
MODELING ROTOR DYNAMICS WITH ROTOR SPEED DEGREE OF FREEDOM FOR 
DRIVE TRAIN TORSIONAL STABILITY ANALYSIS 

L. k c [i] m . Jaw 
Garrett Engine Div. of Allied-Signal Aerospace Company 

Phoenix, Arizona, U. S. A. 

Arthur E. Bryson, Jr. [ii] 
Stanford University, Stanford, California, U. S. A. 

September 21, 1990 

1 Abstract 

Incompatibilities in the rotor/engine system torsional 
dynamics may cause torque oscillation and rotor speed 
variations, and they affect the handling qualities of a 
vehicle. 

To analyze torsional stability, the coupling between 
rotor and engine systems must be considered. This 
coupling is represented by the rotor speed DOF. The 
effect of this DOF is to increase the natural frequency 
and damping ratio of the collective lead-lag mode. 

Torsional resonances can be predicted by a simpli­
fied mass-spring-damper model. The generic spring­
damper model was found inadequate; consequently) 
two improvements for this model are proposed in this 
paper. 

2 Nomenclature 

B Blade Tip Loss Factor 
b Linear Damping Coefficient 
c Blade Chord Length 
CJ, Profile Drag Coefficient 
e Blade Hinge Offset 
I Blade Moment of Inertia 
I Identity Matrix 
J Shaft Moment of Inertia 
k Spring Constant 
m Mass 
Q Torque 
"R Blade Root Cut-Out Factor 
s Laplace Variable 
y9 Blade Spanwise Distance between 

Hinge and C. M. 

Greek Symbols 
j3 Flap Angle 
~ Lead-Lag Angle 

- (i] Engineering Specialist. 
[ii] Pigott Professor of Engineering, Department of Aeronautics 
and Astronautics. 

p Air Density 
,p Rotor Hub Angle or Blade Angle 
[l Rotor Angular Speed 
w Angular Speed 

Subsripts 
b Rotor Blade 
e Engine 
I Fuselage 
h Main Rotor Hub 
I Load Distrubance or Lag Sprir,g 
lh Lag Hinge 
mb Multi-Blade 
mr Main Rotor 
nr Non-Rotating Coordinate System 
q Torque 
t Tansmission Shaft Spring 
tr Tail Rotor 
0 Blade Collective Coefficient 
1c Longitudinal Cyclic Coefficient 
1s Lateral Cyclic Coefficient 

3 Introduction 

A helicopter and its propulsion system represent two 
different engineering disciplines, and they are usually 
designed and manufactured by different companies. 
When the two systems are put together, incompatibil­
ities often occur, which could affect flight safety and 
performance. In particular, the rotor/engine system 
torsional dynamics may cause torque oscillations and 
rotor speed variations, and they affect the handling 
qualities of the vehicle. 

Frederickson, Rumford, and Stephenson [5] re­
ported a fuel control stability problem on CH-47C 
helicopter, where a 4.1 Hz torque oscillation with a 
magnitude of 8-12% of the maximum steady torque 
was observed. The problem was corrected by soften­
ing the blade lag damper springs and reducing fuel 
control gain by 30%. The most complete investigation 
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Figure 1: Suggested Linear Model for Rotor-Engine 
Torsional Compatibility Studies 

of airframe/engine compatibility problems was docu­
mented by major U. S. helicopter manufacturers in a 
series of U.S. Army sponsored programs in late 70's 
(cf. [12], [11], [15], [2], and [6]). The problems re­
lated to torsional stability are characterized by unac­
ceptable shaft torque and speed oscillations, mostly on 
articulated-rotor helicopters. 

To analyze torsional stability, the Society of Au­
tomotive Engineers [13] has suggested a simple, lin­
ear model shown in Figure 1, where k, is the effective 
lead-lag spring constant, and b, is the effective damper 
coefficient. The spring constant comes from the cen­
trifugal force of blades. This simplified model allows 
torsional flexible modes to be predicted by engine man-

. ufacturers in their designs of fuel control. However, the 
accuracy of this analysis depends on good estimates of 
what the spring constant and damper coefficient are. 

Typically, the spring constant from the centrifugal 
force acting on the blades and the lag damper coeffi­
cient are used; however, from experience, the resonant 
frequency is often over-predicted. This suggests that 
some other factors be considered in modeling the res­
onance phenomenon. 

This paper analyzes the dynamics of an articulated 
rotor system in hover with a shaft/rotor speed DOF. 
The rotor speed DOF comes from the coupling be­
tween the rotor and the engine. It is shown that this 
coupling increases the natural frequency and damping 
ratio of the collective lead-lag mode. 

From the analyses of simplified rotor models, two 
improvements for the generic model are proposed. 

Analytical results are substantiated by the simu­
lated rotor system of the Illack Hawk helicopter. 

' 
I ____ _ 

I 

Figure 2: A Hypothetical Single-Bladed Rotor 

4 Lead-Lag Dynamics of a Hy­
pothetical One-Bladed Rotor 

Consider a hypothetical rotor with only one hinged, 
rectangular blade having in-plane, lead-lag motion. 
For simplicity, we assume that it is on a hovering heli­
copter (the mechanical imbalance problem is not con­
sidered here). Figure 2 shows the blade moving back­
ward (opposite to the shaft rotation) to form a lag 
angle, ~ , between the blade span axis, YB , and the 
reference line of the blade azimuth angle. 

Also shown in Figure 2 are the drag (D) and various 
d' Alembert forces acting through the blade center of 
mass, C. The blade is assumed to produce zero lift; 
therefore, no flapping motion exists. The properties of 
this hypothetical blade are listed in Table 1. 

4.1 Equations of Motion 

The equation of motion for the blade, assuming that 
hub angular speed, Omr, is held constant, is given by 

where I,Q = I,c +my; R 2 is the blade moment of 
inertia about the hinge, b11, is the lag damper coeffi­
cient, and the stiffness comes from the centrifugal force 
acting through the blade's center of ma$S (commonly 
called the centrifugal spring). 

YVhen rotor speed varies 1 the coupling between the 
blade and its hub change' the characteristics of the 
lead-lag dynamics above. T'he equations of motion for 
this simplified rotor are derived in Appendix A. From 
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II Variables I Values II 
R 25ft 
c 2ft 
ltmr 27 radjsec 
TR 0.1 
B 0.95 
e 0.05 

Yu 0.5 
Cd0 

0.05 
m 7.4slug 
I,o 1400 slug - Jt• 
h 1100 slug- ft• 
bth 2200 lb- sec 

Table 1: Properties of a Hypothetical Blade 

Equations (101) and (97), 

- (:.: + c1d,eRq,n;,.r,) 6E 

( blh + d R ") c - Izq c1 1 e q2 ~ 

-c,d,hw 6!1mr + c,d, 6Q,,' (2) 

flmr = -d,eRq,n;,.r, 6E 

where, 
k, = mey0 R2n;,.r, . ( 4) 

Note that the natural frequency and damping of 
blade lead-lag oscillation have both been increased 
from their respective constant-rotor speed values (in 
Equation (1)) due to blade-hub coupling. 

4.2 Describing Lead-Lag Oscillations 
by a Mass-Spring-Damper Model 

A simple mass-sprin'g-damper model, shown in Figure 
1, was suggested by SAE to be used for the torsional 
stability analysis of a rotor/engine system [13]. For an 
approximately rigid transmission shaft between the en­
gine and the rotor hub, the model is further simplified 
as shown in Figure 3. 

The dynamics, expressed in state equation form, is 

[ •. l [ -~ I 0 0 
{Jb -i;;- 1:':: i;;-

,j;mr = 'Q 'Q 

0 0 0 I 
ltmr ·* * -5:: -* l 

[fJ[ 
0 l Q., 
0 
0 
I 

y;: 

(5) 

where Qb is the angular Speed of blade, and QIIW IS 

the speed of main rotor hub. 

hub 
blades 

Figure 3: Generic Mass-Spring-Damper Model for Ro­
tor/Engine Resonance Analysis 

imag 

X 

X pole 

0 uro 

0 ..;FilJ;; i 

~d------------------+-

Figure 4: Poles and Zeros of ltmr(s)jQ,,(s) 

The transfer funstion from engine input torque to 
rotor speed is 

where 

ltmr(s) _ (s 2+btsjl,0 +kt/1,0 )/Jh 
Q ,.(.,) - s ( s2 + a b1 s + a k1) 

I 1 
a=--+-· 

- Jh I~0 > 

(6) 

(7) 

and the poles and zeros of this transfer function are 
shown in Figure 4. 

Let the lag angle be defined as 

(8) 

then Equation (5) can be rearranged, and E is decou­
pled from flnu· as shown below 

[ n~,. ] [-(_:+k) 
1 

~ ] = -(_b_+lL) Lq J,, L 0 Jn 
_.h _lL 

h h 

[ !t~r ] + [ 

0 

] 0 (9) 
.'b..o. 
h 

Equation (9) agrees with the results of the previ­
ous section that coupling increases clamping and fre­
quency. However, if we compare this equation with 
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II Model Type Flexible Mode II 
Truth Model -2.02 ± 12.07 i 
Generic Model -1.79 ± 11.56 i 
PE'?posed_ Model -1.90 ± 11.54 i 

Table 2: Comparison of Natural Modes for Three Mod­
els of a Hypothetical One-Bladed Rotor 

those in Section 4.1, we see that the missing coupling 
term between ~ a.nd Omr , and that the missing hub 
speed damping term are related to 2mey9 R

20mr,~o 
and (8D/80mr )0 , which are the sensitivity of the hub 
torque (due to centrifugal force) with respect to hub 
speed, and the aerodynamic damping, respectively. 
These effects are missing in the mass-spring-damper 
model. 

4.3 Improved Mass-Spring-Damper 
Model 

Adding an extra damping1 bh/]}. for hub speed (Omr) 
to Equation (9), the coupled hub-blade equation be­
comes 

0 

-(f.;;-+*) 
-* [ 

[ =~ ] [ 0~, ] + [ ~ ] ,(10) 

where hJ, = hw (defined in Appendix A.2) approxi­
mates the aerodynamic damping. 

Expressing the equation in terms of blade absolute 
angle ("1h), we get 

l"" [ -~ -~ 1 l 
* * -* 

[ -(l~) l [t~: H r 
The proposed modification for the model is shown in 
Figure 5. 

If we consider the blade model in Figure 2 a truth 
model, then the natural modes for the truth model are 
compared with those of the spring-damper models in 
Table 2. 

1The extra damping terms arc suggested by Equat.ions (2) 
and (3). 

engine 
torque 

hub 

Figure 5: Proposed Mass-Spring-Damper Model for 
One-Bladed Rotor 

5 Derivation of Coupled Flap­
Lag Equations with Rotor 
Speed DOF 

In the previous section, only the lead-lag motion of a 
hinged blade was considered. We found that the lead­
lag motion has a strong effect on rotor load torque. 
Another hlade DOF is the flap motion, which strongly 
affects rotor thrust and moments. 

The flap and lead-lag motions of a blade are cou­
pled. The coupled flap and lead-lag equations, for the 
i-th blade, at a constant rotor speed are [3] : 

•. • 2 2 
I,Q b~; + b1h b~; + m;ey9 R Omr, bf,;-

2I,q0mr,/3;, o{3; =-oN,,., , (13) 

where Maero; and Naero; are the moments created by 
aerodynamic forces, and where control moments are 
not included. These equations are accurate to second 
order small effects. 

Figure 5 shows a blade creating both flap and lead­
lag displacements. Two coordinate systems are shown 
with ((s" defined as the shaft axis system, which is 
rotating with the shaft and is fixed at the hub,O; the 
''n" coordinates represent a blade body axis system, 
which is rotating with the blade and is fixed at the 
hinge, Q. The flap angle, {3, the lead-lag angle, ~. 

and the blade azimuth angle .,P, are shown poistive in 
the figure. Subscript "i" marks the ith blade. 

Equations (12) and (13) represent the linearized 
flap and lead-lag dynamics that have been commonly 
used in rotor dynamics analysis. We like to extend 
these equations to include rotor speed variations. We 
are also interested in knowing whether the rotor speed 
DOF affects the blade flap-lag coupling. The deriva­
tion is based on the following assumptions : 

• Rigid blades. 

• Linear lead-lag dampers. 
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Figure 6: A Hinged Blade Undertaking Flap and Lead­
Lag Motions 

• Flap hinge and lead-lag hinge coincide. 

o No kinematic coupling. 

• No pre-cone angle. 

Applying Lagrange's Equations, we get the flap 
equation of motion 

Ix0 /3; + Ixq (J;, +~;rcf,sf, + rn;ey9 R',j;{sf,c<,-
2 .. 

m;ey9 R 1/J;sp,s1 , + m;gy9 Rcf, = -M"'' ,(14) 

where Izq = Iz + 1ny~ R 2 and lxq = Ix + m.y~ R 2 

represent the blade moments of inertia about the 
hinge. Mext, is the moment created by all external 
forces about flap hinge axis (including the control mo­
mentL and is positive in the in direction. 

The lead-lag eq nation of motion is 

I,Q ( V,, + ~i) e~, - 2Ixq/Ji ( ,j;, + ~i) cp,sp,+ 

I 9 ( {,, + ~;) s~, + b,h(i + m;ey9 R2 ~;cp, c1, + 
(15) 

where Next; is the external moment about lag hinge 
axis~ positive in the kn; and bu1 , is the equivalent lag 
damper coefficient. 

To linearize the flap and the lead-lag equations for 
small angles of f3i and €i, we define 

(3; = (3;, +6(3,' ( 16) 

~i = ~io + 6~;, (17) 

Omr = -J;i = Dm,·o + 8Slmr , (18) 

Dmr = ;j;i = oDmr . (19) 

Substitute Equations (16) to (19) into (14) and 
(15), and make small angle approximations for f3io 

and €;, . After dropping small terms of the third- and 
higher-orders, the flap equation becomes 

.. ( 2) 2 I,Q6j3; + Ixq + m;ey9 R !1mr,6f3;+ 

2 (Ixq + m;ey9 R2
) !1mr0 f3;,6!1mr + 

2I,q!1mr,f3,,oe, =-oM,.,, , (20) 

and the lead-lag equation becomes 
.• . 2 2 

I,Q6~; + b,hoe, + m;ey9 R nmr,o€;+ 

2m;ey9 R 2!1mroe;,6!1mr -

2Ixqflmro (/J;,0/3; + /3;,6/J; + o/J;o{3;) 

= -8N,.,, + (I.Q + m;ey9 R 2
) . (21) 

Finally, if we retain only the most significant 
second-order terms, the flap equation simplifies to 

.. ( 2) 2 I,Q o(3; + I,Q + m;ey9 R [lmr, o(3; = -oM,.,,. (22) 

Similarly, the lead-lag equation, with I, "" I, for 
a large aspect ratio blade, simplifies to 

" . 2 2 
I,Q o€; + b1h oe, + m;ey9 R flmr, 6~;-

2I,Q!1mr,/J;, 6(3; = -oN,.,,+ 

(I,Q + m;ey9 R2
) ( -Dmr) . (23) 

From Equation (20) we conclude that the shaft 
angular acceleration does not affect flapping dynam­
ics, and that the only significant coupling between 
the flap and lead-lag motions is the Corio/is force, 
2I,Q flmro/Ji, 6(3; (in Equation 23). 

Also in Equation (23), the shaft angular accelera­
tion (Dw ofi 0) directly excites the lead-lag motion; 
hence, a decelerating rotor (Dmr < 0) acts to increase 
the lead angles. 

6 Flap and Lead-Lag Equations 
in Multiblade Coordinates 

The coupled flap and lead-lag equations of Section 5 
are transformed into multi blade coordinates ( cf. [7] 
and [9]) for a rotor operating near hover condition. 
Let (3 and € be the state vectors of flap and lead-

-nr -nr 
lag DOF's in the multiblade coordinates, and let the 
transformation matrix be Tmb· Then for flapping dy­
namics, Equation (22), is transformed into 

6 i}_n, + T;;,b ( 2T mb -f- d J T mb) 8 /}_nr -f­

T~lb ( T mb + d, 'i'mb + v] Tmb) Of!_nr 

= __ 1_TTb ({)M)T JL,, (24) 
lxq m 8JJ.r 0 

where m = mt and 

-2 
"J = 
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The flap dynamics in the multiblade coordinates 
is again decoupled from the lead-lag dynamics. So 
for rotor/engine torsional dynamics analysis, the flap 
motion is like an input disturbance. 

For lead-lag dynamics, the rotor angular accelera­
tion (flm,) in Equation (23) is first eliminated. The 
angular acceleration can be expressed as a function of 
blade state (see Equations (3)) and input variables, 
i. e., 

n, 
11m, = I;C f,;,p, 6(3, + l,;,iJ, 6/3, + /,;,1, 6~;+ 

where 

/,;,{, 6e,) + !ww 6!1m, + G,;,, :!!, + d, 6Q,, ,(27) 

/,;,p, -

l,;,jJ, = 

'"''' 
/,;,{, = 

fww -
Gwr -

-dz ( ~~:) 
0 

, (28) 

-dz ( ~~;) 
0 

, (29) 

-dz ( ~~:) 
0 

, (30) 

"-v--' 
<0 

-dz ( 
88~;) o , (31) 

"-v--' 
< 0 

-dzhw , (32) 

-dz (oQ, )r (33) 
Oi£., o 

and where d2 = 1/ [h + (aQ,j8flm,)
0
], Q,, is 

the engine torque, and Q, is the load torque of main 
and tail rotors. The coefficients defined in Equations 
(28) through (31) are same for all blade in hover. 

So the lead-lag equations for all nb blades in the 
blade rotating coordinates are 

6{ +<hoe + l/f 0~ + Ctfw·' poE + ctfw' p 0~ ..::.r ..::..r ' ..::..r .. ..:...¥' '> ..:...r 

= (J1p I- ctf,;,p P) oft. + 

(1,{3 I- ctfw{J p) of!_,- Ctfww IOS1m,-

[c, G,;,,+ I:q (~:) :J I:!!,-

(34) 

(35) 

-2 v, - (36) 

7tp (37) 

1,{3 (38) 

with 

oN,.,, "" (~Z) 
0 

op, + (:;.) 
0 

o/3, + 

( ~~) 0 oe, + ( ~n 0 6~;+ 
(~:)::!!,. (39) 

Furthermore, Ct is as in Equation (102); and for a 
four-bladed rotor, 

p=U 11 n (40) 

The last two terms of the left hand side of Equation 
(34) are transformed to the multiblade coordinates as 
follows : 

T, 

ct!,;,{ & oS,, + 
0 

ctfw( PTmb o~,, 
'--v--" 

T, 

= ctf,;,{Tt o~,; (42) 

Using Equations (41), (42), the multiblade lead-lag 
equations are 

o[., + T~,b (2Tmb + dtTmb +I ctf,;,{Ttl) 6~,.+ 
T;;,b ( Tmb + dtTmb + l/fTmb +I clfw(Tl D · 
6~ = R. H. S. , ( 43) 
-'-"' 

and the right hand side (R. H. S.) is given by 

R. H. S. = T;;,b[(J,p I- ctfwp P) Tmb+ 

(11{3 I- ctf,;,{J P) Tmb]6~, + 
T (- ) . Tmb / 1{3 I- ctfw{J P Tmb of}_"'-

C1 fww T~b 80mr -

T;;,b [c, G,;,, + -J-
'Q 

(44) 

The boxed terms in Equation ( 43) confirm the re­
sults of increased lead-lag damping and natural fre­
quency due to hub-blade coupling. After substitut­
ing T 1 in those terms, we see that only the collective 
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mode (the smallest frequency mode), ~0 , is affected by 
the shaft DOF. The progressive and regressive lead-lag 
modes are not affected. This suggests that only the 
collective lead-lag oscillation needs to be considered in 
the analysis of torsional resonance near hover. 

6.1 An Example of Multiblade Lead-
Lag Equations with Shaft DOF 

A simplified, three-bladed rotor2 is used in this exam­
ple to show the changes of rotor lead-lag eigenvalues 
with variable rotor speeds. Each blade has one DOF, 
and possesses the same properties as those defined in 
Section 4. 

Since the large centrifugal force on each blade keeps 
its lag angle small, the lead-lag equation for the i-th 
blade is approximated by Equation {100) : 

., I ' 2 ' 
~~ + d, ~~ + v, ~~ "" C[ Dmc , ( 45) 

where 

( 46) 

(47) 

The variation in rotor load torque for just one blade 
is given by Equation (94); so for three blades, the load 
variation is 

3 3 

6Qm, "" eRq1 12;';,,, L 6~k + eRq~ L o~k + 
k:::;l k=l 

3hw onm, + 3eRq4 Om, . ( 18) 

The linearized equations for rotor angular acceler­
ation as well as lead-lag dynamics arc therefore 

3 3 

0,. + bw ollm, ""-.A L o~k - fJ. L o~k + d3 oQ,, , 
k::::: 1 k:::: 1 

( 49) 

3 

o{.; + d; O~i + v[ O~i + C[jJ. I: 6~k+ 

where 

k=l 

3 

C[A I: 6~k ""-c,bw on,.,+ C[d36Q,,' (50) 
k=l 

d3 
1 

(51) 
h + 3eRq4 

bw = 3ds hw, (52) 

,\ d3eRq1 O~wo ) (53) 

fJ. dseR.q~. (51) 

2 Although the transformed equations in the previous scclion 
were derived for a four-bladed rotor, using a three-bladed rotor 
here as an example is sufficient to demonstrate the point. The 
lead-lag dynamics for a four-bladed rotor in multibladc coordi­
nates contain one reactionless (differential) mode. 

Assume e < 1 , and that perfect symmetry exists 
in all three blades, i. e., el = 6 = ~3. So C[ "" 1 and 
Equations (50) and (49) are simplified to 

o~; + (d; + 3jJ.) oe; + (vr + 3,\) 6~; 
""-bw oDm, + da oQ,, , (55) 

Om, + bw ODm, "" -3-A o~; - 3JJ. oe; + d3 oQ,, . (56) 

The transfer function from oQ,, to oDm, is found 
from Equations (55) and (56) as 

oDm,(s) _ d3 (s 2 +d~s+v?) 
6Q,,(s) - (s + bw) (s 2 + d~s + v?) + 3s (,\ + fJ.S) . 

(57) 
The characteristic equation, after substituting the 

expressions for A and J1, is rearranged to extract the 
lead-lag damper coefficient (b1h), and the aerodynamic 
damping (ba = &D/&~) explicitly. The final expression 
is approximated by 

(s + bw) (s2 + v,') + 3,\s+ 

bas (a, s +a,)+ brh s (aa s +a,)"" 0, (58) 

where 

y,R (59) at - 3d3eR.q3 - - , 
I,q 

a, -
_ bwy9 R 

(60) 
I,q 

as 3d (1 mey,R2) _1_ (61) 3 + I +I ' 
2Q 2Q 

bw (62) a4 
l.zq 

The roots of the characteristic equation can be 
thought of functions of three design parameters, A, 
b(!, and b11~, of which the first two parameters are fixed 
for a given blade geometry and mass property, and the 
third parameter is to be chosen during the design pro­
cess to assure rotor stability. 

The roots of the lead-lag equation are analyzed us­
ing the Root Locus technique, and are shown in Fig­
ures 7. 

To describe the dynamics of the entire rotor, in­
dividual blade lead-lag dyanmic equations are trans­
formed into multiblade equations. A scaled transfor­
mation matrix, T mb , for a three-bladed rotor is given 
by ( cf. (4]) 

[ 0~[ ] [~ /icl/Jl If·· l o6 li J!~~' 65_,,' 
(G:l) 73 C1f;2 

66 1 [iclfJ 3 ~ 73 [is1f 3 

bt, 

where lf;; is the azimuth angle of the ith blade, 65_,. 
represents the lag angles of three rotating blades, 0~ 

-n> 
represents the multi blade lag angles of the rotor : ~o, 
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for b,~ = 1>, "'0 

·~· incr~a.~•n~ ,\ 
1 

"' 

,, 

for br~ = 0 and a given >. 

iocru.oiog b, 

Figure 7: Open-Loop Poles of Simplified Three-Bladed 
Rotor 

e,,, and e,, are the collective, longitudinal cyclic, and 
lateral cyclic angles, respectively. 

Using the definition of the multi blade transform''­
tion in Equation (63), where the scaled transformation 
matrix Tmb is orthogonal, the lead-lag dynamics in 
rotating blade coordinates is tranformed into nonro­
tating, multiblade coordinates as follows: 

oL + T;;;, (2Tmb + diTmb + ell'u) 65'.,,.+ 

T;',, ( Tmb + diT mb + v(Tmb + CJ.W) 6£nc 

"" [ 1 ] ( -bw oilmc + d3 6Q,J' (64) 

[
v'3oo] 

where U = v'3 0 0 . 
v'3 0 0 

Further reduction of Equation (64) yields 

.. [ di + 3cll' oe + o 
~" 

0 

(65) 

where 

91 - J3(-clbw), 

92- v'3. 

Similarly, the shaft dynamics is given by 

flmc = Dflmc = d3 8Q,,- bw Ollmc-

(66) 

(67) 

A P1 85.,, -p P1 o(,,, (68) 

where P1 = [v'3, 0, OJ . 
Take the Laplace transform of Equations (65) and 

(68), the combined rotor and shaft dynamics for multi­
blade lead-lag state variables becomes 

(69) 

where 

d, a; + 3cll' ' (70) 
-2 v, = v? + 3cl A, (71) 

P1(s) - s2 + di s + ( vf -- n~ro) ' (72) 

P2(s) llmc, (2s + di). (73) 

Using this simplified rotor, we demonstrated that 
the rotor speed DOF only affects the collective lead-lag 
mode. The lead-lag mode and the rotor speed mode 
are coupled. The transfer function from engine torque 
to rotor speed is given by 

8il(s) _ d3 (s2 +dis+ v?) 
6Q,,(s) - q(s) 

(74) 

where 

q(s) = (s + bw) (s2 + d1 s +vf) + J3'91 (ps +A) . 
(75) 

The characteristic equation is exactly the same as 
that of Equation (57), if e «:: 1, or c1 "" 1; therefore, 
the results about pole locations for an individual blade 
apply directly to the dynamics of the entire rotor (in 
terms of the collective lag angle). 

7 Further Improvement for 
Spring-Damper Model 

An articulated rotor usually contains at least three 
blades. To analyze the torsional resonance for a multi­
blade rotor using the mass-spring-damper model, an 
immediate question arises : how to characterize the 
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II Model Type I Flexible Mode II 
Truth Model -4.17 ± 17.6 i 
Generic Model -1.79 ± 20.18 i 
Proposed Model -4.28 ± 16.47 i 

Table 3: Comparison of Natural Modes for Three Mod­
els of a Three-Bladed Rotor 

cumulative effects of all blades in this model? A com­
mon approach is to add the centrifugal spring con­
stants from all blades, but a cumulative damper co­
efficient is usually not used in the analysis. However, 
from the three-bladed rotor example, the additive ef­
fects for spring and damper only went into the rotor 
angular acceleration equation, where the rotor torque 
was computed as the sum of the torques produced by 
individual blades. So for a three-bladed rotor, the hub­
blade dynamics is modified from Equation (11) as 

[ 
,p, 

l [ 
0 1 0 

l n, -1!:: -i;;- 1!:: 
,),me "' 'Q 'Q 

0 0 0 
nmr ¥: ¥,: -¥: 

0 

][ ,p, 

H 
0 

l [ . 
-3 (7+ ~) "' 0 

(76) 
1/Jmr 0 
Omr· q,, 

-:r;: 

where "3" can be replaced by the number of blades 
(ns) if it is other than three. 

Note in this equation that blade lead-lag motion 
is still characterized by the original spring constant 
and damper coefficient. So only the coupling part is 
changed, but the blade oscillation itself is not. This 
effectively rnodels the collective motion of the blades 
in a rotor, and it ftts well with the finding that only 
the collective lead-lag motion needs to be considered 
in torsional resonance studies. 

If a cumulative spring constant (sum of all blades) 
is used in the spring-damper model, the predicted reso­
nant frequency is higher than the actual frequency. On 
the other hand, since the cumulative effect of dampers 
is not considered in conventional analyses, the damp­
ing ratio of torsional modes are smaller. Figure 8 pro­
poses an improvement to the spring-damper model; 
namely, to model individual blades explicitly. 

Using the three-bladed rotor as an example, the 
natur;::~J modes of t.he trut.h model, the spring-dcunpcr 
model \vit.h cumulative ;;priHg const.ant and damper 
coefficient (Figure 8), and of the generic rnodel arc 
compared in Table 3. The predicted frequency for the 
generic model is 15% higher, and the damping ratio 
is approximately !GO % less. 

engine 
torque 

hub 

Figure 8: Proposed Mass-Spring-Damper Model for 
Three-Bladed Rotors 

8 Simulations of Black Hawk 
Rotor System 

The effects of the rotor speed DOF on rotor system 
natural modes are demonstrated for the simulated 
Dlack Hawk rotor system. This rotor system (ROT­
SIM) [8] simulates the main and tail rotors of the SikO­
rsky Black Hawk helicopter. 

A series of linear models for the rotor system were 
generated with varying degrees of lag damping. The 
damper stiffness is selected as a parameter because it is 
a critical design factor for adequate torsional stability 
(the nonlinearity and the stiffness of lead-lag dampers 
were found to be factors inducing torque and speed 
oscillations). 

Figure 9 shows the eigenvalues of the rotor in both 
the constant and variable rotor speed conditions. In 
the con;;t.ant speed situation) the lead-la.g modes be­
come more damped for increasing amounts of lead-lag 
damper coelTicient. The flap modes are not affected. 
When the rotor speed DOF is present, the collective 
lead-lag modes are shifted due to the coupling) and 
both the undarnpecl natural frequency and the clamp­
ing ratio arc increased. Eventually, as the lead-lag 
damper gets stiff enough, collective lead-lag eigenval­
ues become two real values. 

In (:he figure, the natural frequency of the collective 
lcacl-lag mode for a nominal value of damper coefficient 
is around 17 rad/sec. This frequency corresponds to 
the engine/rotor torsional oscillation, which is usually 
referred to as the first torsional mode. The frequency 
of the first torsional mode 1 for the Black Hawk type 
of helicopters, has been estimated to fall between 15 
to 20 radjsec (cf. [10] and [1]) using frequency sweeps 
on analog computer simulations. So the analysis of 
rotor/engine dynamics with rotor speed DOF in this 
research agrees with published simulation results. 
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Figure 9: Rotor Eigenvalues for Varying Degrees of 
Lead-Lag Damping 

9 Conclusion 

Couplings between rotor and engine systems are rep­
resented by the rotor speed DOF. The effect of this 
DOF is to increase the damping ratio and natural fre­
quency of a blade's lead-lag oscillations compared to 
a constant rotor speed model. In multiblade coordi­
nates, the speed DOF affects only the collective lead­
lag mode for a rotor near hover flight condition. The 
collective lead-lag mode, with this rotor speed DOF 
included, represents the first torsional mode of a com­
bined rotor/engine system. 

Torsional resonances can also be predicted by a 
simplified mass-spring-damper model. The generic 
spring-damper model was found inadequate; conse­
quently, two improvements for this model were pro­
posed which resulted in more accurate predictions of 
the resonance. This improved spring-damper model 
effectively models the collective lead-lag dynamics in 
a rotor/ engine system. 
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A Derivations of Equations of 
Motion for a Hypothetical 
Rotor 

The equations of motion for the hypothetical rotor 
shown in Figure 2 are derived in this section. First, 
the position vector of the center of mass ( c.m., at point 
C) expressed in the blade body axes (a) is 

r~ = eRsine is+ (ecose + y9 ) Rja. (77) 

The velocity of the c.m. is 

v~ = [Cecose+y9)Rrlm,-v,~] ia-

eRrlm, sine js . (78) 

Summing moments about the lead-lag hinge, Q, 
and making small angle approximations for ~ and ~. 
the equation of motion for the blade in the lead-lag 
DOF becomes 

.. . 2 2 
I,Q e + b1h ~ + mey9 R rim, e 

""y9 RD + (I,Q + mey9 R2
) flm,, (79) 

where I,Q = 1,0 + my~R2 is the blade moment 
of inertia about the hinge, b1h is the equivalent lag 
damper coefficient. 

The second term on the right hand side of Equa­
tion (79) results from rotor shaft rotational DOF. If we 
ignore this term (flm, ), then the natural frequency of 
blade lag motion, Vi , would be (based on the blade 
properties of Table 1) Jmey9 R2r2'!nrf I,Q = 7.76 
radjsec, which is slightly above 1/4 per rev. 

A.l Rotor Torque 

The (load) torque, Qm, , that the damper and the 
shear forces at lag hinge produce, is 

Qm, = eR(Yq sin~- Xq cos e)+ b1h ~, (80) 

where Xq and Yq are the total shear forces that the 
blade exerts on the hinge. There are two types of shear 
forces at the hinge: inertial force and aerodynamic 
force. Summing these forces at the hinge, we get total 
shear forces in the blade body axes as follows : 

Xq = meRrlm, 2 sine-my9R(nm,-~)-
meRflm,cos~-Dcos81 , (81) 

Yq = meRrlm, 2 cose + meRflm, sin~+ 

my9 R(nm, -~f +Dsin81 . (82) 

For small ~ and ~ , the angle 81 can be approxi­
mated by 

c < eJ . (83) 
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So the load torque is approximated from Equations 
(79), (81), (82), and Equation(83) as 

Qmr"" eR(YQe-XQ)+bzh~, 
2 . . 

"" eR(q,flmr e + q2 e + qaD + q4 flmr + 
qs flmr e~) , (84) 

where 

q, -

= 
q2 -

= 

q3 -

q4 = 
qs = 

m2ey 2R3 
my9 R+ I 

9 

zq 

my9 R(1 + 3ey9 ) , 

(my9 R 1) bzh -y;;- + eR , 

bzh ( 1) R 3v, +; , 

2R2 
1- myg = 1-3 2 

I Yg, 
zq 

meR-
m2eyg2 R3 

= meRq3, 
Izq 

-2my9 R. 

(85) 

(86) 

(87) 

(88) 

(89) 

The drag produced by this simple, rectangular 
blade can be estimated by blade element theory ( cf. 
[14]). At zero lift, the drag is just the profile drag of 
the blade, and is approximated by 

(90) 

where TR is the balde root cut-out ratio, i. e., the drag 
due to the root portion of the blade and hinge has been 
neglected. 

From Equation (90) the aerodynamic damping with 
respect to blade and hub angular speeds are 

A.2 

(~~)0 "" -iCCd0 flmr0 R3 (1- r~) , (91) 

(o~~Jo - (~~) 0 

"" -~cCd0 0mr0 R3 (1- r~) (92) 

Dynamics with Hub Angular Ac­
celeration 

The lag acceleration, { in Equation (79), is affected 
by rotor acceleration, Dmr , or vice versa. Also note 

that the rotor acceleration is caused by a change in 
torque in the drive train. 

Let the engine torque at the rotor speed (flmr) 
be Q,., and let the rotor (load) torque be Qmr. A 
change in Q,. (or Qmr) results in an angular accel­
eration (or deceleration) of the rotor hub : 

(93) 

where Jh is the hub inertia. 
Linearizing the load torque change about a nominal 

operating condition yields : 

6Qmr "" eRq,n;,r, (e- eo)+ ..__.., ,, 
eR [q2 + q3 ( ~~) J ~ 
+eR [ 2q,flmr, eo+ qa ( &~~r) J 6flmr 

+eRq4 Omr , (94) 

where flmro is the nominal value of rotor speed (27 
/'ad/sec), and 

"2 . meRumro 

(95) 

(96) 

The angular acceleration can be computed using 
Equations (93) and (94) : 

Omr 1 
= J + R (oQ,.-hwOflmr-

h e q4 

eRq, n;,r, oe- eRq~ e) , (97) 

where 

hw - ( &Qmr) 
anmr 0 

= eR [2q,flmroeo + q3 (o~~r) J, (98) 

q~ ' (&D) (99) - q2 +qa -. · oe o 
~ 

<0 

Similarly, linearizing the lead-lag equation, (79), 
gives 

.. o 

+ ( 1 + mel::R2) Omr. (100) 
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Finally the lead-lag angular acceleration is ob­
tained from Equation (100) and Equation (97) as 

.. (meygR
2 

) 2 e = - I,Q + Cj dr eRq, '~m.·, oe 

( bfh d R ") .; - I," + c, 1 e q2 , 

-crdrhw O'lmr + C! dr OQ,,, (101) 

where 

Cj = 1 + meygR2 

(102) 
lzq 

d, I 
(103) - h + eRq4 ' 

b:h - blh-YgR(OD); (104) oe o 

and Equations (97) and (101) describe the coupled 
hub-blade torsional dynamics for a single-bladed, ar­
ticulated rotor. 
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MODELING ROTOR DYNAMICS WITH ROTOR SPEED DEGREE OF FREEDOM FOR 
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Errata 

1. Page I : September 20, 1990 
2. Page I : Subscripts 

3. Page 3: coordinates of the imaginary axis should be './'a 2bl- 4ak!/2 and Jbr- 4I,Qk,j2I,Q. 
4. Page 4: Equation (10) 

5. Page 4 : Equation (ll) 

1 0 
-t;- t;-

0 0 

* -* 

6. Page 5 : fifth line underneath Equation (23) 2/,Q 0.m..,/J;, 6(3; (in Equation (23)). 
7. Page 9 : Equation (76) 

[ ~l [ -f.c 
1 0 

-!;;; .,!!.L 
1•-::: 

Vlmr 0 0 0 n 3kr "!;: -"* mr "J'i:" 

0 

H~~J[ 0 l !.; 0 
I 0 . 

-3 (*+ ~) Qor 
-r;:-

8. Page 9 : second line underneath Equation (76), nb. 


