                                                         (13)

where the fore and aft displacement, XHUB, is equal to
1.519×θ.  For the selected maximum limit cycle
condition this equation gives a lead-lag amplitude of
4.218 radians, or approximately 242 deg.!  Clearly, a
more exact math modeling would be required to
predict the limit cycle conditions accurately.  

Application to Dissimilar Blades (Double Anisotropy)

Fig. 10 presents the mathematical represen-
tation of the rotor and hub, as used in the Ref. 9
Hammond study.  [This representation is perhaps the
most basic modeling that can be used for ground
resonance analyses]:

Fig. 10  Mathematical representation of the rotor
and hub (Hammond, Ref 9)
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The parameters used in the Hammond work are
presented in Table 2.  These parameters were
selected “…so as to be in the general range of
interest for a single rotor helicopter and were such
that the system was stable with all dampers
functioning up to a rotor speed of 400 rpm.”  The
study investigated the stability characteristics of the
selected configuration with two fuselage variants:
isotropic, with both the x- and y- properties taken to
be those given for the x-direction, and anisotropic,
with all the values, as given in Table 2.  The
analytical results presented were all “exact” in that,
for the isotropic (fuselage) case, the rotating
coordinate system version of the equations, resulting
in a constant coefficient matrix equation, was used.
For the doubly anisotropic case (anisotropic fuselage
and anisotropic rotor), the equations were written in
the non-rotating coordinate system resulting in an
eigenvalue problem with periodic coefficients.  This
case was solved with a standard application of
Floquet Theory.     

Table 2  System parameters used in the
Hammond calculations (Ref 9)

Rotor blade parameters:
mb =  6.5 lb-sec2/ft
Sb =  65.0 lb-sec2

Ib =  800.0 lb-ft-sec2

Cb =  3000.0 lb-sec-ft
e =  1.0 ft.
n =  4

Fuselage parameters:
MxF =  550.0 lb-sec2/ft
MyF =  225.0 lb-sec2/ft
CxF =  3500.0 lb-sec/ft
CyF =  1750.0 lb-sec/ft
KxF =  85000.0 lb/ft
KyF =  85000.0 lb/ft

The Damper Effectivity Parameter  In addition to the
mathematical techniques required by Eqs. 9, 10, &
11, as well as the formulations in Appendix B,
another consideration needs to be addressed.  When
one blade has an inactive lead-lag damper, the
equations see an undamped subsystem, which
causes the calculation of the requisite FRF’s to
assume extremely large values.  This in turn results
in extremely large predictions of the characteristic
multipliers.  Consequently, the calculation of the real-
axis crossings becomes subject to round-off errors.
Real-world considerations, however, dictate that no
elasto-mechanical system can have exactly zero
damping.  Indeed, even with a failed lead-lag damper
the rotor blade will still experience some friction about
the lead-lag hinge, as well as a finite amount of aero-

dynamic damping due to drag.  Thus, a justification
for including a small amount of damping is justified.
To this end, a damper effectivity parameter, Ke, is
introduced, as a factor multiplying the standard
amount of lead-lag damping (as given in Table 2).

Fig. 11  Critial characteristic multipler variations
with rotor speed and lead-lag effectivity -
isotropic hub case, one lead-lag damper

inoperative

Fig. 11 presents the calculated critical charac-
teristic multiplier results for the isotropic fuselage
wherein the rotor speed is varied as well as a limited
variation on the damper effectivity parameter.  The
figure shows that, indeed, with full effectiveness on
the one damper, the helicopter is stable, as expected.
For small values of the parameter, however, large
variations in the maximum values of the critical
characteristic multiplier are experienced.  However,
for the critical points defining the stability boundaries
(i.e., Λ* = 1), there is little difference between the
curves.  Consequently, the 0.005 parameter value
(i.e., 0.5% effectiveness) was selected because the
resulting locus maintained a more or less constant
order of magnitude.  This value was then maintained
for the remainder of the study.

The Isotropic Fuselage Case  Fig. 12 presents the
comparative results between the Ref. 13 results (as
accurately reproduced using the rotating coordinate
system formulation) and those predicted by the
frequency-domain methodology.  In order to compare
the eigenvalue results with characteristic multiplier
results the eigenvalue results were converted to
“equivalent” characteristic multipliers by the
expedient of exponentiating the real parts of the
eigenvalues.  This operation enables the stability
boundaries predicted by both methodologies to be
readily compared. A second variant, wherein a factor
of ten was applied to the real part of the eigenvalue,
was also used to accentuate the comparison.  The
results clearly show the excellent correlation between
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the two methods for determining the stability
boundaries. 

Fig. 12  Critical characteristic multiplier
comparison – isotropic fuselage case, one lead-

lag damper inactive, (Ke = 0.005) 

To provide an alternate way of showing corre-
lation, the characteristic multipliers were then
converted to effective modal damping exponents, for
comparison with those resulting from the eigenvalue
calculations.  The results of this comparison are
shown in Fig. 13.  For this purpose the logarithmic
variants of the formulations in Appendix A were used.

Fig. 13  Equivalent modal damping exponent
comparison – isotropic fuselage case, one lead-

lag damper inactive, (Ke = 0.005) 

Also included in this figure are the exponents
resulting from an application of an eigenvalue
analysis of the equations with all the final harmonic
terms neglected, i.e., truncated.  The figure shows
that with regard to the frequency-domain predictions,
despite erratic excursions for most of the curve, those

points close to the stability boundaries show excellent
agreement with those from the exact eigenvalue
analysis.  The truncated eigenvalue analysis
approach, however, is clearly too inaccurate to use.

The Anisotropic Fuselage Case When the fully
anisotropic fuselage is considered, the distinction is
essentially transparent to the frequency-domain
methodology.  Consequently, as shown in Fig. 14,
the comparison of the stability boundaries predicted
by the two methodologies is still excellent.

Fig. 14  Equivalent critical characteristic
multiplier comparison – anisotropic fuselage

case, one lead-lag damper inactive, (Ke = 0.005) 

Note that for this case there is a second nontrivial
characteristic multiplier present, but that charac-
teristic multiplier remains always less than unity and,
therefore, does not impact on the stability of the
configuration.
       

Conclusions

The frequency-domain methodology described
herein represents no less than a new paradigm for
analyzing helicopter ground resonance. The meth-
odology is seen to be a practical and accurate
method for investigating not only simple (linear)
configurations, but also addressing those with
significant nonlinearities as well as the doubly
anisotropic conditions associated with one lead-lag
damper inoperative.  By dividing the ground
resonance problem into separate dynamic
subsystems and treating them in the frequency
domain, several problems associated with accurate
test verification and the general treatments of a wide
class of nonlinearities, are rectified.  Specific
conclusions are:

1. The stability boundaries predicted by the new
methodology are determined by the loci of newly
defined, frequency-dependent characteristic multi-
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pliers exceeding the value of  +1.0 when they cross
the real axis.  These stability boundaries are
consistent with those predicted by traditional methods,
i.e., matrix eigenvalue solutions and Floquet Theory.  

2. Full-scale tests for verification of analysis can
be safely performed in the frequency domain without
the need for ascertaining effective mass, damping
and stiffness matrices, and/or conducting inherently
dangerous actual full scale tests for unstable
behavior.

3. The analysis of the doubly anisotropic problem
of a failed lead-lag damper requires frequency
response data in three separate, but related
frequency ranges.

4. The prediction of limit cycle conditions requires
a careful attention to all the details of the nonlinear-
ities, including the additional dynamic effects
resulting from macroscopic responses.

5. The matrix eigenvalue problem defining the
characteristic multipliers must be supplemented with
additional processing algorithms for establishing
appropriate sweep frequency ranges and determining
the critical values of the characteristic multipliers.

It is to be noted that the use of the frequency-domain
methodology should not completely obviate the use
of the traditional eigenvalue methods.  These
methods can supplement the new methodology by
providing information about the appropriate scan
frequency range as well as providing sanity checks
on the results.  On a final note, it is to be appreciated
that the basic stability boundary methodology
developed herein is general enough that it can be
applied to a broad range of other rotorcraft-related
instability phenomena besides just ground
resonance.
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Appendix A – Effective Damping Exponents

Essentially, the objective here is to recoup, at
least approximately, the eigenvalue results
(i.e., λ = σ ± iω) from the characteristic multiplier
results  (i.e., Λ = ΛR ± iΛI ).    In a typical application
of this methodology the characteristic multiplier
stability information would be available only as
numerical values of magnitude and phase of Λ for a
few frequencies near the positive real-axis crossing.
Numerical techniques can be used to obtain the
actual real-axis crossing values of ω and Λ.
However, in order to recoup, at least approximately,
the equivalent eigenvalue (characteristic exponent)
results, a straightforward application of analytic
continuation can be performed about the point
Λ = 1 + ε + i0.  This formulation begins by writing
Eq. 1 in the following more general form:

                                                (A.1)

where, for the usual eigenvalue solution, λ1 = λ
= σ ± iω, and Λ (λ1) = +1.  However, the charac-
teristic multiplier solution is known only for λ on the
imaginary axis: λ1 = iω, and Λ(λ1) = ΛR + iΛI.  The
objective is to closely approximate the characteristic
exponent σ knowing the behavior of Λ as a function
of ω near the critical point.  Note first that, in the
frequency domain as noted earlier, Λ(iω), will have
the value of 1 + ε  (where ε is a calculable, but
reasonably “small” quantity only near the stability
boundary), at the real axis crossing frequency,
ω = ω* (also known).  In the Laplace-variable
domain, however, Λ(λ) has the value of exactly 1 at
the value of λ that we seek.  Assuming that Λ(λ) is 
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an analytic function in the neighborhood of (1 + i 0),
we can, therefore, expand Λ(λ) in a Taylor Series
taking the derivatives in the frequency (imaginary)
axis direction and evaluating them at the point
λ = λ* = i ω*, where ω* is the frequency at the real-
axis crossing.  At the real-axis crossing point, we
represent the characteristic multiplier Λ(λ*) as
(1 + ε).  The analytic continuation equation then
becomes:

                                                    (A.2)             (A.2

We note that:

                                              (A.3a)

                                              (A.3b)

and:

                                                (A.4)                        

where: ∆ω = ω − ω*.   Since Λ(ω) would be known
numerically only at a few distinct points (corres-
ponding to discrete values of ω) near the (1 + ε + i0)
point in the complex plane, a numerical curve fit
calculation must be made to evaluate the derivatives.
One efficient method of fitting the points to analytic
approximations to the real and imaginary parts of
Λ(ω) is the use of cubic spline interpolation.  Since
spline fit interpolation schemes fit the data points, as
well as the second derivatives, they also provide an
excellent method for approximating first and second
derivatives.  Thus, the use of cubic spline fits would
limit the ability to extend Eq. A.2 beyond the second
derivative term.  The most accurate estimate of the
damping and frequency, σ and ω, would thus entail
only retaining the second-order derivative term in
Eq. A.2:

                                                (A.5)
  

Solution of Eq. A.5 is perhaps most practically
accomplished using the binomial theorem with
complex arithmetic.  It is to be expected that the
accuracy of Eq. A.5 to give an analytic continuation
would be most accurate only when ε is small (i.e., Λ
is close to 1 + i 0).  For cases where the zero-phase
crossing is at a value significantly greater than unity,
the use of the inverse of Λ is more useful.  In this
case the analytic continuation occurs about the point
Λ-1 (iω*), where:

                                                (A.6)

The appropriate equation for solving for (λ - λ*) using
the inverse of Λ, then becomes:

                                                (A.7)

Eq. A.7 is quite useful in that, for any unstable
characteristic multiplier (i.e., Λ* = 1 + ε), the deviation
of Λ-1(iω*) from unity is always less than 1., thereby
affording a more accurate analytic continuation.
Consequently, Eq. A.5 would more appropriately be
used for stable characteristic multipliers and Eq. A.7
for the unstable ones.

Another variant of the analytic continuation
scheme is to use the function ln(Λ).  The appropriate
quadratic equation then becomes:

                                                (A.8)

where:

                                              (A.9a)

                                                        (A.9b)

and:
                                              (A.10)

In a similar manner ln(Λ-1) can be used:
                                                

                                              (A.11)

where:

                                            (A.12a)

                                            (A.12b)

Appendix B - Extension of Methodology to the One
Dissimilar Blade Case

The following development is directly applicable
to the four-bladed rotor, and can be extended to any
even-number bladed rotor.  Following the synopsis
given in the body of this paper, we first represent the
blade lead-lag motions, ε(i), with a generalization of
the usual rotor mode (multi-blade) coordinate set:

                                                (B.1)
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where:
i = 1: the two opposing undifferentiated blades

 (blade nos. 1 & 3,  m(1) = 0)
= 2: the one dissimilar blade, (blade no. 2, 

m(2) = π/2)
= 3: the remaining undifferentiated blade,

 opposing the dissimilar blade 
(blade no. 4, m(4) = 3π/2)

Blade equations:  The three sets of blade equation
pairs can all be represented by the following
equations:

                                              (B.2a)
       

                                              (B.2b)

where: ηi  is equal to the undifferentiated blade lead-
lag damping coefficient for i = 1 & 3 and to the
dissimilar damping coefficient (i.e., the
undifferentiated value × Ke) for    i = 2.  Thus, Eqs.
B.2a&b actually represent six dynamic equations
(three pairs of coupled equations).

Fuselage equations: The dynamic equations
governing the x- and y- fuselage hub motion are
straightforward extensions of the usual equations for
hub motion, except there are now explicit contri-
butions from the three lead-lag configurations:

longitudinal (x-direction) motion:

                                                (B.3)         

 
                                                

lateral (y-direction) motion: 

                                                (B.4)

                                                

Note that if  ε (1) = ε (2) = ε (3) = ε, the usual Coleman
(i.e., constant coefficient) form of the dynamic equa-
tions results. Using the definitions for G1(ω) and
G2(ω) given by Eqs. 13a&b, and assuming sinusoidal
motion, one finds the various matrices to be as 
follows:

                                                (B.5)

                                                (B.6)

                                                (B.7)

where:

                                              (B.8a)

                                              (B.8b)

                                                 (B.8c)

Continuing:

                                              (B.9a)

where:

                                        
                                                                     (B.9b,c,d)

Using Eqs. B.6 thru B.9, one can then easily compute
the G2(ω) matrix (as defined by Eq. 10b).
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