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In the past, significant effort was placed in flow field measurements of rotor wake vortices.
This was driven by the importance of the rotor blade tip vortices for the blade-vortex
interaction noise radiation of helicopters. The goal is to obtain reliable data for the
generation of a generalized model of tip vortices, including their generation and roll-up,
and their aging while passing through the rotor disk and interacting with some of the
revolving blades. In 2001 DLR, ONERA, NASA Langley, US Army AFDD and DNW
performed the HART II test in the large low-speed facility of the DNW with a 40%
Mach scaled model rotor of the Bo105. Major emphasis was placed on three component
particle image velocimetry (3C-PIV) measurements of the blade tip vortices. They were
traced from their creation in the second and third quadrant of the rotor disk to the rear
of the rotor, including blade-vortex interaction (BVI). This paper deals with difficulties
associated with the analysis of such 3C-PIV measurements and with the methodologies
that need to be applied to overcome these difficulties.

Nomenclature
Abbreviations
AV Average value
BL Baseline case
BVI Blade Vortex Interaction
HART HHC Aeroacoustic Rotor Test
HHC Higher Harmonic Control
LDV Laser Doppler Velocimetry
PIV Particle Image Velocimetry
2C, 3C Two, three Component
Symbols
a∞ speed of sound, m/s
c chord, m
CT thrust coefficient, = T/(ρπΩ2R4)
Lm measurement volume length, m
MH hover tip Mach number, = ΩR/a∞
Nb number of blades
n Vatistas swirl shape parameter
r radial coordinate, m
rc core radius, m
R rotor radius, m
t time, s
T thrust, N
u, v, w velocity components, m/s
V velocity, m/s
x, y, z coordinates, m
α angle of attack, deg
β vortex inclination angle, deg
Γ circulation, m2/s
λ2, Q flow field operators, (rad/s)2

µ advance ratio, = V/(ΩR)

ν kinematic viscosity, m2/s
ρ air density, kg/m3

σ solidity, = Nbc/(πR)
σ standard deviation
ψ azimuth, = Ωt, deg
ω vorticity, rad/s
Ω rotor rotational frequency, rad/s
Indices
b blade
S shaft
s swirl
v vortex

1 Introduction

Flow measurement techniques of today are non-
intrusive using either the Doppler effect in Laser
Doppler Velocimetry (LDV) or the shift of parti-
cle images in two successive exposures with very
small time interval between them (Particle Im-
age Velocimetry, PIV). LDV typically has a very
small probe volume, and for field measurements
the volume must scan the area to be observed.
PIV provides a large area with the instantaneous
velocity field.

Often the flow structures to be observed are
subject to random variations, either caused by
model motion, natural air turbulence, or flow field
instabilities. As an example, dynamic stall mea-
surements are repeating the phenomenon cycle by
cycle in general, but each cycle has strong indi-
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Reference R/m c/mm MH µ CT /σ Lm/rc pixel/k2 ∆t/µs ∆ψ/o NI

Heineck [1] 2.27 190.5 0.615 0.0 0.094 2.60 1 x 1 40 0.2 500
Martin [2] 0.41 44.0 0.265 0.0 0.087 1.31 1 x 1 50 0.6 20
Raffel [4] 0.50 50.0 0.231 0.2 0.063 1.38 3.6 x 2.4 12 0.1 100
TRAM [3] 1.45 140.0 0.630 0.15 0.085 1.83 1 x 1 20 0.17 100
ERATO [5] 2.10 70.0 0.617 0.17 0.063 1.93 1.28 x 1 50 0.3 50
Richard [6] 4.92 270.0 0.617 0.0 0.064 0.47 1.28 x 1 10 .025 1
Kato [7] 1.00 65.0 0.308 0.16 0.097 0.50 1.28 x 1 6 .036 900
ATIC-1 [8] 2.00 110.7 0.618 0.16 0.073 1.19 1.28 x 1 50 0.3 50
ATIC-2 [9] 2.00 110.7 0.618 0.16 0.073 1.86 1.28 x 1 50 0.3 30
McAlister [10] 0.96 103.9 0.260 0.0 0.095 0.65 2 x 2 5 .026 25
HART II1 [12] 2.00 121.0 0.634 0.15 0.057 1.96 1.28 x 1 17 0.1 100
HART II2 [12] 2.00 121.0 0.634 0.15 0.057 0.51 1.28 x 1 17 0.1 100

Table 1: Comparison of PIV measurement resolution, rc = 0.05c. 1 large and 2 small observation area,
NI = number of images per position.

vidual time history in the post-stall regime. In
helicopter rotor wakes, the model is subject to
small motions that are non-harmonic in terms of
rotor frequency, and thus blade tip vortex cre-
ation locations and the local blade aerodynam-
ics are slightly different in each revolution. Since
PIV provides an instantaneous measurement of
the complete area, this technique is thought of as
superior to LDV. A stereo arrangement allows to
resolve for the third flow component (3C).

1.1 Rotor blade tip vortex mea-

surements using PIV

In Tab. 1 various rotor tests with application of
PIV are listed with their operational conditions.
Small scale rotors are often operated at half or a
third of the tip Mach number [2, 4, 7] of full scale
rotors [6] or large-scale models [1, 3, 5, 8, 9, 12].

The 3C-PIV technique was applied to a lightly
loaded, 2-bladed, untwisted hovering rotor in [1],
where the necessity of conditional averaging was
emphasized. A comparison of 3C-LDV and 3C-
PIV on a 1-bladed small-scale model rotor was
given in [2]. Therein the importance of the length
of the measurement volume Lm, related to the
core radius rc to be measured, is shown. In case
of PIV or other camera based techniques, the ad-
vantage of the instantaneous measurement of an
entire area is associated with a smaller spatial res-
olution, which is defined by the size of the cross-
correlation windows. The conclusion was made
that the results of (ensemble averaged) PIV data
are not at all sufficient to resolve tip vortex core
properties. Several PIV application to rotor blade
tip vortices are listed in Tab. 1 with the oper-
ational data and the resolutions obtained with
PIV. In 1998 PIV was applied to a small scale
tilt rotor model (TRAM) in DNW operated in
descending forward flight [3]. Vortices at an age

of about one revolution right before interacting
with a blade were investigated and core radii of
about rc = 0.25c were measured.

A 2C-PIV measurement was also compared to
3C-LDV measurements in [4], where blade tip
vortices of a 4-bladed rectangular small scale
model rotor were measured in forward flight.
These data indicate the superiority of PIV com-
pared to LDV due to both sufficient spatial reso-
lution as well as the completeness of the instanta-
neous area measurement with all turbulent struc-
tures included. A 2C-PIV test on a large scale
model rotor with swept back tapered blade tips
was performed during the ERATO program [5].
For the vortices found, six vectors were within the
core diameter, which is not enough to analyse the
vortex properties. It was concluded that for good
vortex core measurements the resolution had to
be increased by a factor of about four. With a
higher resolution following this result a 2C-PIV
measurement was performed at a full-scale Bo105
helicopter while standing on ground but generat-
ing a thrust of 2000kg to match the thrust con-
dition planned for the HART II test [6]. Vortex
core radii of rc = 0.045c and peak swirl velocities
of Vs,max = 0.42ΩR were measured which corre-
sponds well with the model rotor hover measure-
ments using LDV, for example [2].

3C-PIV measurements of tip vortices on a
model rotor in forward flight was performed suc-
cessfully in the NAL wind tunnel with compa-
rable resolution [7]. The mesurement plane was
parallel to the wind tunnel flow such that the
vortex axis was inclined significantly at an an-
gle of approximately 50o to it and the results
needed a correction accounting for this. Vortices
were traced downstream at y = 0.76R and core
radii of rc = 0.04c with peak swirl velocities of
Vs,max = 0.15ΩR were found. Another test called
ATIC was performed twice at DNW using 2C-
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(a) ψ = 20o (b) ψ = 70o

Figure 1: PIV measurement locations in the rotor disk for the BL case.

PIV in 1998 [8] and 2000 [9], using 5-bladed sets
of a Bo105 model rotor and an advanced design.
In both tests, the vortex was traced downstream
at y = 0.67R at a view angle upstream selected
in a way to cut the vortex axis orthogonal. Sev-
eral advance ratios were investigated, including
HHC conditions. Young vortices were measured
with core radii of rc = 0.05c and less, with peak
swirl velocities of Vs,max = 0.04 − 0.08ΩR.

A recent application to a two-bladed medium
scale model model rotor at low tip Mach numbers
in low vertical climb was presented in [10]. Core
radii of rc = 0.05c and maximum swirl velocities
of up to Vs,max = 0.44ΩR were found, and a void
in the vortex center that hindered an analysis of
the flow field therein. Vortices were found to be
elliptical to some extent.

1.2 PIV application in HART II

In 2001, the Higher Harmonic Control Aeroa-
coustic Rotor Test II (HART II), commonly per-
formed by DLR, ONERA, NASA Langley, US
Army AFDD in the large low-speed facility of
the DNW [11, 12] was extensively using 3C-PIV
for rotor wake measurements. The rotor is a 40%
Mach scaled and dynamically scaled model of the
B0105 main rotor with four blades, rectangular
planform, −8o/R linear twist, a radius of 2m,
chord of 0.121m and a solidity of σ = 0.077. The
operational condition was at an advance ratio of
µ = 0.151, tip Mach number of 0.641, a thrust
coefficient of CT = 0.0044 representing a lightly
loaded rotor (CT /σ = 0.0571, this is representa-
tive for a 2ton Bo105 helicopter). Measurements

were performed in a 6o descending flight condi-
tion with strongest BVI noise radiation through-
out the rotor disk. Also, higher harmonic control
(HHC) at 3/rev was applied with a blade root
pitch amplitude of 0.8o and a phase of 300o for
minimum noise radiation and 180o for minimum
vibration. The conditions are described in detail
in [12].

One important parameter to characterize the
quality of a measurement with respect to vor-
tex core analysis is the ratio of the measurement
length with respect to the core radius (Lm/rc),
which will be addressed in Sect. 2.1. Another im-
portant parameter is the time delay between two
successive images. If chosen too small the parti-
cles will move within subpixel range. Too large
time delays allow too much particles to leave the
second image and new ones to enter it which
might be responsible for spurious vectors. How-
ever, this must be adopted to the maximum flow
velocities to be measured and also to the record-
ing conditions, as there are particle density, laser
intensity and background light. In Tab. 1 the
measurement resolution Lm/rc, the time delay
∆t and the associated range of blade motion ∆ψ
during the measurement is given for various tests.
The HART II measurements are among the small-
est values in both time delay and relative blade
motion, and also for the spatial resolution, based
on 5% chord.

In HART II, more than 300 measurements of
blade tip vortices and vortices created inboard of
the tip were made. The test set-up, measurement
techniques applied, and some representative re-
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sults were reported in detail in [12]. Details about
PIV data acquisition and PIV processing from
raw data images to vector maps were presented
in [13]. General information about PIV and vec-
tor field analysis can be found in [14].

Major emphasis was placed on 3C-PIV mea-
surements of rotor blade tip vortices in conditions
with strong BVI, i.e. at a typical descent angle of
6o at an advance ratio of µ = 0.151. Two 3C-PIV
systems were applied simultaneously. DNW oper-
ated a system with windows of 0.46m by 0.37m
size while the DLR system had different lenses,
resulting in a window size of 0.15m by 0.13m.
The large observation window was intended for an
overview of the area while the small window was
intended for vortex analysis, i.e. the identification
of vortex parameters like core radius, maximum
swirl velocity, swirl velocity profile, axial flow, cir-
culation etc..

While the HHC conditions showed locally neg-
ative loading at the blade tips at some range of
azimuth this was not the case for the BL condi-
tion. At any location with negative loading at the
blade tip area the tip vortex has opposite sense
of rotation. Inboard, the loading turns to lift and
distributed vorticity is shed into the wake along
the span, which later on rolls up into a vortex.
In these cases pairs of counter-rotating vortices
were present in the flow and both of these were
measured by PIV systems.

About 330 measurements were made at 70 lo-
cations distributed in the rotor disk, see Fig. 1
for 52 of them. The remaining locations were de-
voted to measurement of multiple vortex systems
which occurred in HHC cases. The measurement
plane is vertical and rotated by ±30o in order
to have the majority of vortices almost orthogo-
nal to the measurement plane, at least from the
top view. Each of these measurements were made
with both PIV systems and with 100 repeats such
that about 66000 vector maps are available for
analysis. Since this cannot be performed by hand,
automated procedures had to be developed. Sev-
eral topics have to be addressed for the analysis:

- window size and overlap, Sect. 2.1
- spurious vectors, Sect. 2.2
- field operators and gradients, Sect. 2.3, 2.4
- vortex center detection, Sect. 2.5
- model and camera support movement,

vortex wander, Sect. 2.6
- time averaging, Sect. 2.6
- mean velocities, Sect. 2.7
- rotation, Sect. 2.8
- disturbing structures, Sect. 2.9
- parameter identification, Sect. 2.10

Some analysis has been made in the past with
identification of some of the parameters [15, 16].

The importance of rotation into the vortex axis
system was shown in [17].

In the following sections an analysis method-
ology is presented that addresses each of these
topics. Next, in Sect. 3 this is tested using numer-
ically generated virtual 3C-PIV data to verify the
analysed results. Thereafter, the methodology is
applied to exemplary HART II data in Sect. 4.

2 Analysis methodology

In all figures of this paper with the in-plane ve-
locity vectors, only every 5th vector is shown in
both directions for the sake of visibility.

2.1 Cross-correlation: overlap and

window size

The vector fields described in the following were
obtained by cross-correlation analysis of interro-
gation windows with different sizes as presented
in [13]. The main parameter which defines the
spatial resolution of the measurements beside the
interrogation window size is the overlap of the
windows. Both parameters affect the result ob-
tained and thus the information which can ex-
tracted like the vortex radii and the maximum
swirl velocity.

Fig. 2 shows the extracted core radius as well
as the maximum velocity as a function of the
window overlap obtained by a windows averag-
ing technique which simulates the effect at a
flow field given by a Vatistas model [18]. For
the model a core radius of rc = 0.0435c and a
swirl velocity of Vs,max = 0.0312ΩR was used.
The parameter used allowed to model a young
vortex quite similar to the ones measured dur-
ing the HART II campaign of the advancing side
of a rotor in forward flight with respect to the
peak-to-peak velocity and core radius. Different
window sizes from 0.3878 ≤ Lm/rc ≤ 3.1027
have been simulated and analyzed. 16x16, 20x20,
24x24 and 32x32 pixel window sizes correspond to
the window sizes used during the HART II pro-
cessing for the small field of view (DLR: Lm/rc =
0.3878, 0.4867, 0.5856, 0.7757), while the window
sizes of 64x64 and 128x128 pixel are addition-
ally given (they correspond to Lm/rc = 1.5513
and 3.1027). Also, the 32x32 pixel window size
for the large field of view of DNW data, corre-
sponding to Lm/rc = 2.2548 is included. It can
easily be seen in Fig. 2, that all the curves are
converging to different values. The first (and ex-
pected) consequence of the simulation is, that
only small interrogation windows (Lm/rc < 0.78)
approach the values of the model (rc,exp/rc = 1
and Vs,max,exp/Vs,max = 1) to a sufficient degree
with errors less than 5% for this case.
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(a) Effect on core radius

(b) Effect on maximum swirl

Figure 2: Effect of correlation window overlap on
accuracy of core radius and swirl veloc-
ity for different window sizes.

The second, relatively severe effect that can be
observed is the oscillation of the curves, result-
ing in a random effect. Maximum velocities will
be obtained when the center point of an inter-
rogation window falls onto the maximum in the
velocity profile. This clearly indicates, that a mas-
sive oversampling can be used in order to reduce
the scatter of the extracted parameters even if
the bias caused by the limitations of larger inter-
rogation windows can not be avoided. The latter
can only be obtained by a higher resolution dur-
ing the test, for example by an increased optical
resolution. Since the evaluation of the HART II
data base the PIV algorithms have continously
been improved. Especially the window deforma-
tion technique described by [19] seems to be best
suited for the evaluation prior to the vortex pa-
rameter extraction. However, new algorithms de-
veloped at DLR, which have proven excellent per-
formance during a world wide challenge [20], did
not show significant improvement with respect to
the HART II evaluation.

(a) Effect on core radius

(b) Effect on maximum swirl

Figure 3: Effect of correlation window size on ac-
curacy of core radius and swirl velocity.
Solid: n = 0.8, increasing dash length:
n = 1, 1.3, 2.

Based on the same simulation method, the fol-
lowing graphs can be plotted in order to estimate
the effect of the window size on the core radius
and the maximum velocity at the core radius, see
Fig. 3. They both depend on the coefficient n,
which has been used in the Vatistas model.

A comparison of the ratio Lm/rc using the as-
sumption of a core radius of rc = 0.05c for equiva-
lence of comparison is given in Tab. 1. As pointed
out in [2] the ratio Lm/rc should be less than 0.2
for flows without streamline curvature, and even
less when such curvature is present, like near the
vortex core. From Tab. 1 it can be seen that the
PIV system used in HART II performs well com-
pared to the others, and can even be improved
by using 16x16 pixel cross-correlation windows in-
stead of the 24x24 size used in this paper, which
would result in Lm = 0.33rc. Modern cameras
with double resolution would result in half of the
value, and very dense seeding allows for further
reduction of the size of the cross-correlation win-
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dows. Thus, the requirements of Lm < 0.2rc for
PIV systems are well at hand today.

2.2 Spurious vector elimination

Spurious vectors often result when surfaces are re-
flecting the laser light. They create a background
pattern in the images that does move differently
compared to the scattered particle movement in
the images. As long as the reflections are of low in-
tensity a high pass filtering can alleviate this, but
often the reflections are so strong that the camera
pixels are completley saturated and no particles
of the flow seeding can be identified. Spurious vec-
tors also are a result of low seeding density when
too few particles are within the cross-correlation
windows, or due to a too large time delay. They
must be eliminated before an analysis of the vec-
tor field can start.

As long as these vectors are not clustered they
can be identified by statistical methods, compar-
ing the vector of interest with its surroundings
(usually ±1 or 2 indices in both directions) in
terms of the mean value and the standard devi-
ation. Thresholds for allowed ranges in both pa-
rameters have to be established. Vectors identi-
fied to be spurious then are replaced by the mean
value of their surroundings. Only a small amount
of spurious vectors was observed in the HART II
data and most of them were removed using this
method. Due to the great number of recordings
with different flow conditions the thresholds used
were always slightly overestimated in order to en-
sure that no good vectors are removed. As a con-
sequence, most of the outliers were removed, but
probably not all.

An example is shown in Fig. 4 for the effect
of 5% of spurious vectors (425 of 8500) on the
vorticity before and after their removal. The data
are numerically generated using a Vatistas vor-
tex [18], adding 5% of maximum swirl as random
noise. 95% of these vectors were identified and re-
placed by the mean value of the neighboring vec-
tors, they are marked as red arrows. The spurious
vectors also affect the computation of the vortex
center location which can be seen in Fig. 5 with
the swirl velocity profile. Here the thickness of
the band with the majority of data indicates that
the vortex center was not properly identified, and
the large scatter around is due to the spurious
vectors. After identification and removal of the
spurious vectors the vorticity distribution clearly
shows the vortex, plus the data noise which is
not affected by the algorithm. The swirl velocity
profile also is very clean now and the small thick-
ness of the band of data indicates that the vortex
center is correctly identified now.

(a) raw data

(b) 404 spurious vectors removed

Figure 4: Effect of spurious vectors on vorticity.

2.3 Operators indicating a vortex

For identification of a vortex center flow field op-
erators are used that have large values in the vor-
tex core, where large gradients in the flow com-
ponents are present. The most common operators
are the vorticity ωy, and the Eigenvalues of the
velocity gradient tensor λ2, and the discriminant
of the characteristic equation Q [21, 22].

Typical vortical features of spiral and closed
stream lines are observed at special singular
points, i.e., the spiral and center points, where
often, but not necessarily, a pressure minimum is
found as well. In a mathematical way these points
are described by complex Eigenvalues of the ve-
locity gradient tensor A = S + Ω which is com-
posed of a strain tensor S and the vorticity tensor
Ω [23]. This leads to the discriminant operator
Q derived hereafter. Another definition proposed
starts from the gradient operator applied to the
Navier-Stokes equation and leads to the Eigenval-
ues of the tensor S2+Ω2, which must be negative
[21].

Based on the 2D measurement plane with x−z
coordinates and the in-plane velocities u and w,
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(a) raw data

(b) spurious vectors removed

Figure 5: Effect of spurious vectors on swirl veloc-
ity. Red line: best fit of Vatistas vortex
model.

the velocity gradient tensor is grad~V = d~V /d~r =
A.

d~V

d~r
=

[

∂u
∂x

∂w
∂x

∂u
∂z

∂w
∂z

]

=

[

∂u
∂x

(

∂w
∂x + ∂u

∂z

)

/2
(

∂u
∂z + ∂w

∂x

)

/2 ∂w
∂z

]

+

[

0
(

∂w
∂x − ∂u

∂z

)

/2
(

∂u
∂z − ∂w

∂x

)

/2 0

]

=

[

εxx εxz/2
εzx/2 εzz

]

+

[

0 −ωy

ωy 0

]

= S + Ω = A

The first matrix represents the strain tensor S

with elongational strain in the diagonal and the
shear strains in the off-diagonal elements. Vor-
ticity is in the second antisymmetric matrix Ω.
Determinant and trace are defined as

detA =
∂u

∂x

∂w

∂z
−
∂u

∂z

∂w

∂x

trA =
∂u

∂x
+
∂w

∂z

A vortex is characterised by the invariance of
the velocity gradient tensor A. This requires that
the determinant is greater zero and the Eigen-
value λ of the characteristic equation to be com-
plex, i.e. the discriminant Q must be below zero.

0 = λ2 − λ trA + detA

λ1,2 = trA/2 ±
√

Q

Q = (trA)2/4 − detA < 0

Following the definition that the second and
third Eigenvalue of S2 + Ω2 must be below zero,
it follows that either

λ2 =

(

∂u

∂x

)2

+
∂u

∂z

∂w

∂x
< 0 or

λ2 =

(

∂w

∂z

)2

+
∂u

∂z

∂w

∂x
< 0

The mean value of both is used for this pa-
per. The vorticity ωy, the discriminant Q and the
Eigenvalue λ2 of the tensor S2 + Ω2 are thus de-
fined by

ωy =

(

∂u

∂z
−
∂w

∂x

)

/2

Q =

(

∂u
∂x + ∂w

∂z

)2

4
+
∂w

∂x

∂u

∂z
−
∂u

∂x

∂w

∂z

λ2 =

(

∂u
∂x

)2
+

(

∂w
∂z

)2

2
+
∂w

∂x

∂u

∂z

2.4 Velocity gradients

The flow field derivatives (or velocity gradients)
are a pre-requisite needed for the computation
of the criteria of a vortex. A first suggestion is
to apply the center difference approach, which
is one-dimensional. For the 50% overlap used in
HART II data, the vectors separated by 2 in their
indices are independent from each other.

∂u

∂x

∣

∣

∣

∣

i,j

=
ui+1,j − ui−1,j

xi+1,j − xi−1,j
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In a sheared grid the derivative at i, j requires
velocity components along the x coordinate di-
rection. Then, they have to be interpolated from
the grid which complicates the procedure.

However, as pointed out in [14], the data are
2-dimensional and thus the local gradient in any
direction should also depend on the surrounding
flow. Based on the line integral for the circula-
tion of the area around the point of interest in
discretized form the flow gradients at i, j can be
expressed in terms of surrounding flow compo-
nents, i.e. by the center differences at j−1, j and
j + 1. For equidistant grid spacing,

∂u

∂x

∣

∣

∣

∣

i,j

=

∂u
∂x

∣

∣

i,j−1
+ 2 ∂u

∂x

∣

∣

i,j
+ ∂u

∂x

∣

∣

i,j+1

4

The derivative in the other direction is obtained
by exchanging the x to z, i to j and j to i. In gen-
eral, the center difference approach tends to in-
crease noise while the circulation based approach
tends to reduce noise since the usage of 8 veloci-
ties instead of 2 effectively has a smoothing effect.
This is illustrated in Fig. 6. It can be seen that the
center difference scheme is more noisy compared
to the circulation based approach.

2.5 Vortex center identification

Blade tip vortices of hovering rotors are very well
defined and have a single peak of vorticity, λ2 or
Q in their center, as shown in [1, 2]. In contrast,
the tip vortices of lightly loaded rotors in forward
flight, especially those created on the advancing
side, often are very weak and hard to detect. In
HHC cases inboard vortices are present that are
generated in form of radially distributed vortic-
ity without a designated center. In these cases
the flow field operators show a wide spread cloud
of individual peak values of comparable intensity
that do not allow the decision for a discrete vor-
tex center. In addition, these individual peaks are
at different locations in each of the images.

To circumvent this problem, the area center of a
flow field operator can be used to define the center
of the vortical structure. Even better results are
obtained when computing new scalars based on
the convolution integral of the flow field operators
with a specially shaped norm function. This norm
function shall represent the expected distribution
of the operator. The best fit of the data with this
norm function result in largest scalar values of
the convolution integral. As an example, the norm
shape function applied to the vorticity, λ2 or Q
operator is shown in Fig. 7 (a). It represents the
peak value distribution expected of the operator
in the center of a vortex, expressed in terms of the
index range covered by the norm function, here
an array of 13x13 indices is used.

(a) center difference scheme

(b) circulation based

Figure 6: Effect of the method to compute deriva-
tives on vorticity, data as in Fig. 4 at
j = 10.

In any case, the vortex center must be expected
anywhere between the grid points such that a
maximum value of an operator or scalar on the
grid cannot be used for the center point, rather
than area center of this operator or scalar.

Another possibility to identify a vortex center,
that does not need the computation of flow field
derivatives, is to identify the center of swirl. This
can be done by a convolution of the in-plane ve-
locities with a discrete swirl mask as explained in
[24]. Here, the swirl mask is created using a Vatis-
tas type vortex [18] with a core radius of 2∆x
and n = 1. The swirl mask is decomposed into its
horizontal and vertical vector components. The
first mask is multiplied with the u component of
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(a) Function for vorticity, λ2 and Q.

(b) Function for u and w.

Figure 7: Norm shape functions used for convolu-
tion with flow field data, index space.

the flow field and shown in Fig. 7 (b), the second
mask has the same distribution as in Fig. 7 (b)
but rotated by 90o and is multiplied with the w
component of the flow field.

The sum of both provide a qualitative scalar
value of the rotational character of the flow and
also indicate the sense of rotation, as is the case
when using vorticity. In general, this swirl mask
can be interpreted as a special areal wavelet, such
that this convolution can also be named a wavelet
analysis. The λ2 and Q operators are insensitive
to the sense of rotation and always negative in
the centers of vorticity.

Results for the different methods are shown in
Fig. 8. The data is from HART II, BL case, pos.
17d (vortex age of 20o), first image. The vortex
center locations are marked by a “+” sign, and
the core radius identified by a circle around the

center. In this case the blade tip was almost un-
loaded and essentially the shear layer is present,
with some vortical components. In any case the
extremum value (positive and negative for ωy and
convolution of u,w; negative only for λ2 and Q
operators) of the various scalars computed for the
image is searched first, then the area center is
computed in the vicinity of this extremum.

Since the distribution of vorticity is very noisy
the identification of the center of vorticity is dif-
ficult, Fig. 8 (a). In this case several minima are
present. The convolution of vorticity with a bell-
shaped norm function results in the scalar field
of Fig. 8 (b). Due to the convolution, the noise is
widely suppressed, and essentially three negative
peaks and one positive peak can be found, the
latter indicates a small vortex of opposite sense
of rotation.

The λ2 and Q operators indicate vortical struc-
tures by negative values, see Fig. 8 (c) and (d).
Both are in the same scalar range, but Q is
slightly more noisy compared to λ2. Three peaks
are clearly marked for local centers of vorticity,
the pair in the middle of the image is of stronger
nature than the single peak in the left half. The
convolution of λ2 with a bell-shaped norm func-
tion results in the scalar field of Fig. 8 (e), which
is very similar to the convolution of Q not shown
here. Now the central point is focused and identi-
fied as the strongest event in the image. Finally,
in Fig. 8 (f) the convolution of the swirl mask
with the in-plane velocity field is presented. This
essentially seems comparable to Fig. 8 (b), but
with more emphasis on the location found in (e).
Therefore, the methods in Fig. 8 (e) and (f) are
found to be best suited to identify the center of
vortical structures where no clear vortex can be
detected.

As can be seen from the Fig. 8, the core radii
identified are strongly depending on the location
of the vortex center. However, the noise in indi-
vidual data is affecting the identification of the
core radius to some extent, but this will be alle-
viated using proper averaging of the data.

2.6 Conditional averaging

Due to elasticity of the support, the model was
vibrating with low frequencies that were not ro-
tor harmonics. Although these were of small na-
ture (few mm) they were transferred to the blade
tips and resulted in different vortex creation posi-
tions each revolution of the rotor. A second source
of vortex motion in the images was the elastic-
ity of the camera support structure. When shak-
ing, the observation area was slightly different at
each individual measurement. This resulted in an
apparent vortex motion in the observation area.
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(a) vorticity (b) convolution of vorticity

(c) λ2 (d) Q

(e) convolution of λ2 (f) convolution of u,w

Figure 8: Vortex center identification by area center of different scalars. Pos. 17d of Fig. 1 (b), vortex
age: 20o, first image. Vortex center at “+”, the core radius is indicated as circle.

The first source of motion was independent of the
measurement location, while the second source
depended on the proximity of the camera tower
to the shear layer of the free-stream jet. A third
source of vortex center position changes was the
vortex wander itself, depending on its age.

Care must thus be taken for averaging the data.
A simple (ensemble) average results in artificially
large core radii and low values of vorticity and
is not representative for any of the individuals.

This was already found in [1], where the condi-
tional averaging was also applied, and observed
in [2], where the conclusion was made that PIV
is not suitable for vortex core measurements. The
simple average can only be used for the average
location of the vortex center and the total circula-
tion of the vortex, which is obtained for radii far
outside the core. A proper (conditional) averag-
ing must retain the individual characteristics like
peak swirl velocity and core radius but eliminate
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100 individual vector maps: spurious vector elimination,
identification of vortex center, elimination of maps based on statistics

Overlay by vortex center alignment 
Final average of
vector data

Figure 9: Conditional averaging procedure.

the random fluctuations.

The principle of conditional averaging is shown
in Fig. 9. In each of the individual images the cen-
ter is first identified, then all centers are shifted to
coincide with each other. A new grid is generated
with its center in the center of all the individ-
ual vortices. Then, all data are interpolated and
averaged in the new grid. Before this, a statisti-
cal analysis of the vortex center positions can be
made, eliminating all positions that are a certain
threshold away from the mean center position,
for example, 2 standard deviations. This ensures
that outliers are not taken into account. Addi-
tionally, the peak vorticity at the vortex center
can be compared in the same way, eliminating all
data that are either a certain threshold below the
average, or above.

As an example for the differences of the aver-
aging methods the swirl velocity profile of the BL
case at pos. 23 (at the rear of the disk where the
vortex age is almost 1.5 revolutions) is shown in
Fig. 10. The simple average leads to 5 times larger
apparent core radii (rc/R ≈ 0.0175) than the con-
ditional average, which is very close to the indi-
vidual also shown (both rc/R ≈ 0.0035). Also,
the peak velocities at the core radius found in
the simple average are only about half the value
found for the conditional average or for the indi-
vidual. Outside the core, the different averaging
methods approach each other.

The reason for the differences is found in the
scatter of vortex positions of the individual im-
ages, which is shown in Fig. 11. Due to model
movements and vortex wander, the entire area
of vortex center positions has a radius of 2%R,
much larger than the core radius of these vor-
tices. Therefore, a simple average cannot be used
for the analysis of vortex parameters, except for
its average position and the total circulation.

Additionally, in Fig. 12 the number of im-

simple average

1st individual

conditional average

Figure 10: Effect of averaging method on swirl ve-
locity profile, BL, pos. 23.

Figure 11: Scatter of vortex centers, BL, pos. 23.

ages available for averaging at each grid point is
shown. The total number of images is 100, but
due to the statistics based elimination process, 9
images (where the vortex center was found very
far away from the mean center position) were re-
moved. In this case the vortex is found virtually
in all images, mostly to the left side of the win-
dow (see Fig. 11), since the number of images per
grid point reduces significantly to the left of the
figure.

Figure 12: Images per grid node available for av-
eraging, BL, pos. 23.
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(a) σ(u), simple average (b) σ(u), conditional average

(c) σ(v), simple average (d) σ(v), conditional average

(e) σ(w), simple average (f) σ(w), conditional average

Figure 13: Effect of averaging method on standard deviation of flow components, BL, pos. 23.

The importance of conditional averaging can
also be illustrated by the standard deviation of
the flow components at each node of the grid.
This is shown in Fig. 13 (a), (c) and (e) for the
component u, v and w of the simple averaging
method, and in (b), (d) and (f) for the condi-
tional averaging. Again, pos. 23 of Fig. 1 is taken
here. In all components the simple average has
a much wider range of scatter compared to the

conditional average, which is due to the scatter
of vortex center positions in the individual im-
ages. Once the centers are aligned, the fluctua-
tion of flow components is significantly smaller.
The vortex core radii are also much smaller as
indicated by the circles in the graphs, which rep-
resents the result already shown in Fig. 10. In
any case the maximum scatter is obtained in the
vortex center itself, with the largest deviations for
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the cross-flow component v. This is expected since
this component contains the largest measurement
errors.

2.7 Mean velocity elimination

The mean velocity components are to be identi-
fied for all three components and subtracted from
the flow field for analysis of vortex properties. It
must be differentiated here between average and
mean velocity. The average of a flow component
of a PIV image is defined as the sum of this com-
ponent at all grid points, divided by the number
of grid points. The mean flow velocity is defined
by the undisturbed flow. Without a vortex in the
flow average and mean velocity are identical.

In cases where a vortex is not perfectly centered
in an image (which is mostly the case) the swirl
velocity field of this vortex biases the computa-
tion of the mean in-plane velocities. This is most
obvious when the vortex center is located at one
of the image borders and the swirl velocity field of
only one side of the vortex dominates the figure.
In any case, the axial velocity field of a vortex
complicates the computation of the mean cross-
flow velocity. The problem is even more complex
when the vortex axis is inclined with respect to
the measurement plane and part of the swirl ve-
locities are contained in the cross-flow, as well as
part of the axial velocity of the vortex becomes
part of the in-plane velocity field.

Based on the assumption that the vortex con-
vects with the mean velocity, the in-plane com-
ponents umean and wmean can be computed from
the velocities found in the vortex center. This
is not the case for the out-of-plane component
v since an axial flow is expected in the vortex
core with its maximum in the vortex center, and
asymptotically approaching zero outside the core
radius. Therefore, vmean must be computed from
the flow field sufficiently far outside the vortex
core radius.

An example for the identification and elimina-
tion of the mean in-plane velocities is given in
Fig. 14 for the simple average of the BL case,
pos. 17 (here the vortex age is about 27o). After
removal of the mean in-plane velocities, the vor-
tex core in the center of the figure (indicated by
the circle) and the shear layer in the lower left
quarter of the figure exhibit the largest in-plane
velocities, but in the center of the vortex (marked
by the “+” sign) the velocity is zero.

In cases where the shear layer of the blade
creating the vortex (or another blade that just
passed the observation window) is present, it con-
tributes a significant out-of-plane or cross-flow ve-
locity and biases the computation of vmean. To
identify these areas, again the method of convo-

(a) In-plane velocities magnitude.

(b) umean = −0.133ΩR and wmean = 0.023ΩR
subtracted.

Figure 14: Identification and elimination of the
mean in-plane velocities, BL, pos. 17.

lution can be used with the same norm function
as used for the flow field operators and applied
to the out-of-plane velocity component, since the
thickness of these shear layers usually is small.
Any locations where the scalar value of this con-
volution is exceeding a certain threshold indicate
areas not to be used for computation of vmean. A
result of this method is given in Fig. 15 for the
same case as used in Fig. 14. Therein the shear
layer contributes even more cross-flow velocities
than the center of the tip vortex itself. However,
the mean cross-flow component is identified from
all flow outside the shear layer and outside the
vortex core such that the outer areas are close
to zero cross-flow after subtraction of the mean
components.

Note that −umean cos 30o − vmean sin 30o =
0.155ΩR, which is essentially the wind speed
(µ = 0.151) plus the horizontal velocity induced
by the rotor at this location. The difference of
0.004ΩR = 0.87m/s is little more than the accu-
racy of the wind tunnel jet velocity of ±0.4m/s.
The component lateral to the wind tunnel flow re-
sults in −vmean cos 30o+umean sin 30o = 0.003ΩR
and is small compared to the other directions.
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(a) Cross-flow velocities.

(b) vmean = −0.08ΩR subtracted.

Figure 15: Identification and elimination of the
mean cross-flow velocity, BL, pos. 17.

2.8 Rotation into the vortex axis

system

Due to a fixed angle of view of the PIV systems
into the three-dimensional vortex system of the
rotor, the measurement plane was never orthog-
onal to the vortex axis. A correct analysis of the
vortex parameters can only be made in the vortex
axis system. Thus, the inclination angles between
the measurement plane and the vortex axis have
to be identified.

The assumption is made that the vector field
does not change in a small volume along the
vortex axis. In this case the measurement win-
dow can be shifted along the vortex axis without
change of the velocity vectors therein. The rota-
tion scheme is illustrated in Fig. 16. Two rotation
angles are identified, the angle about the x-axis
and the angle about the z-axis. First the rotation
about z is performed, then the rotation about x.
The final grid in a plane normal to the vortex axis
is a sheared grid.

Based on the assumption that in the vortex
axis system the out-of-plane velocity distribution
is rotational symmetric, different methods were
developed to identify these rotation angles. First,
the out-of-plane and swirl velocity components at

Z
PIV

X
PIV

Z
V

plane
Measurement

Vortex axis

Measurement system

X
V

Vortex system

X
V

Z
V

Vortex system:

analysis of

− core radius

− circulation

− velocity field

− vorticity

− swirl

− axial velocity

1. projection

2. projection

Figure 16: Rotation from the measurement plane
into the vortex axis system.

the core radius, identified from a horizontal and a
vertical cut through the vortex center, are used.
Second, the global out-of-plane velocity gradients
with respect to x and z are identified and used
for a guess of rotational angles.

Using these angles the coordinates and velocity
vectors are rotated into the assumed vortex axis
system, usually leading to a sheared grid as de-
picted in Fig. 16. The resulting flow field is again
analysed for the cross-flow distribution using any
of the methods to identify a vortex center, and
the procedure is repeated until the remaining ro-
tation angles are below a certain threshold, for
example 1o. Then, the analysis of vortex proper-
ties can be made. Usually the vortices appear el-
liptical in the original unrotated data, while they
appear circular in the rotated data.

An example for the effect of rotation into the
vortex axis system is shown in Fig. 17 for the
simple average of the BL case, pos. 29, where the
vortex is cut by the PIV measurement plane at
an angle of βz ≈ 45o when considering Fig. 1.
The unrotated data in (a) show some ellipticity
of the in-plane velocities (vector field) and also in
the cross-flow, where global gradients exist in the
areas outside the vortex core. The identification of
rotation angles based on the cross-flow in the core
radius and the swirl leads to angles of βz = −45o

about the vertical axis and of βx = 3o about the
horizontal axis.

The resulting velocity field after rotation is also
shown in Fig. 17 (b). Due to the sequence of ro-
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(a) Measurement plane.

(b) Vortex axis system, rotated by
βx = 3o and βz = −45o.

Figure 17: Effect of rotation into the vortex axis
system on the velocity field, case BL,
pos. 29.

tation the grid is sheared, but the distribution of
the in-plane velocity vectors is very round now
compared to the unrotated data. Also, the cross-
flow is zero in the field outside the vortex, and in
the vortex center a peak is present as expected.
A strong shear layer to the left of the tip vortex
is clearly visible now.

After rotation into the vortex system the ef-
fective measurement area is smaller than the
raw data area, and the grid effective spacing is
smaller. In these cases the angle of the measure-
ment plane relative to the vortex axis is effectively
increasing the spatial resolution of the measure-
ment.

2.9 Elimination of secondary struc-

tures

Based on the superposition principle, vortices and
vortical shear layers from blades passing the mea-
surement window are identified and numerically

(a) original data

(b) counter-rotating vortex removed

Figure 18: Elimination of disturbing structures.
BL, pos. 47 of Fig. 1, simple average.

removed from the image such that the vortex of
interest remains almost unaffected. Thereafter, its
parameters can be identified without being biased
by disturbing structures.

An example is given in Fig. 18 where in (a) two
vortices of opposite sense of rotation are close to
each other, and both are affecting the other vor-
tex flow field adversely. After elimination of one of
these the remaining vortex is clearly unaffected by
other structures and its parameters can be iden-
tified.

2.10 Identification of vortex para-

meters

The identification of the swirl and the axial ve-
locity profiles, the core radius and the circula-
tion is often hindered by other flow structures in
close proximity of the vortex of interest. These are
shear layers with vorticity and additional vortices
shed by other blades just passing the measure-
ment window, especially where BVI takes place.

Using a best fit of a Vatistas vortex swirl model
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[18] the parameters describing the vortex are
identified. This model is written in terms of the
maximum swirl velocity Vs,max at the core radius
rc, the shape parameter n that describes the dis-
tribution of vorticity (and therewith the distribu-
tion of λ2 and Q, see also App. A) and the radial
distance from the vortex center. The development
of vortex circulation, and thus the fraction of total
circulation at the core radius, is connected to the
swirl velocity profile as well. All relations for the
Vatistas vortex are given in the appendix. Note
that all varables are made non-dimensional as de-
scribed in App. A.

Vs = Vs0
r

(1 + r2n)1/n

Vs0 = Vs,max21/n =
Γv

2πrc

Alternatively, the Lamb-Oseen [26, 25] or New-
man [27] vortex can be fitted to the data. These
are also written in terms of Vs,max and rc, but
the radial distribution function is different and
a factor α of an exponential function defines the
shape. Expanding the parameter α to the inclu-
sion of the vortex age ψv the Hamel-Oseen [28]
model can be used as well.

Vs = Vs0
1 − e−αr2

r

Vs0 =
Vs,max

1 − e−α
=

Γv

2πrc

Vatistas model is used here, since with the
shape parameter n a wide range of swirl shapes
can be defined, covering the Scully vortex (n = 1),
the Lamb-Oseen vortex (n ≈ 2) or the Rank-
ine vortex (n = ∞). When the data are cleaned
from spurious vectors, mean values of the flow
subtracted and rotated into the vortex axis sys-
tem, the distribution of swirl velocities of all vec-
tors is fitted with the Vatistas model using a least
squares error method. As an example, in Fig. 5
such a best fit is shown. The best fit is performed
to a radial extension of 2-3 core radii. As a result,
the core radius was found at rc = 0.0122R, the
maximum swirl velocity as Vs,max = 0.0919ΩR,
and the shape parameter as n = 1.979. It can be
seen that the best fit with these parameters (red
curve) perfectly represents the data.

3 Virtual 3C-PIV

For validation of the analysis methodology a nu-
merical experiment was performed. An area as
large as the DLR measurement window was cre-
ated and a Vatistas type of vortex was used to

generate a vector field. The resolution of the vec-
tor field was selected the same as most of the DLR
data had with 100 vectors in x and 85 vectors in
y direction. Four different cases were generated,
where in any case the vortex center is between the
grid nodes. The flow field of all three components
of each case is shown in Fig. 19.

1. The vortex is weak and orthogonal to the
grid without any noise.

2. The vortex is strong and orthogonal to the
grid, but random noise of 10% of the maxi-
mum velocity is added to each component of
all vectors.

3. The vortex is weak and significantly inclined
with respect to the grid without any noise.

4. The vortex is strong and significantly in-
clined with respect to the grid, and random
noise of 10% of the maximum velocity is
added to each component of all vectors.

5. Two vortices of opposite sense of rotation are
present close to each other.

While these four cases are representing the flow
field of only one vortex the fifth case shown in
Fig. 20 (vorticity is also shown) is more difficult
since the analysis of one of both vortices is bi-
ased by the presence of the other vortex. There-
fore, one of the vortices must be eliminated first
in order to analyse the other. The vorticity dis-
tribution of case 5 indicates that both vortices
are close together and of comparable strength in
terms of their vorticity, but of different strength
in terms of their circulation. They have an op-
posite sense of rotation, indicated by the sign of
vorticity. Additionally, in order to further compli-
cate the analysis, random noise was added to all
flow components.

3.1 Case 1

This is the most primitive test case since the vor-
tex is normal to the measurement plane and no
noise is added. Tab. 2 compares the parameters
identified by the methodologies described in the
section before with those used to create the vec-
tor field. In general excellent agreement is found
for all parameters.

3.2 Case 2

Case 2 is more difficult since random noise is in-
volved. Therefore, the parameters identified show
somewhat larger differences to the data used to
generate the vector field, see Tab. 3. Nevertheless,
the overall agreement is still very good.
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(a) Case 1: orthogonal, no noise.

(b) Case 2: orthogonal, with noise.

(c) Case 3: inclined, no noise.

(d) Case 4: inclined, with noise.

Figure 19: Virtual 3C-PIV data, one vortex.

(a) Vorticity.

(b) Cross-flow.

Figure 20: Virtual 3C-PIV data, case 5: two vor-
tices, both inclined, with noise.

Parameter data identification

100umean/ΩR 15.100 15.097
100vmean/ΩR 0.000 0.135
100wmean/ΩR 3.500 3.553
100v0/ΩR 3.528 3.375
100x0/R -0.719 -0.725
100z0/R 1.566 1.565
100rc/R 0.727 0.728
100Γv/ΩR

2 0.429 0.425
100Vs,max/ΩR 5.592 5.583
ωy0/Ω 12.918 12.828
n 1.337 1.321

Table 2: Results of parameter identification for
data of case 1.

3.3 Case 3

The vortex generated is now significantly inclined
with respect to the virtual PIV data field, but
the data are clean without any noise. Results are
shown in Tab. 4. The agreement of the parameters
identified is as good as for the unrotated case,
although the rotation angles are larger than 20o
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Parameter data identification

100umean/ΩR 15.100 14.844
100vmean/ΩR 0.000 0.050
100wmean/ΩR 3.500 3.336
100v0/ΩR 23.913 25.895
100x0/R -2.368 -2.361
100z0/R -1.489 -1.495
100rc/R 0.593 0.592
100Γv/ΩR

2 0.911 0.908
100Vs,max/ΩR 18.354 18.239
ωy0/Ω 41.231 37.597
n 2.417 2.375

Table 3: Results of parameter identification for
data of case 2.

Parameter data identification

βx/
o 22.700 23.074

βz/
o -37.100 -37.312

100umean/ΩR 14.984 14.999
100vmean/ΩR 3.072 3.161
100wmean/ΩR 2.509 2.463
100v0/ΩR 0.833 0.811
100x0/R 0.549 0.550
100z0/R 2.325 2.330
100rc/R 0.722 0.720
100Γv/ΩR

2 0.207 0.207
100Vs,max/ΩR 3.006 3.003
ωy0/Ω 6.320 6.357
n 1.661 1.643

Table 4: Results of parameter identification for
data of case 3.

in βx and more than 35o in βz . This indicates the
rotation methodology works perfectly with such
clean data.

The distribution of in-plane velocity vectors
and vorticity, together with the cross-flow distri-
bution, is shown in Fig. 21. Compared to the orig-
inal data in Fig. 19 (c) the cross-flow component
is in the range of zero for a distance of two core
radii or more outside the vortex center, with a
peak of vortex axial flow in the center itself and
and the vortex appears now perfectly round. The
closeness to the upper image border does not ad-
versely affect the analysis.

3.4 Case 4

More realistic, in this case not only the vortex
is inclined and very close to the border, but also
random noise is added to this case. The compar-
ison of identified parameters with those used to
create the data is given in Tab. 5. In general, the
agreement is very good as for the unrotated data
with noise (case 2). In βz a difference of almost
4o is found, but for the analysis of core radius or

(a) In-plane velocities and vorticity.

(b) Cross-flow velocity.

Figure 21: Flow field after rotation into the vor-
tex axis system, case 3.

peak swirl velocity errors of up to 10o seem to be
acceptable.

The distribution of in-plane velocity vectors
and vorticity, together with the cross-flow distri-
bution, is shown in Fig. 22. Compared to the orig-
inal data in Fig. 19 (d) the vortex appears now
perfectly round, and the cross-flow component is
in the range of zero for two core radii or more
outside the vortex center, with a peak of vortex
axial flow in the center itself. Again, the closeness
to the upper image border does not adversely af-
fect the analysis.

3.5 Case 5

For analysis of one of the two vortices the other
was eliminated using the method described in the
section before. Thereafter the vortex of interest
is focused, the rotation algorithm applied, and
parameter identification started in the final grid.
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Parameter data identification

βx/
o -37.400 -36.465

βz/
o 17.800 14.099

100umean/ΩR 10.143 10.599
100vmean/ΩR -11.012 -9.937
100wmean/ΩR -4.014 -3.610
100v0/ΩR 14.612 15.445
100x0/R 2.683 2.680
100z0/R -1.651 -1.637
100rc/R 0.453 0.459
100Γv/ΩR

2 0.544 0.515
100Vs,max/ΩR 9.429 9.272
ωy0/Ω 42.191 44.086
n 0.981 0.843

Table 5: Results of parameter identification for
data of case 4.

(a) In-plane velocities and vorticity.

(b) Cross-flow velocity.

Figure 22: Flow field after rotation into the vor-
tex axis system, case 4.

Results obtained for both of the vortices are given
in Tab. 6. In general, the vortex parameters are
identified with sufficient accuracy.

Surprisingly, the major differences are found in
the computation of the mean velocities. This is
visible in the in-plane velocity vector fields of the

Parameter data identification

Vortex 1
βx/

o -20.000 -16.554
βz/

o 30.000 27.015
100umean/ΩR 12.990 2.960
100vmean/ΩR -8.245 -3.045
100wmean/ΩR 0.724 1.331
100v0/ΩR 7.036 5.877
100x0/R -0.719 -0.738
100z0/R 1.574 1.594
100rc/R 0.600 0.563
100Γv/ΩR

2 0.500 0.489
100Vs,max/ΩR 8.355 8.252
ωy0/Ω 22.105 21.276
n 1.500 1.858

Vortex 2
βx/

o -20.000 -16.198
βz/

o 30.000 28.166
100umean/ΩR 12.990 4.868
100vmean/ΩR -8.245 -4.697
100wmean/ΩR 0.724 2.171
100v0/ΩR 10.132 8.314
100x0/R -0.202 -0.173
100z0/R 0.562 0.543
100rc/R 0.600 0.588
100Γv/ΩR

2 0.600 0.563
100Vs,max/ΩR 10.026 9.877
ωy0/Ω 26.526 25.933
n 1.500 1.598

Table 6: Results of parameter identification for
data of case 5.

two vortices shown in Fig. 23 and Fig. 24. Due
to the close proximity of both vortices the iden-
tification of the parameters of the vortex to be
eliminated is biased by the other vortex. There-
fore, remnants of the vortex to be eliminated are
still present in the center of the remaining vortex.

In the cross-flow distribution of both vortices
shown in Fig. 23 and Fig. 24 the axial velocity
field of the second vortex is always visible, since
the algorithm does only subtract the in-plane ve-
locities and not (yet) the axial flow field of a vor-
tex.

To proper identify the mean velocities of the
entire field, the vortex central point can be set
manually to any location, for example far outside
the two vortices, and the angles to rotate the im-
age into the vortex axis system were manually set
to the values listed in Tab. 6. The result is given
in Tab. 7, and now good agreement is found for
these as well. This proves the assumption that the
vortex to be eliminated in either of Fig. 23 and
Fig. 24 was not completely enough removed from
the flow field.
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(a) Vorticity

(b) Cross-flow

Figure 23: Flow field after rotation into the vor-
tex axis system, case 5, vortex 1.

Parameter data identification

umean/ΩR 0.130 0.135
vmean/ΩR -0.082 -0.076
wmean/ΩR 0.007 0.012

Table 7: Mean flow velocities, case 5.

For this case the velocities after subtraction of
the mean flow components are given in Fig. 25
and now the vectors far enough away from the
vortices exhibit the remaining noise, and the
cross-flow is essentially zero there.

4 Application to HART II

data

Selected positions in Fig. 1 are presented in terms
of raw data, processed data of an instantaneous
image, simple and conditional averaged data, vor-
tex wander, rotation into the vortex axis system,
and identification of vortex parameters using a
best fit to a Vatistas type vortex.

(a) Vorticity

(b) Cross-flow

Figure 24: Flow field after rotation into the vor-
tex axis system, case 5, vortex 2.

Figure 25: Flow field after rotation into the vor-
tex axis system, case 5.

4.1 Hover

Since most of the experimental work done so far
was applied to the hover case this is first used for
application of the methods described. The vortex
was measured at pos. 17h of Fig. 26, where in this
case the blade position was at ψ = 180o and the
measurement location at ψ = 136o, such that the
vortex age is ψv = 44o.
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17h

Figure 26: Location of tip vortex measurement in
hover.

4.1.1 Individual data

First, the set of 100 individual images are pro-
cessed separately and the results analysed statis-
tically. Images with a vortex center found more
than two standard deviations away from the mean
center position are removed from the analysis,
these are 14 of 100. In Fig. 27 the statistics for the
remaining 86 images are given. In (a) the position
of vortex centers are shown. They have an average
standard deviation of 0.0013R = 0.022c = 2.7mm
in x-direction and almost twice as much in ver-
tical direction, which is the range of the vertical
positions of the blade tip. In (b) the peak vor-
ticity in the vortex center is shown, the standard
deviation is 17% of the average value (AV). At
first glance this appears too large, but it must be
recalled that the vorticity is based on flow field
derivatives and any measurement error is magni-
fied by differentiation.

The angles about the x- and the z-axis needed
to rotate the vector field into the vortex axis are
given in Fig. 27 (c) and (d), respectively. In both
cases the standard deviation is ±4o about the AV,
which appears reasonable. The core radii found
are shown in (e) with a standard deviation of 9%
of the AV, and the swirl velocity shape parameter
n of the Vatistas model is in (f). The standard
deviation here is 14% of the AV, however, the
sensitivity of the swirl profile to this parameter
is not large. In (g) the maximum swirl velocities
are shown, the standard deviation is 6% of the
AV. The peak of cross-flow velocity is shown in
(h). Here the variation is larger, which is due to
four individual images where the peak is negative
while in all other images it is positive. These four
cases represent outliers which were not removed
from the data set.

Fig. 28 (a) shows the horizontal velocity profile
in a vertical cut through the individual vortex
center, and (b) the vertical velocity profile in a
horizontal cut. These profiles coincide very well
and represent the repeatability of the measure-
ments and the appropriateness of vortex center
identification.

4.1.2 Conditional averaged data

Almost no rotation about the x-axis of the mea-
surement plane is needed for rotation into the vor-
tex axis system (βx = 0.3o), which means the vor-
tex axis orientation is about parallel to the rotor
disk at this early stage of the wake. A rotation of
βz = −25o about the vertical axis is found. 14o of
this angle accounts for the angle between the PIV
plane orientation (150o) and the azimuth of the
measurement (136o), see Fig. 26. The remaining
angle of 11o represents the effect of radial con-
traction of the tip vortex right after its creation.

Results for both the data in the measurement
plane and after rotation into the vortex axis sys-
tem are shown in Fig. 29. The peak vorticity is
found about 20% higher in the vortex axis sys-
tem, and the effect of rotation is mainly a slight
compression of the x-axis, while the vector field
looks comparable in both diagrams (a) and (b).
More differences are found in the cross-flow distri-
bution shown in Fig. 29 (c) for the measurement
plane and (d) for the vortex axis system. Due
to the vortex axis inclination with respect to the
measurement plane the large swirl velocity be-
comes part of the cross-flow, with components at
the core radius towards the observer in the lower
region and away from the observer at the upper
region. After rotation into the vortex axis system,
only the axial velocity of the vortex is retained,
which is directed towards the blade that created
the vortex, see Fig. 29 (d). All the area outside
the vortex has almost no cross-flow component.

In Tab. 8, the results of parameter identifica-
tion are given. At this age the vortex has a maxi-
mum swirl velocity of almost 25% of the tip speed
and a core radius of little more than 5% chord,
which is in good agreement with LDV data pre-
sented in [2] and [29]. Both are also in perfect
agreement with the average of the individual data
shown in Fig. 27. At this early stage of the vortex
age the peak axial velocity in the vortex center is
found to be 18% of the tip speed directed towards
the generating blade.

4.1.3 Simple averaged data

The analysis results of the simple averaged (SA)
data, also rotated into the vortex axis system, are
given in Tab. 8 as well. They have to be compared
with the data from the conditional average. Both
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(a) Center location (b) Maximum vorticity

(c) Rotation angle about x-axis (d) Rotation angle about z-axis

(e) Core radius (f) Vatistas n parameter

(g) Maximum swirl (h) Maximum cross-flow

Figure 27: Analysis of individual data, hover, ψv = 44o.

rotation angles agree within an accuracy of 1o,
which indicates the independence of the method-
ology on the method of averaging. The angles
agree also well with the average of the individ-

ual data given in Tab. 27 (c) and (d).

The maximum vorticity of the simple averaged
data is only half of the value of the conditional av-
erage, which represents the effect of not account-
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(a) Vertical cut (b) Horizontal cut

Figure 28: Analysis of individual data, hover, ψv = 44o - continued.

(a) Vorticity, PIV plane (b) Vorticity, vortex plane

(c) Cross-flow, PIV plane (d) Cross-flow, vortex plane

Figure 29: PIV data of a hover case in the measurement plane and rotated into the vortex axis system,
pos. 17h of Fig. 26, ψv = 44o.

ing for the individual center locations. This en-
larges the core radius as well, and also reduces
the peak value of axial velocity to 70% of the in-
dividual or the conditional average data. Again,
the swirl shape parameter n is less sensitive to
the method of averaging.

4.2 BL case, retreating side

Pos. 52 of Fig. 1 is selected here, where the blade
position was at ψ = 290o and the measurement
location at ψ = 256o, such that the vortex age

is ψv = 34o. The advance ratio was moderate
(µ = 0.151) and the rotor loading CT /σ = 0.057
was moderate as well, compared to the rotor mea-
surements given in Tab. 1. As in hover the tip
vortices are strong on the retreating side since
the local velocity is smaller, but the loading of
the advancing side must be balanced by an equal
loading on the retreating side. However, the load-
ing gradient in the vicinity of the blade tip usually
is weaker in forward flight.

Results for the data in the measurement plane
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(a) Vorticity, PIV plane (b) Vorticity, vortex plane

(c) Cross-flow, PIV plane (d) Cross-flow, vortex plane

Figure 30: PIV data of the BL case (retreating side) in the measurement plane and rotated into the vortex
axis system, pos. 52 of Fig. 1 (a), µ = 0.151, ψv = 34o.

Parameter PIV IA CA SA

βx/
o 0.0 0.1 0.3 1.3

βz/
o 0.0 -24.2 -24.9 -23.9

ω0/Ω 114.3 123.8 135.9 68.7
v0/ΩR 0.264 0.252 0.183 0.90
rc/c 0.060 0.054 0.054 0.078
Vs,max/ΩR 0.232 0.246 0.244 0.173
n 1.2 1.2 1.2 1.1

Table 8: Rotation angles and tip vortex parame-
ters in hover, ψv = 44o. PIV: measure-
ment plane, IA: average of individual,
CA: conditional average, SA: simple av-
erage.

as well as after rotation into the vortex axis sys-
tem are given in Fig. 30. A large rotation with
βz = 55o about the z-axis is identified, which is
in agreement with the orientation of the predicted
vortex axis and the PIV plane shown in Fig. 1.

About the x-axis a rotation of βx = 10o is found.

These rotation angles result in a strong com-
pression of the x-axis, plus a significant shear
of the measurement grid. As a consequence, the
peak value of vorticity in the vortex axis system,
Fig. 30 (b), is twice as large as in the measure-
ment plane, (a), and the vector field appears more
rotational symmetric. The cross-flow component
in the measurement plane shown in (c) has large
contributions from the swirl velocity at the core
radius. In the vortex axis system, (d), only the ax-
ial velocity peak in the vortex center is left, and
the entire area outside the core radius has about
zero cross-flow.

In Tab. 9, the results of parameter identifica-
tion are given together with the simple average
results. At this age the vortex has a maximum
swirl velocity of almost 23% of the tip speed and
a core radius of little more than 3% chord, which
are less than in hover. At this early stage of the
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Parameter PIV CA SA

βx/
o 0.0 10.1 10.8

βz/
o 0.0 55.6 52.1

ω0/Ω 1.104 2.245 1.442
v0/ΩR -0.326 -0.126 -0.096
rc/c 0.051 0.032 0.042
Vs,max/ΩR 0.172 0.225 0.193
n 1.0 1.1 1.1

Table 9: Rotation angles and tip vortex param-
eters on the retreating side, pos. 52 of
Fig. 1, µ = 0.151, ψv = 34o. CA: condi-
tional average, SA: simple average.

vortex age the peak axial velocity in the vortex
center is found to be almost 13% of the tip speed
directed towards the generating blade. Again, this
value is less than that for the hover case.

The rotation angles of the simple average agree
well with those of the conditional average. As in
the hover case, the vorticity peak, the maximum
swirl velocity and the axial velocity peak in the
vortex center are significantly reduced, and the
core radius is identified much larger, compared to
the conditional average.

4.3 BL case, advancing side

The measurement of pos. 29 of Fig. 1 is presented
here, where the blade position was at ψ = 110o

and the measurement location at ψ = 104o, such
that the vortex age is only ψv = 6o and the data
were taken shortly behind the trailing edge of the
generating blade. In this case the shear layer of
the blade is visible in the distribution of vorticity
in Fig. 31 (a) and of comparable strength of the
tip vortex itself. The vector field appears elliptical
as expected for an inclination of the vortex axis
with respect to the measurement plane. After ro-
tation into the vortex axis system, which required
a rotation of βz = −45o and βx = 2o the vector
field appears rotational symmetric and the peak
value of vorticity in the vortex center is almost
twice as large, (b).

The cross-flow distribution in the measurement
plane, Fig. 31 (c), shows effects of vortex inclina-
tion at the core radius as in the hover case, plus
the influence of the shear layer. Global gradients
from top to bottom are present as well, but these
disappear after rotation into the vortex system
shown in (d). Here a peak cross-flow velocity is
present in the vortex center, directed towards the
vortex creating blade, and additionally the drag
hump of the shear layer is well visible here. The
area outside these structures now has zero cross-
flow as expected. Note that the axial velocity peak
value in the vortex center is of the same magni-
tude as the drag hump of the shear layer.

Parameter PIV CA SA

βx/
o 0.0 1.5 2.6

βz/
o 0.0 -44.6 -45.0

ω0/Ω 33.6 56.3 43.2
v0/ΩR 0.113 0.058 0.050
rc/c 0.061 0.045 0.051
Vs,max/ΩR 0.070 0.087 0.081
n 1.2 1.2 1.4

Table 10: Rotation angles and tip vortex param-
eters on the advancing side, pos. 29 of
Fig. 1, µ = 0.151, ψv = 6o. CA: condi-
tional average, SA: simple average.

In Tab. 10, the results of parameter identifica-
tion are given together with the results from the
simple average. At this age the vortex has a max-
imum swirl velocity of only 9% of the tip speed,
which is significantly less than in hover, and a
core radius of little more than 4% chord, which
is slightly less than in hover. At this early stage
of the vortex age the peak axial velocity in the
vortex center is found to be almost 6% of the tip
speed and directed towards the generating blade.
Again, this value is significantly less than that for
the hover case.

As in hover and on the retreating side of the
BL case, the rotation angles appear very similar
in both conditional and simple average. Also, the
vorticity peak, the maximum swirl velocity and
the axial velocity peak in the vortex center are
significantly reduced, and the core radius is iden-
tified much larger, compared to the conditional
average.

4.4 Blade circulation and vortex

circulation

The bound circulation of the lifting blade is re-
lated to the vortex circulation. Ideally the vor-
tex strength equals the maximum circulation of
the lifting blade, but in real world the vortex is
created by a continuous distribution of vorticity
with varying strength trailed into the wake along
the span. This rolls up into a tip vortex within
a short range behind the trailing edge. In hover,
where the peak blade circulation is located close
to the tip, the roll-up to a vortex is finished very
early, but in cases where the circulation gradient
towards the tip is low or close to zero the roll-up
can take much more time, up to a complete rotor
revolution.

In the cases investigated here, the hover vor-
tex is well defined at its age of ψv = 44o, and
the same is true for the forward flight in the BL
case on the retreating side, although some contri-
bution of a shear layer is visible and indicates a
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(a) Vorticity, PIV plane (b) Vorticity, vortex plane

(c) Cross-flow, PIV plane (d) Cross-flow, vortex plane

Figure 31: PIV data of the BL case (advancing side) in the measurement plane and rotated into the
vortex axis system, pos. 29 of Fig. 1 (a), µ = 0.151, ψv = 6o.

weaker radial gradient of bound circulation. On
the advancing side the shear layer is even stronger
and its vorticity content is of the same order of
magnitude as the vortex created right at the tip
of the blade.

Since in HART II only the radial station of
r/R = 0.87 was fully instrumented, no radial
distribution of circulation can be extracted. The
HART test of 1994 [30], however, had the same
operational conditions as investigated here, but
had fully instrumented sections at r/R = 0.75,
0.87 and 0.97. Assuming the lift and thus the cir-
culation drops to zero at the blade tip itself, the
radial distribution of circulation for hover and the
BL case is shown in Fig. 32.

The values of the bound circulation at r/R =
0.94 are extracted from Fig. 32 and compared to
the circulation at the core radius of the associ-
ated blade tip vortices, Γv, in Tab. 11. This vortex
circulation is related to the maximum swirl and
the n parameter by Γv = 21+1/nπrcVs,max using
a Vatistas vortex model, see App. A. The vor-
tex parameters n, rc and Vs,max are taken from
Tab. 8, Tab. 9 and Tab. 10. A large fraction of

Figure 32: Radial distribution of blade bound cir-
culation from the HART test of 1994.
Solid: hover; dotted: BL, ψ = 104o;
dashed: BL, ψ = 256o.

the bound circulation is contained in the tip vor-
tex in the hover case, which is a consequence of
the steep radial gradient of blade circulation. The
maximum of the blade circulation in hover could
only be guessed, in this case additional instru-
mented sections between r/R = 0.87 and 0.97
would be necessary.

The BL cases show the maximum of bound cir-
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case ψ/o 100Γb

ΩR2 ψv/
o 100Γv

ΩR2

Γv

Γb

hover 136 1.535 44 0.914 0.60
BL 256 1.118 34 0.517 0.46
BL 104 0.686 6 0.257 0.37

Table 11: Blade circulation at r/R = 0.94 and
circulation of the tip vortex at the core
radius.

culation much more inboard, at r/R = 0.87 for
the retreating side and between 0.8 < r/R < 0.87
on the advancing side. Consequently the radial
gradients are weaker and vorticity in the associ-
ated shear layers is visible in the PIV data, es-
pecially on the advancing side, see Fig. 31 (a).
Therefore, the vortices contain only a smaller
fraction of the blade bound circulation in their
core, and the remaining part is distributed in the
shear layer outside the vortex core. This part gets
rolled up into the vortex at larger vortex ages [31].

5 Conclusions

3C-PIV vector field processing for proper analysis
of vortex parameters requires several methodolo-
gies to be applied. Using numerically generated
virtual PIV data these methods are validated.

1. Spurious vector elimination is needed, oth-
erwise artificial vorticity is created by these
that often is stronger than that of the flow
field itself.

2. Various methodologies exist to compute ve-
locity gradients, but care must be taken in
application since some of them tend to in-
crease noise artificially, and others tend to
smooth the data too much. This depends on
parameters of the pre-processing, like over-
sampling.

3. The identification of vortex centers is best
performed using the area center of the distri-
bution of a representative scalar value. This
can be vorticity (but this has a bad signal-to-
noise ratio), or flow field operators like λ2 or
Q that additionally suppress apparent vor-
ticity of shear layers from the wake of the
blade. Further improvements are obtained
using a convolution of normalized functions
representing the expected distribution with
the scalar fields.

4. Conditional averaging is mandatory for ana-
lysis of vortex properties since it retains the
peak values of individual characteristics and
simultaneously eliminates noise. Due to vor-
tex wander (and camera motion), the ensem-
ble (or simple) average results in artificially

large core radii and significantly lower swirl
velocities. However, for the identification of
the average location the ensemble average
can be used.

5. The mean identification of the mean velocity
is complicated by the presence of the vor-
tex flow field, and by shear layers from the
blades. The mean in-plane velocities can be
analysed from the vortex center under the as-
sumption that the vortex convects with the
local mean flow. The mean out-of-plane or
cross-flow velocity must be analysed from the
flow outside the vortex proximity since the
vortex itself has an axial velocity that is not
part of the mean, and that has a maximum
in the vicinity of the vortex center itself.

6. In most measurements the vortex axis is not
normal to the measurement plane. When the
inclination angles exceed about 10o the mea-
surement plane must be re-oriented into the
vortex axis system. This can be performed in
the post-processing by identification of the
rotation angles from the cross-flow and swirl
velocities.

7. The vortex characteristics like core radius,
maximum swirl and shape of the swirl pro-
file can only be analysed in the vortex axis
system, using some of the usual mathemati-
cal models.

The methodologies developed can be success-
fully applied to real world data like those obtained
in the HART II test. Future work will put to-
gether the results for the creation of generalized
vortex models to be used in rotor simulation envi-
ronments, like prescribed or free-wake codes, for
noise, vibration and performance prediction of ro-
tors.
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A The relation between swirl

and flow field operators

A.1 Dimensions

All variables are made non-dimensional, i.e. the
velocities are divided by ΩR, circulation and kine-
matic viscosity by ΩR2, vorticity by Ω, coordi-
nates by the core radius rc, the core radius by R
and the flow field operators by Ω2.

A.2 Vatistas model of swirl

Vatistas model describes the swirl velocity in
terms of the radial distance to the vortex center
r and a shape parameter n that represents the
”sharpness” of the maximum swirl velocity peak
and thus the distribution of vorticity [18].

r =
√

x2 + z2

Vs = Vs0
r

(1 + r2n)1/n

u = −Vs
z

r

w = Vs
x

r

In this case, Vs0 = Γv/(2πrc) = Vs,max21/n

since at the core radius r = 1 and hence Vs =
Vs0/2

1/n. The flow derivatives with respect to the
coordinate directions x and z can analytically be
derived. When simplifying for z = 0 since the flow
field is rotationally symmetric,

∂u

∂z

∣

∣

∣

∣

z=0

= −
Vs0

(1 + x2n)1/n

∂w

∂x

∣

∣

∣

∣

z=0

= −Vs0
x2n − 1

(1 + x2n)1/n+1

∂u

∂x

∣

∣

∣

∣

z=0

=
∂w

∂z

∣

∣

∣

∣

z=0

= 0

Then, the vorticity and λ2 parameter are (the
result for Q is identical to that for λ2)

ω|z=0
=

(

∂u

∂z
−
∂w

∂x

)

/2

= −
Vs0

(1 + x2n)1/n+1

λ2|z=0
=

(

∂u

∂x

2

+
∂w

∂z

2
)

/2 +
∂w

∂x

∂u

∂z

= −V 2
s0

1 − x2n

(1 + x2n)2/n+1

Q|z=0 =

(

∂u
∂x + ∂w

∂z

)2

4
−
∂u

∂x

∂w

∂z
+
∂w

∂x

∂u

∂z
= λ2|z=0

In the vortex center, i.e. at r = x = z = 0, they
become

ω|r=0
= −Vs0 = −Vs,max21/n

λ2|r=0
= −V 2

s0 = − (ω|r=0
)2

Since the flow operators are constant in the vor-
tex center their radial gradients are zero there.
Although these operators often appear to have
a sharp spike there is no discontinuity and thus
the sharp spike is just an effect of scarseness of
the grid. A significant higher grid density would
result in a well rounded maximum of these oper-
ators in the vortex center. At the core radius, i.e.
at x = 1,

ω|z=0,x=1
= −

Vs0

21/n+1
= −

Vs,max

2
λ2|z=0,x=1

= 0

At the vortex center the vorticity represents
the negative gradient −∂Vs/∂r. For the Vatistas
model,
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ω|r=0
= −

∂Vs

∂r
= −Vs0

1 − r2n

(1 + r2n)1/n+1

For r = 0 this results in ω|r=0
= −Vs0 as

is written above. At the core radius, i.e. r = 1,
the vorticity is expressed by half of the maximum
swirl velocity, ω|r=1

= −Vs,max/2.

A.3 Lamb-Oseen and Newman vor-

tex

This description of a vortex is an analytical so-
lution of the Navier-Stokes equation [25, 26, 28].
Newman added an axial flow component [27]. Its
swirl velocity field is described by

Vs = Vs0
1 − e−αr2

r

with Vs0 as before and where α = 1/(4νψv)
represents the time decay with ν as the kinematic
viscosity. At the time of vortex creation, ψv = 0,
the potential vortex is obtained with zero core
radius and infinite swirl at the center. As ψv → ∞
the vortex disappears. For a given age this can be
set to a constant value of α = 1.25643 [26] and
the result for the flow derivatives at z = 0 is

∂u

∂z

∣

∣

∣

∣

z=0

= −Vs0
1 − e−αx2

x2

∂w

∂x

∣

∣

∣

∣

z=0

= −Vs0
1 − e−αx2

− 2αx2e−αx2

x2

The other derivatives are zero. Then, the flow
field operators are

ω|z=0
= −Vs0αe

−αx2

λ2|z=0
= −V 2

s0

(

e−αx2

− 1
)

1 − e−αx2

− 2αx2e−αx2

x4

In the vortex center, where r = x = z = 0, the
result for λ2 is obtained using Bernoulli l’ hospital
rule until a finite value is reached.

ω|r=0
= −Vs0α = −Vs,max

α

1 − e−α

λ2|r=0
= −V 2

s0α
2 = − (ω|r=0

)
2

In agreement with the section before the ra-
dial gradients of the flow operators at the vortex
center are zero. At the core radius, where x = 1,

ω|z=0,x=1
= −Vs0αe

−α

λ2|z=0,x=1
= 0

Here the maximum swirl velocity is present.

Vs,max = Vs0

(

1 − e−α
)

A.4 Circulation

The total circulation Γ∞ of a potential vortex is
given by the product of swirl velocity and the
radius. This product is constant at any radius
such that Γ∞ = 2πVsr since all the vorticity is
confined at an infinitesimal point in the vortex
center. In contrast, the Vatistas and Lamb-Oseen
model have a radial distribution of vorticity with
a finite maximum in the vortex center and asymp-
totically approaching zero at large radii. There-
fore, the circulation grows from the vortex center
and asymptotically reaches its final value for large
radii. For any value of n the Vatistas and Lamb-
Oseen vortex models asymptotically approach the
potential vortex result for large radii r. The to-
tal circulation of a Vatistas type of vortex is thus
(note that Vs0 = Γv/(2πrc)

Γ∞ = 2πrVs|r→∞

= 2πVs0 =
Γv

rc
= 2πVs,max21/n

and the circulation profile, i.e. the development
of circulation, starting from the center of the vor-
tex, is found by area integration of the vorticty

Γ = 2

∫ 2π

0

∫ r

0

ω r dr dφ

= −2πVs0
r2

(1 + r2n)1/n

|Γ|

Γ∞

=
r2

(1 + r2n)1/n

In the vortex center, where r = 0, the circula-
tion is zero, and for large radii the ratio reaches
the value of one. At the core radius, where r = 1,

|Γ|r=1 =
Γ∞

21/n
=

Γv

21/nrc
= 2πVs,max

For n = 1, which is known as the Scully vortex,
half of the total circulation is contained within
the core radius. As n→ ∞, which represents the
Rankine vortex, all of the vorticity and hence the
circulation is within the core radius, and nothing
left outside (outside the core radius the flow field
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of a potential vortex is present). A lot of measure-
ments fit to a value of n = 2 such that 70.7% of
the total circulation is within the core.

For the Lamb-Oseen vortex the total circula-
tion is easily derived for large radii and the cir-
culation profile is then

Γ∞ = 2πVsr|r→∞
= 2πVs0 = 2π

Vs,max

1 − e−α

|Γ|

Γ∞

= 1 − e−αr2

At the vortex core this type of vortex has 71.5%
of its total circulation, which is close to the Vatis-
tas vortex using a value of n = 2.
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