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Abstract

Overlapping grid technique (Chimera) is combined with an automatically generated cartesian
background grid to descretize the flow domain around a helicopter fuselage model. Three dimen-
sional Navier-Stokes computations are performed with the DLR’s CFD code FLOWer to predict air
flow past an Eurocopter BO-105 fuselage under low Mach number forward flight conditions. The
influence of several turbulence models of the two-equation

�����
type is analyzed via direct com-

parison with the measured pressure distributions and aerodynamic coefficients. Among the models
considered, the SST model showed the best agreement with the experimental data.

1 Introduction
Air flow past helicopters ranks among the most complicated flows in industrial aerodynamics. This is
mainly because helicopters operate under significantly different flying conditions, and consequently,
various flow fields result around the aircraft. In addition, several interactional phenomena are caused
by the rotary motion of the rotors. Depending on the conditions of flight, different schemes of aero-
dynamic interference may take place between the main rotor and the fuselage, as in hover, vertical
flight, or slow advance cases. High speed forward flight involves interaction between the two rotors,
where the tail rotor is contained, partially or totally, in the wake of the main rotor. Descend flight is an-
other case where complex interaction also takes place. Besides the blockage effect of the fuselage,
the main rotor, depending on the speed of descend, sinks inside its own wake. The situation is even
more pronounced close to the ground, and the so called fountain effect increases the complexity of
the flow.

With the increase in computer power witnessed recently, Computational Fluid Dynamics (CFD) has
evolved as a research and development tool in aeronautic industry. The field of helicopters has been
no exception, but owing to the complexity of the problem, recent research efforts concentrated on
the individual elements of the aircraft. (1; 2; 3; 4; 5), for example, studied the flow around isolated
rotors under various flight conditions, while (6; 7; 8) analyzed the flow around isolated fuselage. An
attempt was made in (9; 10; 11) to study the rotor-fuselage interaction by both an actuator disc model
and time accurate representation of the rotor’s motion. Proper resolution in space and time proved,
however, to be prohibitively expensive for the latter approach.

Generation of high quality structured grids around complex geometries is the most time and effort
consuming step in the numerical simulation process. Overlapping grid techniques offer an attrac-
tive alternative to the classical multi block approach by breaking down complex configurations into a
number of simple components, generating structured grids around each component individually, and
interpolating the solution between the component grids during the solution process using a back-
ground grid which partially overlap them. However, proper overlap between the grids is essential for
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the stablity of the method. The interpolation of the data should take place far from high gradients
(boundary layers, shocks,..etc.) otherwise the solution is contaminated by large interpolation errors,
which may prevent the convergence of the solution. To guarantee accurate interpolation, the over-
lapping grids must have comparable resolutions within the overlap regions.

Satisfaction of the above conditions using one of the component grids (usually of the largest dimen-
sions) as a background grid places additional constrains on grid generation, and may result in poor
quality grids in many cases. In addition, considerable amount of time and effort is usually required
before a moderate quality functioning Chimera grid can be obtained. Thus, Chimera application
becomes less attractive in pratice when complex three dimensional configurations are involved, for
which the technique is supposed to be most beneficial.

In this paper an alternative approach to transfer the data between the child grids is applied. The
approach replaces conventional boundary fitted background grids by a cartesian grid. This approach
has the following advantages. Firstly, a cartesian grid requires negligible human and computational
effort. Secondly, identical grid resolutions can be achieved in the overlap regions. Thirdly, cartesian
grids offer ideal numerical characteristics (no cross diffusion). Block local refinement is employed to
ensure matching grid resolutions in the overlap zones only, thus keeping the number of grid points
within acceptable limits.

Turbulence models based on the eddy viscosity hypothesis have become a standard tool in indus-
trial CFD applications. In the helicopter field, the two-equation class of eddy viscosity models has
gained recently increasing attention. Although their shortcomings, which can be easily deduced from
their formulation, have been long known, they stand nowadays as a compromise between simple
algebraic models (12) and one equation models (13) on the one hand, and the more accurate (and
computationally expensive) differential stress models on the other hand. Motivated by their success,
several attempts to minimize their deficiencies have been undertaken. However, since all statistical
turbulence models are calibrated for simple flow cases, it seems logical to expect some inconsistency
in their behavior when applied to different classes of flow, especially the complex ones.

The present paper demonstrates the potential of overlapping grid method (Chimera) in combination
with cartesian background grid to generate the grid around a helicopter fuselage configuration. In
addition, the performance of three models of the ���
	 class in helicopter application is evaluated.
The original Wilcox model (14) , the linear algebraic Reynolds Stress model of Rung (LEA) �
�������
(15), and the Shear Stress Transport (SST) model of Menter (16) are examined by comparison with
experimental pressure distributions and force coefficients. Based on the outcome, the most accurate
model is employed to predict the flow around the fuselage in different forward flight, low Mach num-
ber conditions. The governing equations are introduced in the first part of the following section, while
the numerical method is highlighted in the second part. A description of the real geometry and flow
conditions is given next. The numerical grids are described in the fourth section. The fifth section
contains the numerical results and comparisons with experimental data. Conclusions drawn from the
present investigation are summarized in the last section.

2 Governing Equations and Numerical Technique
Governing Equations. The integral for the time-dependent compressible Navier-Stokes equations
written in relative reference frame reads���� ��������� ��!#" ��$ "&%'�)(*���
�+� �-,/..

F 0 !#"214365879 " ��: "<;>= 0 � 1
where

! "
is the vector of the conservative variables reads! " ;@?A BB 7C "BED FG 0IH 1
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Where density of a fluid particle is denoted by B , the specific total energy by D and the velocity vector
by

7C "
.

The specific total energy by D is related to the specific internal energy J byD ; J % �H 7C "�K 7C " 0ML 1
Finally, the flux density tensor is given by..

F 0 ! " 1-; ?NNNA B 0 7C " 1 �B 7C "/5 0 7C "O1 � %QP-..
I R/� ..SB�D 0 7C "*1 � %QP-7C �" �T0 ..S 587C "O1 � �VUXWZY

Pr
0 grad�\[^] 1 � F�___G 0 ` 1

where
P
,

..S , Y , ] , UXW and Pr denote respectively the static pressure, the viscous stress tensor, the
dynamic viscosity coefficient, the static temperature, the specific heat capacity at constant pressure
and the Prandtl number.

This system of equations is closed by a perfect gas state lawP6; 0bac� � 1 B J 0Id 1
where a ; U W�e U
f ; � K ` is the heat capacity ratio and the value of the Prandtl number typical of aircraft
conditions is retained Pr

;g= Kih H ; and finally, the dynamic viscosity coefficient is calculated using
Sutherland’s formula Y 0 ] 1-; YkjQl ]] jnm Rporq ] j % ��� = K `�s] % ��� = K `Es 0 kg

5
m tvu 5

s tvu 1 K 0Mw 1
Turbulence Modelling Turbulence effects are introduced using Boussinesq’s eddy viscosity ap-
proach, which implies linear (Newtonian) stress-strain relationship. The eddy viscosity is estimated
by Prandtl-Kolmogorov relation: Y � e B ; $�x 0 h 1
where

$
is a velocity scale and

x
is a length scale proportional to that of the energy-containing mo-

tions.

The velocity scale is usually taken equal to � u orq . Numerous proposals have been made for estab-
lishing the proper length scale

x
(21; 22; 23; 24). For aeronautic applications the approach of Wilcox

(14) (originally proposed by Kolmogorov) has proved superior to other two-equations eddy viscosity
models. The Wilcox �c�y	 model computes the length scale as a function of the turbulence kinetic
energy � and some scale determining quantity, 	 , so that:Y � ;{z&| B �	 0M} 1
where 	 is the specific turbulence dissipation rate (it can be interpreted physically as an eddy turnover
frequency). Both � and 	 are obtained via the following transport equations:~��� ����� B �� � %

div l B � 7C " � l Y % Y ��\� m grad��[ � m ;{� � ��� �
� B 	� � %

div l B 	 7C " � l)Y % Y ���� m grad��[ 	 m ;>� � ��� � 0M� 1
Two-equation models are known of their excessive production of eddy viscosity. This is a direct
consequence of Boussinesq’s assumption, which leads to positive production of the turbulence ki-
netic energy regardless of the state of strain. Thus, turbulence is produced by two-equation models
equally by concave and convex curvatures, and by flow acceleration and deceleration. On the one
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hand, additional viscosity improves the robustness of computations, and on the other hand, is their
major deficiency. Excessive turbulent mixing, for example, stabilizes boundary layers against ad-
verse pressure gradients, delaying or completely preventing flow separation. Similarly, unsteadiness
of the flow may also be suppressed for the same reason. Menter’s SST model avoids partially this
drawback by enforcing Bradshaw’s assumption requiring the shear stress (in two dimensional cases)
to be directly proportional to the kinetic energy of turbulence. This modifies the original expression of
turbulent viscosity in Eq. 8, to: Y � ; ����E� 0 �����4�Z��O� R � 1 B �	 0 � =�1
where � |�; � ��9k� 0 � q q 1 and � q ; ���E� , q �p��� ��Z �¡p¢�£+¤ � �¦¥ �X� |¡ ¢�£+¤Z§r¨ � 3

.
��©«ª­¬

is the minimum distance to solid

wall. ® is the absolute value of vorticiy ¯ °²± 7C ¯ .
In essence, the model switches between the turbulent time scale provided by 	 and another time
scale proportional to a mean flow quantity, ® , scaled by a suitable detector of the wall vicinity. By
choosing the minimum of the two scales, the model limits the eddy viscosity thus reducing the previ-
ously mentioned shortcoming of two-equation models.

LEA model (15) follows another route to overcome the problem. Assuming equilibrium between
production, dissipation and redistribution of Reynolds stresses, a nonlinear expression for the stress
anisotropy tensor as a function of strain and vorticity tensors can be derived. However, only the linear
part of the stress-strain relation is retained in the present implementation due to numerical stability
reasons. Thus, our version of LEA differs from standard Wilcox model only in the definition of

z&|
,

which takes the following form instead of a constant value.z&|³; ´ u� � qRrµ § % H�¶ q 0 ��� 1
where · and ¶ are functions of strain and vorticity tensors, and turbulent production and dissipation
according to (15).

To conclude, the full set of clsoure coefficients is shown in table 1. The values are slightly different
from the orginial given in (14),(15),(16).¸Q¹�º8»�¼ z | ´ � ´ � u ´ � q � � ���½>¾�¼À¿
¹2Á ��Â = = Â = � = Â d�d�d�d�d�w = Â h � H Â = H Â =Ã8Ã)Ä u©/ÅÇÆ � upÈrÉ �2Ê��� Ë Ê � = Â = � = Â d�d�d�d�d�w = Â h � H Â = H Â =ÌkÍÏÎ ��Ðupt §ËIÑ §�Ò qrÓ § = Â = � = Â d�d�d�d�d�w = Â h � H Â = H Â =ÄÕÔ�Ö ¼�» ��×ÏØ ¼­¹�ÙrÚ8ÛX»Ü¿�¹�»
Ý�¿
¾­»�ÞEßXÙ«ÚàÙ�»*º6¾­Þ�ßrá8»�â�Ûr»*Ù�»OÞ�ß/â Ô âà»OÛ Â
Numerical Approach The previous equations are solved by means of the CFD simulation code
FLOWer developed at DLR since the beginning of the 90’s. The solution process is based on Jame-
son’s method (29) where a second order central scheme is used for the discretization of the fluxes.
A stabilizing blend of second and fourth order dissipation is added to the convective fluxes of the
main flow equations, and a first order accurate Roe’s scheme is employed to compute the turbulent
convective fluxes.

The descretized equations are advanced in a fictitious time using a multi-stage Runge-Kutta method.
The solution process makes use of acceleration techniques like local time stepping, multigrid and im-
plicit residual smoothing. Turbulence transport equations are integrated over pseudo-time implicitly.
Each (pseudo) time step, a system of equations is solved by the DDADI (diagonal dominant alternat-
ing direction implicit) to obtain � and 	 .
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No-slip and farfield (one-dimensional characteristic theory) boundary conditions for the mean flow
equations are set respectively on solid bodies, and on remote surfaces.

No assumptions are made for the boundary layer profile, rather, the equations of motion are inte-
grated down to the wall ( ãkä�åçæMè<� approach). On solid surfaces, the turbulence kinetic energy � is set
equal to zero, and the specific dissipation rate 	 is obtained from the equilibrium between dissipation
and diffusion of 	 in the viscous sub-layer, leading to 	 ; é |�2ê § ¨pë § on the wall.

Chimera Method The Chimera implementation in the FLOWer flow solver can be split into three
parts: 1) the hole cutting procedure, 2) the establishment of the intergrid communication and 3) the
data transfer during the solution process.

Within the hole cutting phase all grid points which are inside of a solid body are flagged to be ex-
cluded from the flow calculation. The flagged grid areas are often called ’hole’. The test if a point
is inside or outside of a body may be very CPU time consuming if it is based on the original body
geometry. Therefore, FLOWer expects a user input providing one or more additional grids, which
approximate the body volume by using only a small number of grid cells (usually 1 - 1000). The
approximate body grids must totally enclose the solid body. Now all grid points representing the body
are supposed to lie within the approximate body grid. Due to the small number of grid cells, this test
is very fast.

After the holes are cut, FLOWer generates a list of points for which data must be interpolated from
other grids. This includes the points at grid boundaries with Chimera boundary condition and the
points located at the artificial boundaries around holes. Now for each interpolation point all other
grids are searched for donor cells which may be used to interpolate flow data from. The search uses
an alternating digital tree (ADT) search algorithm (27) in case of a general mesh and a specialized
fast method for cartesian grids. If more than one grid overlaps the interpolation point, the data are
interpolated from the cell with the smallest cell volume since this cell is assumed to give the most
accurate flow representation. The donor cell is subdivided into six tetrahedrons to calculate the inter-
polation coefficients for trilinear interpolation.

If two grids overlap on a body surface, the body surface is not uniquely defined any more due to the
different cell size of the grids at the body surface. This usually leads to an inaccurate interpolation
especially if there are high flow gradients near the wall e. g. a boundary layer. To overcome this
problem, FLOWer uses a correction method based on the ideas presented in (26).

The hole cutting phase and the search procedure are preprocessing steps which are required only
once in case of a steady flow calculation.

The information on the holes and interpolation coefficients are now used to calculate the flow on the
Chimera grid system. Grid points with Chimera boundary condition are updated by interpolating the
conservative variables from the corresponding donor cells. In case of a multigrid computation, the
interpolation of data is carried out on the finest grid level only. On coarser grid levels, the points at
Chimera boundaries are updated with flow data from the finer level of the same grid. FLOWer allows
to use any turbulence model in combination with the Chimera method.

3 Test Cases
The computations reported here simulate four test cases selected out of a series of wind tunnel tests
carried out on a scale model of an EC BO-105 (originally MBB BO-105) helicopter. The BO-105 (Fig.
1.a), which has been introduced in the late sixties, is a twin engine, light weight, multi mission, hinge
less rotor helicopter that has been used for a wide range of applications like passenger transport,
search & rescue and law enforcement service. Figure 1.b shows the model mounted on model sup-
port inside the German-Dutch wind tunnel ( ìÜíïî ). A full description of the test stand and its main
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components is given in (17).

� 1 ð�1ñÕ¾­ò�Ú8ÛX» ��× �pó Í Ø�ô/õ<öp� = d á8»O¼�¾À¿
¹�â)ßr»OÛO÷kø ó Ä á�»Ü»�Á)âà»OÛr¾­ùú»�ÞEß Ô ¼kÙ�»�ßrÚ8â
The measurements included both isolated fuselage and fuselage-rotor configurations under a wide
variety of flight conditions. Hover as well as forward flight tests were included for speeds up to`�w K d � e�û J U , and a tip Mach number equal to

= K w�` �
. Four test facilities were used to assess the effect

of the blocking ratio and other tunnel related factors under different pitch angles. The test procedure
and results are reported in (18), (19) and (20). Table 2 contains a description of the selected test
cases. Ä »*Ù4ß Ø Ô Ù�» ü ý J þ �)ÿÄ Ønöp� } K � h�� } K d � ± � = é = K � L�wÄ Ønö H L K � ` � } K d � ± � = é = K � L�wÄ Ønö L � � K } h � } K d � ± � = é = K � L�wÄ Ønö ` � w K ��` � } K d � ± � = é = K � L�wÄ Ô�Ö ¼­» H × Ä »*Ù4ß<¸ Ô ßrÛX¾�Á Â ü�ßXá8»�â8¾�ßX¿pá Ô Þ�ò�¼­»Ü¾­Þïº)»�ò�Ûr»O»OÙ
4 Geometrical Characteristics and Grid Generation
As the actual wind tunnel model, all surface details of the real helicopter were excluded from the com-
putations. Only those components of the fuselage with major aerodynamic function were retained,
namely, the spoiler and horizontal stabilizer. The computational model included a simplified model
support of equal dimensions to that used in the experiment. This was based on earlier experience
which revealed strong blocking effect on the lower side due to the strut. Figure 3 shows clearly the
rise in pressure on the lower surface of the fuselage. The pressure distribution on the upper surface
is not affected by its presence.

The different components were distributed in four groups: naked fuselage, left stabilizer, right stabi-
lizer, and strut and spoiler. Conventional multi-block structured grids were generated around each
group individually by trilinear interpolation. Elliptic smoothing was applied subsequently to improve
grid quality. The component grids consist of 45 blocks (Fuselage: 22, Strut+Spoiler: 9, left and right
stabilizers: 7 each) and a total number of 4.27 Million point. The background grid consisted of 301
blocks and 1.56 Million points.Figure 4 shows the numerical grid used. The figure demonstrates
clearly the potential benifits of the cartesian background grid approach. This is can be most clearly
seen in the overlap region where the resoultion of the background grid is adapted to the resoultion of
the child grids.
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a) b)

c)

ñÕ¾�ò�Ú8ÛX» H ×�� »�¹�ùú»
ßrÛ���¹�� ßXá8»�¿
¹�ùúâ8Ú)ß Ô ßr¾­¹�Þ Ô ¼vùú¹�º8»�¼ ÷ Ô × � ÛX¹�ÞEß���¾�»
	�÷ Ö × Ûr» Ô Û���¾�»
	 Ùrá8¹�	/¾­Þ8ò ßrá8» Ùrâà¹�¾�¼­»�Û Ô Þ�ºÙ�ßrÛXÚ)ß ö � Ú�Ùr»�¼ Ô ò�» ¿
¹�Þ�Þ8»O¿
ßr¾­¹�Þ�÷v¿ × Ù�¾Àº)»
�E¾­»�	 Ù�á8¹�	/¾­Þ8ò³ßXá8» »
Á�ßr»OÞ�Ù�¾­¹�Þ ¹��-ßXá8»��à¹�	 º)¹�ù Ô ¾­Þ º)¹�	/ÞàÙ4ßXÛr» Ô ù ¹��-ßXá8»� Ú�Ùr»�¼ Ô ò�»
Cartesian grid generator for Chimera background grid Cartesian grids have been successfully
used to solve Euler equations around complex configurations. The method has gained a consider-
able atention in CFD because cartesian grids can be easily generated around arbiterarily complex
geometries requiring only negligible human and computational efforts (33), (34). When Navier-Stokes
simulation is considered, special treatement of the near wall region is necessary, otherwise a pro-
hibitively large number of points is needed to resolve the boundary layer by uniform,low aspect ratio
cells.

One way to overcome the above mentioned disadvantage is to combine Chimera with cartesian grids
to generate computational grids for viscous computations. Conventional Chimera child grids are gen-
erated in the regions close to the individual components, and an automatically generated cartesian
grid serves as a background grid as shown by Meakin (31). Hence, the advantages of both tech-
niques can be exploited

The grid generator used in this paper allows to automatically create cartesian background grids which
are adapted to the size of the cells in the nearfield grids. Anisotropic refinement (non cubic cells) is
used to increase the similarity of the cells in the overlap region to reduce interpolation errors. The
anisotropic refinement also significantly reduces the number of cells required for the background
grids. Due to the grid overlap, the calculation of cut cells for the cartesian cells is not necessary. This
simplifies the development of a cartesian grid generator significantly. Since FLOWer is a block struc-
tured code, the grid generator does not create individual grid cells but small grid blocks with a user
given number of cells in each index direction. A typical block size is 8x8x8 cells. The grid generator
stores all grid data in an ADT-tree. This ensures a fast access to all data during the grid creation
process and sets no limitations related to anisotropic refinement. Other cartesian grid generators
store data in Octrees, which makes extension for anisotropic cells difficult.

The resulting background grid may have up to 10000 grid blocks. The number of grid blocks is re-
duced by a subsequent merging procedure. Here the method of the weakest descent proposed by
Rigby (32) is used to merge as many adjacent grid blocks as possible. This usually reduces the
number of grid blocks by a factor of ten. The time needed for block merging is of the same order of
the time needed to create the grid itself. The grid creation and the merging process run without user
interaction.
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5 Numerical Results
Pressure coefficient distribution at symmetry is shown in figure 5 for case TC-2. The figure compares
computed results obtained by Wilcox, LEA and SST with the experimental values. On the upper
surface, the three models behave similarly in the nose region. Marching downstream, Wilcox model
begins to depart from the other two predicting higher pressure in front of the engine fairing. While
LEA and SST behave in an opposite sense in this area, all three models deviate almost equally from
the experiment. It is not quite clear which model behaves better on the leading upper edge of the
engine fairing as there is no sufficient experimental data to evaluate the suction peaks predicted by
the three models. The lowest pressure is predicted by SST equal to �/` K �

followed by LEA showing
a

z W value of � L K w . Wilcox model recovers the pressure slower than LEA and SST models on the
engine fairing probably because larger flow separation on the upper surface. Further downstream,
no significant differences between the models can be observed, and the three models show fairly
good agreement with the experiment. On the lower surface, the three models show comparable ac-
curacy upstream of the strut. Noticeable differences can be seen only in the immediate vicinity of the
strut, where higher pressure is predicted by Wilcox’s model. No experimental data is available for the
region downstream of the strut and up to one third of the tail boom. Within this region, Wilcox model
deviates considerably from the other two models predicting higher pressure (and possibly higher lift).
A similar situation as on the upper surface is observed along the tail boom. All three models show
almost equal deviation from experiment but with different trends: Wilcox model overestimates the
pressure whereas the other two underestimate it.

The above guess is confirmed by the friction contours shown on figure 6. Wilcox model indeed pro-
duces a larger separation zone on the top of the engine fairing, corresponding to the observed slow
pressure recovery in that region.

All three models predict more or less the same contribution of the strut to the aerodynamic forces
as shown in table 3. SST results indicated the lowest influence of the strut, where as Wilcox model
revealed the strongest contribution. The variation in contributions among the models is, however,
negligible.

The presence of the strut is essential for the development of the flow under the fuselage, but the
resulting forces acting on it are of no importance in the present investigation. Therefore, the strut
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# �# øñÕ¾�ò�Ú8ÛX» ` × Î$��¾­»�	 ¹�� ßrá8» Þ�Ú8ùú»�ÛX¾­¿ Ô ¼Üò�ÛX¾­º�»�ùúâ8¼­¹���»Oº�¾�Þ{ßrá8¾ÀÙ�â Ô â\»�Û Â Ô 1 Ø Ûr¹EÙrÙ�Ù�»*¿ÇßX¾�¹�Þ Ô ¼%��¾�»
	 ¹�� ßXá8»Ö�Ô ¿'&Eò�Ûr¹�Ú8Þ�º�ò�Ûr¾Àº Ù�á8¹�	/¾­Þ8ò ßrá8»/ÛX»�(àÞ8»�ùú»�ÞEßç¹��àßrá8»/ò�Ûr¾Àº�¿�¼�¹EÙ�»&ßX¹ ßXá8» ¿
¹�ùúâà¹�Þ8»�ÞEßçò�ÛX¾­º�Ù ¾­Þ�º)¾À¿ Ô ßr»*º�¾­Þ ßrá8»�(�ò�Ú8ÛX»Ö ��ßrá8»O¾�Û ¹�Ú8ßr»�Û Ö ¹�Ú8Þ�º Ô ÛX¾�»*Ù Â Ö 1 Î ò�¼�¹ Ö�Ô ¼)�E¾­»�	 ¹��çßrá�» ¿�¹�ùúâ8Ú)ß Ô ßr¾­¹�Þ Ô ¼ º)¹�ù Ô ¾­Þ Ùrá8¹�	/¾­Þ8ò�ßXá8» Ô ÛrÛ Ô Þ�ò�»�ùú»OÞ�ß¹�� Ö ¼­¹)¿'&�Ù Ô Ûr¹�Ú8Þ�ºcßrá8»�� Ú�Ùr»�¼ Ô ò�» Â
* D,+ :-: ] !.- x U�/ �Ì�¾0�bß 021 1 }�� K h }�� K H � = K L3 Û Ô ò 021 1 d�L K = � d�H K L d�L K hÄÕÔ�Ö ¼­» L ×ÏØ ¹�ÞEßXÛr¾ Ö Ú)ßX¾�¹�Þ6¹��kßrá�» Ù4ßXÛrÚ)ß/ßX¹úßr¹�ß Ô ¼�º8Û Ô ò Ô Þ�º�¼�¾0�bß

will be excluded in the analysis of the aerodynamic forces presented hereafter. Tables 4 and 5 list in
percentage the aerodynamic drag and lift acting on each component. It is interesting to see that both
LEA and SST result in a strikingly close drag breakdown. The discrepancy in drag between the two
models is less than 0.1 1 . Wilcox model predict similar contributions but the values differ with about
3 1 from LEA and SST.

* D,+ :-: ] !.- x U�/ �ñ8Ú�Ùr»�¼ Ô ò�» 021 1 ��L K H�} ��L K H�} � = K L�dÌ�»��bß Ã ß Ô�Ö ¾�¼­¼�¾54�»OÛ 021 1 � K } � � K h d H K h �6/¾­ò�áEß Ã ß Ô�Ö ¾­¼�¼­¾54�»�Û 071 1 � K }EH � K h } H K h�hÃ â\¹�¾­¼­»�Û 071 1 L K = � L K � � ` K = �ÄÕÔ�Ö ¼­» ` × 3 Û Ô ò Ö Ûr» Ô &)º)¹�	/Þ ö Ä »*Ù4ß ¿ Ô Ù�» Ä Ønö H
Different trends are observed for the aerodynamic lift. The maximum and minimum contributions of
the fuselage vary by about 16.5 1 . All three models predict significant differences between left and
right stabilizers. LEA and SST show higher lift acting on the right stabilizer than the left one, while
Wilcox model predicts an opposite trend and smaller difference between the two components.

Viscous drag ranges from 8.52 1 and 10.11 1 of the total drag acting on the fuselage as shown in
table 6. Regardless of the model used, viscous effects are below 2 1 for the other components. The
contribution of viscous terms to lift is even less significant.

�
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* D,+ :-: ] !.- x U�/ �ñ8Ú�Ùr»�¼ Ô ò�» 021 1 }�w K } � ��` K H�w h } K h =Ì�»��bß Ã ß Ô�Ö ¾�¼­¼�¾54�»OÛ 021 1 ` K H�d � K L�} � = K h }6/¾­ò�áEß Ã ß Ô�Ö ¾­¼�¼­¾54�»�Û 071 1 } K = d H K � � } K w�LÃ â\¹�¾­¼­»�Û 071 1 = K � = � K `�w � K � =Ä Ô�Ö ¼­» d × Ì�¾0�bß Ö ÛX» Ô &)º)¹�	/Þ ö Ä »OÙ�ß/¿ Ô Ùr» Ä Ønö H

* D�+ :-: ] !.- x U�/ �ñ�Ú�Ù�»O¼ Ô ò�» 021 1 � K }�L81 } K d�H91 � = K ��� 1Ì�»��bß Ã ß Ô�Ö ¾�¼­¼­¾04O»�Û 071 1 � K } � 1 � K w � 1 � K � w916/¾­ò�áEß Ã ß Ô�Ö ¾­¼­¼�¾54�»OÛ 021 1 � K }�}81 � K w�w81 � K H�H 1Ã âà¹�¾�¼­»�Û 071 1 � = K = L91 � = K = d 1 � = K = H91ÄÕÔ�Ö ¼�» w ×;: ¾­ÙX¿
¹�Ú�Ù/º)Û Ô òú¿
¹�Þ�ßXÛr¾ Ö Ú)ßX¾�¹�Þ
Finally the computed coefficients are compared to their experimental counterparts in table 7. Despite
similarities in behavior observed previously, LEA model deviates from SST predicting drag and lift
coefficients close to Wilcox results. SST shows the best agreement with experiment for this flight
conditions and will be retained therefore as the standard model for the rest of the investigation.

* D,+ :-: ] !.- x U�/ � D � P J=< - � J 9 �z ¡ = K L���w�` = K `EH�` = = K L���d h = K `��Edz�> = K � h�h = K H = d = K � w�� = K H�LEdÄ Ô�Ö ¼­» h ×ÏØ ¹�ùúâ8Ú)ßX»Oº Ô Þàºcùú» Ô Ù�Ú�Ûr»*º?� ¹�ÛX¿�» ¿�¹�»
Ý�¿
¾­»�ÞEßXÙ@� ¹�Û ü ; L K � ` �
The computed and measured lift and drag coefficients are compared in figure 7.a. As can be seen
from the figure, both the lift and the drag increase with the pitch angle. The computations reproduced
that trend for both force components. However, the computed drag value is underestimated for the
whole range of

ü
. The deviation in drag ranges between 14.9 1 and 17.80 1 , and corresponds to
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Ý�¿
¾­»�ÞEß ÛX»OÙrâà»*¿Çßr¾5��»O¼0�
pitch angle equal to -1.87

�
and 8.17

�
, respectively. The computed lift shows a different trend than

the experimental one, overestimating the lift force at
ü ;

-1.87
�
, showing the best agreement with

the experiment at
ü

between 1.87
�

and 3.14
�
. then deviating again predicting lower value than the

experiment as
ü

increases. The most significant deviation was noticed for the
ü ;

8.17
�
. The

ü ;
-1.87

�
case showed a slightly better agreement.

An alternative way to interpret the results is provided by the polar shown in figure 7.b. The computa-
tions consistently underestimate the drag for a given lift value. The trend, however, is well reproduced,
where higher lift is associated with an increase in the drag. The rate of change of lift with respect to
drag (the slope of the curve) is remarkably well predicted.

Figure 8 shows the computed pressure coefficient distribution at symmetry plane for the four pitch
angles. As far as the qualitative character of the results is concerned, the surface pressure patterns
on the upper side does not depend on the pitch angle except in the region downstream of the engine
fairing. On the lower side the pressure distribution shows more or less the same trend for all pitch
angles. Good agreement between the computations and experiment can be observed. The compu-
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tations captures the flow acceleration on the leading end and stagnation effect of the strut reasonably
well. The latter, however, is characterized by a slight delay in pressure rise close to the strut. The
same also applies to the engine casing on the upper side where the deviation from the experimental
values becomes clear as the casing is approached. The wake of the engine casing turned out to
be the most critical region of the flow. In that region, the computations failed to adequately predict
the pressure distribution for the smallest and largest pitch angles. For the intermediate cases, the
pressure intensity is predicted reasonably good, but its shape does not conform with the experiment.
The observed pressure pattern denotes a closed separation bubble where the pressure increase
represents the reattachment location. This well known deficiency of two equation turbulence models,
that is, the inability to predict three dimensional separation adequately–seems to prevail despite the
SST modifications.

6 Conclusions
Three dimensional Navier-Stokes computations around an isolated BO-105 fuselage have been pre-
sented. Chimera overlapping grid technique has been used to facilitate grid generation. A Cartesian,
locally refined grid enclosed the component grids. The background grid was refined in such a way
to ensure proper overlapping automatically without user’s input. The outcome was a dramatic re-
duction of the effort required to start Chimera computations using conventional grids. A preliminary
investigation has been performed to compare different variants of the �³��	 model. Detailed analy-
sis of the results has been carried out, which included pressure distribution and aerodynamic force
comparisons with the experiment. All three models predicted similar drag breakdown, while SST
predicted the highest contribution of the fuselage unit (without the strut, spoiler and stabilizers) to
aerodynamic lift. The analysis revealed superior performance of Menter’s SST model to predict aero-
dynamic forces. However, when other pitch angles were considered, the agreements between SST
results and the experiment deteriorated, especially for the largest and smallest pitch angles. The
strongest discrepancy between experimental and computed pressure was observed downstream of
the engine casing, where SST fails to predict the pressure accurately, presumably due to incorrect
prediction of the reattachment location. This behavior seems inline with previous observations, and
probably due to a classical shortcoming of two equation models to predict complex three dimensional
flow separation with reattachment. However, in view of the complexity of the flow and scarcity of de-
tailed experimental data, this statement remains without a proof.
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