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1 Abstract

Incompatibilities in the rotor/engine system torsional
dynamics may cause torque oscillation and rotor speed
variations, and they affect the handling qualities of a
vehicle, .

To analyze torsional stability, the coupling between
rotor and engine systems must be considered. This
coupling is represented by the rotor speed DOF. The
effect of this DOF is to increase the natural frequency
and damping ratio of the collective lead-lag mode.

Torsional resonances can be predicted by a simpli-
fled mass-spring-damper model. The generic spring-
damper model was found inadequate; consequently,
two improvements for this model are proposed in this

paper,
2 Nomenclature

Linear Damping Coeflicient
Blade Chord Length
Profile Drag Coefficient
Blade Hinge Offset

Blade Moment of Inertia
Identity Matrix

Shaft Moment of Inertia
Spring Constant

Mass

Torque

Blade Root Cut-Qut Factor
Laplace Variable

Blade Spanwise Distance between
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Greek Symbols
B Flap Angle
£ Lead-Lag Angle
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[11 Pigott Professor of Engineering, Department of Aeronautics
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P Air Density
(] Rotor Hub Angle or Blade Angle
Q Rotor Angular Speed
w Angular Speed
Subsripts
b Rotor Blade
e Engine
S Fuselage
h Main Rotor Hub
l Load Distrubance or Lag Spring
lh Lag Hinge
mb Multi-Blade
mp Main Rotor
ne Non-Rotating Coordinate System
q Torque
t Tansmission Shaft Spring
tr Tall Rotor
0 Blade Collective Coefficient
le Longitudinal Cyclic Coefficient
1s Lateral Cyclic Coefficient

3 Introduction

A helicopter and its propulsion system represent two
different engineering disciplines, and they are usually
designed and manufactured by different companies.
When the two systems are put together, incompatibil-
ities often occur, which could affect flight safety and
performance. In particular, the rotor/engine system
torsional dynamics may cause torque oscillations and
rotor speed variations, and they affect the handling
qualities of the vehicle.

Frederickson, Rumford, and Stephenson [5] re-
ported a fuel control stability problem on CH-47C
helicopter, where a 4.1 Hr torque oscillation with a
magnitude of 8.12% of the maximum steady torque
was observed. The problem was corrected by soften-
ing the blade lag damper springs and reducing fuel
conirel gain by 30%. The most complete investigation
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Figure 1. Suggested Linear Model for Rotor-Engine
Torsional Compatibility Studies

of airframe/engine compatibility problems was docu-
mented by major U. 8. helicopter manufacturers in a
series of U. S. Army sponsored programs in late 70's
(ef. [12], [11], {15}, (2], and [6]). The problems re-
iated to torsional stability are characterized by unac-
ceptable shaft torque and speed oscillations, mostly on
articulated-rotor helicopters.

To analyze torsional stability, the Society of Au-
tomotive Engineers [13] has suggested a simple, lin-
ear model shown in Figure 1, where & is the effective
lead-lag spring constant, and b; is the effective damper
coefficient. The spring constant comes from the cen-
trifugal force of blades. This simplified model allows
torsional flexible modes to be predicted by engine man-

“ufacturers in their designs of fuel control. However, the
accuracy of this analysis depends on good estimates of
what the spring constant and damper coeflicient are.

Typically, the spring constant from the centrifugal
force acting on the blades and the lag damper coeffi-
cient are used; however, from experience, the resonant
frequency is often over-predicted. This suggests that
some other factors be considered in modeling the res-
onance phenomenon. :

This paper analyzes the dynamics of an articulated
rotor system in hover with a shaft/rotor speed DOT.
The rotor speed DOF comes from the coupling be-
tween the rotor and the engine. It is shown that this
coupling increases the natural frequency and damping
ratio of the collective lead-lag mode.

From the analyses of simplified rotor models, two
improvements for the generic model are proposed.

Analytical results are substantiated by the simu-
lated rotor system of the Black Hawk helicopter.
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Figure 2: A Hypothetical Single-Bladed Rotor

4 Lead-Lag Dynamics of a Hy-
pothetical One-Bladed Rotor

Consider a hypothetical rotor with only one hinged,
rectangular blade having in-plane, lead-lag motion.
For simplicity, we assume that it is on a hovering heli-
copter {the mechanical imbalance problem is not con-
sidered here). Figure 2 shows the blade moving back-
ward (opposite to the shaft rotation) to form a lag
angle, £ , between the blade span axis, yg, and the
reference line of the blade azimuth angle.

Also shown in Figure 2 are the drag (D) and various
d’Alembert forces acting through the blade center of
mass, C. The blade is assumed to produce zero lift;
therefore, no flapping motion exists. The properties of
this hypothetical blade are listed in Table 1.

4.1 Equations of Motion

The equation of motion for the blade, assuming that
hub angular speed, Q.r, is held constant, is given by

Lo €+ b &+ mey, R*Q2, € y,RD (1)

where I, = L +my, R* s the blade moment of
inertia about the hinge, by, is the lag damper coeffi-
cient, and the stiffness comes from the centrifugal force
acting through the blade’s center of mass (commonly
called the centrifugal spring).

When rotor speed varies, the coupling between the
blade and its hub changes the characteristics of the
lead-lag dynamics above. The equations of motion for
this simplified rotor are derived in Appendix A, From
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Variables ' Values ||
R 25 ft

c 2 fi

Qr 27 rad/sec

TR 0.1

B 0.95

P 0.05

Yo 0.5

Cdy 0.05

m 7.4 slug

L, 1400 slug — ft*
Ih 1100 slug — ft*
bin 22001b — sec

Table 1: Properties of a Hypothetical Blade

Equations (101) and (97),

" k
3 = - (I =4 CldleR‘IlQ:?r;rc,) 73
5Q
bSb vy g
— ==+ c1dieRgy | €
T
~c1d1hy 6Qmy + e1dy éch y (2)
Qm,- = ——dlequﬂ,zmo 55
_dICngé — dyhy 8Q0mr + dy 6Q, ; (3)
where,

k. = mey, R*Q?

mtrg (4)

Note that the natural frequency and damping of
blade lead-lag oscillation have both been increased
from their respective constant-rotor speed values (in

Equation (1)) due to blade-hub coupling.

4.2 Describing Lead-Lag Oscillations
by a Mass-Spring-Damper Model

A simple mass-spring-damper model, shown in Figure
1, was suggested by SAE to be used for the torsional
stability analysis of a rotor/engine system [13}. For an
approximately rigid transmission shaft between the en-
gine and the rotor hub, the model is further simplified
as shown in Figure 3.

The dynamics, expressed in state equation form, is

by [0 1 00
: k b k 4
G| L | TTe Lo T Tg
Dpnr jlc_,_ b q_;,_ b
[ 0
Q 0
b | ] 0 [P O
L S Y

where 2 15 the angular speed of blade, and 1, i
the speed of main rotor hub.
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Figure 3: Generic Mass-Spring-Damper Model for Ro-
tor/Engine Resonance Analysis
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Figure 4: Poles and Zeros of Q,,(8)/ @, {s)

The transfer funstion from engine input torque to
rotor speed is

er(s) n (Sz‘l—blS/IzQ_l'kf/Izq)/Jh (6)
Qe,(5) s(s24abis+ak) ’
where . .
= - 7
CEg (1)

and the poles and zeros of this transfer function are
shown in Figure 4.
Let the lag angle be defined as

£ = thpar — by ; (8)

then Equation {B) can be rearranged, and £ is decou-
pled from Q,,, as shown below

é 0 1 0
HEBEGCEGEE
Qs ~k — . 0

EAREY
g P 0 (9
Qo Dee

Equation (9) agrees with the resuits of the previ-
ous section that coupling increases damping and fre-
quency. However, if we compare this equation with



| Model Type

Flexible Mode ||

Truth Model -2.02 £ 12.07 2
Generic Model -1.79 £ 1156 ¢
Proposed Model | -1.90 & 11.54 :

Table 2: Comparison of Natural Modes for Three Mod-
els of a Hypothetical One-Bladed Rotor

those in Section 4.1, we see that the missing coupling
term between £ and (4., and that the missing hub
speed damping term are related to 2mey, R%n,,&o
and (8D/8Qmr ), , which are the sensitivity of the hub
torque (due to centrifugal force) with respect to hub
speed, and the aerodynamic damping, respectively.
These effects are missing in the mass-spring-damper
model. '

4.3 Improved Mass-Spring-Damper
Model

Adding an extra damping® bs/J) for hub speed (2, )
to Equation (9}, the coupled hub-blade equation be-
comes

ky 4
z,
. b Q
engine 1
torque I ]
by

hub

Figure 5: Proposed Mass-Spring-Damper Model for
One-Bladed Rotor

5 Derivation of Coupled Flap-
Lag Equations with Rotor
Speed DOF

In the previous section, only the lead-lag motion of a
hinged blade was considered. We found that the lead-
lag motion has a strong effect on rotor load torque.
Another hlade DOF is the flap motion, which strongly
affects rotor thrust and moments.

The flap and lead-lag motions of a blade are cou-

f & 0 . 5 1 b pled. The coupled flap and lead-lag equations, for the
Kd & - (TCL?‘ + 'Jf,‘) - (qu‘ + ) i-th blade, at a constant rotor speed are [3] :
er ~k i .
- 7": o I-’EQ 60 + (qu + mieyy Rz) ng-o 86 = ""éMaero,- s
S ¢ 0 (12)
“w ] € |+ 2 | o s
L - Quar Lo Lag 86 o+ bun 86 + mieyg RUiny, 66—
A QIzQ eroﬁio 6ﬁs = "6Naero; s (13)

where b, = h,, (defined in Appendix A.2) approxi-
mates the aerodynamie damping.
Fxpressing the equation in terms of blade absolute

angle (¥}, we get

'J’b 0 1 {0
bonr 0" 0 0
Qi e
0
b ¥y 0
Tg Q 0
1 b | T 0 U
Qf.
—(—5’-}-‘:+ jbﬂ-) Qs T

The proposed modification for the model is shown in
Figure 5.

If we consider the blade model in Figure 2 a truth
model, then the natural modes for the truth model are

compared with those of the spring-damper models in
Table 2.

1The extra damping terms are suggested by Equations (2)
and (3).

where Maero, and Nger,, are the moments created by
aerodynamic forces, and where control moments are
not included. These equations are accurate to second
order small effects.

Figure 5 shows a blade creating both flap and lead-
lag displacements. Two coordinate systems are shown
with “s” defined as the shaft axis system, which is
rotating with the shaft and is fixed at the hub,O; the
“s” coordinates represent a blade body axis system,
which is rotating with the blade and is fixed at the
hinge, @. The flap angle, 3, the lead-lag angle, &,
and the blade azimuth angle ¢, are shown poistive in
the figure. Subscript “” marks the ith blade.

Equations (12) and (13} represent the linearized
flap and lead-lag dynamics that have been commonly
used in rotor dynamics analysis. We like to extend
these equations to include rotor speed variations. We
are also nterested in knowing whether the rotor speed
DOF affects the blade flap-lag coupling. The deriva-
tion is based on the following assumptions :

e Rigid blades.

e Linear lead-lag dampers.

IT1.9.1.4



Figure 6: A Hinged Blade Undertaking Flap and Lead-
Lag Motions

s Flap hinge and lead-lag hinge coincide.
s No kinematic coupling.
e No pre-cone angle.

Applying Lagrange’s Equations, we get the flap
equation of motion

" . .y 2 ,
Ipo B + IJ:Q (d)a + 6:) Cpisp; + ms'engz?!)fSﬁ,-Cs.-“

mieyy R2isp,s¢, + migyg Rep, = —Mesr, (14)

where I, = [L+mylR? and I, = L+myiR?
represent the blade moments of inertia about the
hinge. M.y, 1s the moment created by all external
forces about flap hinge axis (including the contrel mo-
ment), and is positive in the ig direciion.

The lead-lag equation of motion is

a (wa +é) '3?3 - era:qﬁi (@bz + E:) €, 85,1
Iy (1[!1 + &) 55, bin&i -+ mieyy R¥scp ¢, +
ext; (15)

where Negy, is the external moment about lag hinge
axis, positive in the kp; and by, is the equivalent lag
damper coefficient.

To linearize the flap and the lead-lag equations for
small angles of 5; and £;, we define

maey, R2yPep, ¢, = —

B = B, +65, (16)
& = &, +6&, (L7}
Qe =t = Qv + 6 (18)
Qe = i = 6y - (19)

Substitute Equations (16) to (19) into (14) and
(15), and make small angle approximations for §;,

and &;,. After dropping small terms of the third- and
higher-orders, the flap equation becomes
Lig88i + (Ing + miey, R*) Q2 6Bi+
2 (Lzg + mieyy R?) Qinrg Bio 6Qm» +
2o Qg Fig 66 = ~6Mess, (20)

and the lead-lag equation becomes
LioB&: + bind€; + miey, R?QZ,, 68+
2mieyg R Qo iy 6mr —
202480mr, (3:‘05@' + By 66i + 5.éi5ﬁ£)
= ~8Nezt; + (lng + TRiCY, R?) . (21)

Finally, if we retain only the most significant
second-order terms, the flap equation simplifies to

Lo 86i + (Irg + mieyg RF) Q% 68 = ~6Mese,. (22)

Similarly, the lead-lag equation, with I, ~ I, for
a large aspect ratio blade, simplifies to

L b6&; + bip 66; + miey, REQZ, 68—
QIZQQmPOﬁ‘fQ 63 = _6Ne3:t; +

(Lo + mieyg %) (~Qms ) - (23)

From Equation (20) we conclude that the shaft
angular acceleration does not offect flapping dynam-
ics, and that the only significant coupling between
the flap and lead-lag motions is the Coriolis force,
21z Qmpo B, 66 (in Equation 23).

Also in Equation (23), the shaft angular accelera-
tion (Qmr # 0) directly excites the lead-lag motion;
hence, a decelerating rotor (€., < 0) acts to increase
the lead angles.

6 Flap and Lead-Lag Equations
in Multiblade Coordinates

The coupled flap and lead-lag equations of Section 5
are transformed into muitiblade coordinates (cf. (7]
and [9]) for a rotor operating near hover condition.
Let ,@‘ and £  be the state vectors of flap and lead-
lag DOF’s in the multiblade coordinates, and let the
transformation matrix be Ty, Then for flapping dy-
namics, Equation (22), is transformed into

8 +TL, (QTmb +d; Tmb) 58 +

T;{;b (’-‘t‘mb + Ef Tmb + 7_? Tmb) 6§-nr

T
1 oM
=77 {22 24
IxQ mb (aﬂr)o ey ( )
where m = my; and

i = 1 (am*) (25)

IWQ aﬁl
mey, it 9 1 oM
(e 2 ez, 4 2 (S o)

2q

—2
vy

il



The flap dynamics in the multiblade coordinates
is again decoupled from the lead-lag dynamics. So
for rotor/engine torsional dynamics analysis, the flap
motion is like an input disturbance.

For lead-lag dynamics, the rotor angular accelera-
tion (Qnr) in Equation (23) is first eliminated. The
angular acceleration can be expressed as a function of
blade state (see Equations (3)) and input variables,
i e,

Qunr = (fop 68i + Fop, 685 + fue, it
izl

fu: 86 ) + fow 6Qumr + Gior th, + dz 8Q., (27)

where
o= g, (99
fwﬁg = d2 (aﬁ; )D ) (28)
.= g (99 )
i =~ (5F) (29)
o 90
fwfi = “'d2 ("gg‘—)u ) (30)
<0
fwé,- = —dy ("8“8“(‘?—1‘) ’ (31)
& /o
<0
f{bw = "'thwa (32)
o 8. \" .
Cor = —dy (a__‘“)o , (39)
and where dy = 1/ [Jh+ (6Qr/69m,) ], Qe, is

the engine torque, and @, is the load torque of main
and tail rotors. The coeflicients defined in Equations
(28) through (31} are same for all blade in hover.

So the lead-lag equations for all n; blades in the
blade rotating coordinates are

6§¢+a‘l§§_’- +§t26§4”+clfWEP6§_,~+clfwa5§r
= (Fip T c1fop P) 68, +
(?zgl—clfw{;}’) 5ér”clfd-!w159mr"—

1 /oN\T
[Cler—i—E; ("gi:)o:l Ilir -

e1dy 16¢., , (34)
where di, 7y, fip, and ?,ﬁ- are
4 = %4»}.1;(%21)0 (35)
. 202
o= ,,_meeygflziqnmro_+l_j; (%g)o , (36)
Tis = Wlnreli, — I,,lq (gg-)() , (37)
7o = 1= (55). (35)

with

6Nea:t.‘ ] (%) 6ﬁt+<gg') 6,Bs”+
/0 i/ 0

_B_N_\ : (QI_V.) SE:
(awgam )

(gi):y,. (39)

Furthermore, ¢; 18 as in Equation (102); and for a
four-bladed rotor,

g
i

(40)

e
o T Y
i

1
1
1
1

The last two terms of the left hand side of Equation
(34) are transformed to the multiblade coordinates as
follows :

erfoePOE, = cifogPTmy b8

4 0 0 0
4 00 0
= clftbf 4 0 0 0 6§_n,. 1(41)
4 0 0 0
T,
led,gpa_i. = led,E'PTmb 5_6_”4*
0
o1 foe PToy, 86,
Sevsamn b’
T,
= afyTi6E (42)

Using Equations (41), (42), the multiblade lead-lag
equations are

6¢ -+ T, (QTm,, +di Ty +{ 1 £, T ) 6, .+
Thy (T + &Toms + T Tt + :
5§ =R.H.S., (43)
and the right hand side (R. H. 5.} is given by
R.H.S =TL[(FfisI-c1fop P) Tyt

(FisT—c1fop P) TmaldB, +

Lar
T%b (?Iﬁ I- lecb,é P) T 6§,m' -
Cl fu';w T;{lb 6Qm,~ -

I A
61G¢r+“f;';‘ (ay-T‘)D:,y_ru_

C1 dZIéQer . (44)

T
Tmb

The boxed terms in Equation (43} confirm the re-
sults of increased lead-lag damping and natural fre-
quency due to hub-blade coupling. After substitut-
ing Ty in those terms, we see that only the collective

[11.9.1.6



mode (the smallest frequency mode), &, is affected by
the shaft DOF. The progressive and regressive lead-lag
modes are not affected. This suggests that only the
collective lead-lag oscillation needs to be considered in
the analysis of torsional resocnance near hover.

6.1 An Example of Multiblade Lead-
Lag Equations with Shaft DOF

A simplified, three-bladed rotor? is used in this exam-
ple to show the changes of rotor lead-lag eigenvalues
with variable rotor speeds. Each blade has one DOF,
and possesses the same properties as those defined in
Section 4.

Since the large centrifugal force on each blade keeps
its lag angle small, the lead-lag equation for the i-th
blade is approximated by Equation (100) :

G+ A&+ v e Qnr, (45}
where
1 gD
& = bin — 1 R(——.-)], 46
R AR o)l
2
v Wl or (47)
T, e

The variation in rotor load torque for just one blade
is given by Equation (94); so for three blades, the load
variation is

3 3
6Qmr N eRUOZ, S 8E+eRe S 66 +
k=1

k=1
Bhey 8Qnr + 3eRqq Sy . (18)

The linearized equations lor rotor angular acceler-
ation as well as Jead-lag dynamics are therefore

3 3
Qpp -k by 60mr = — A Z §Ep — H Z\ 6£,L + ds 5@::, )
kel Rl
(19)

3
66 dj 86 + VP & +eap S Bt
k=1

3
e ) 86k & —eiby 6 + €15 6Q,, , (50)

k=1
where
ds = ﬂ%m . {51)
bw = 3d3 hrw ) (52)
A= dyeRnQl,, (53)
g = dieRql . (54)

2 Although the transformed equations in the previous section
were derived for & four-bladed rotor, using a three-bladed rotor
here as an example is suflicient to demonstrate the point., The
tead-lag dynamics for a four-bladed rotor in multiblade coordi-
nates contain one reactionless {differential) mode.

Assume e € 1, and that perfect symmetry exists
in all three blades, i. e, £, =& = &3. So ¢y ~ 1 and
Equations (50) and (49) are simplified to

88 -+ (dy + 3p) 6€; + (v +3)) 66
_s _bw 6er + da 6Qer 3 (55)

Qmp + b 6Qumy ~ ~3X 86 — 3 66; +d36Q., . (56)

The transfer function from §Q,, to §Qm, is found
from Equations (55) and (56) as

8y (s) ds (s + d}s + v}
6Qe,(5) ~ (5+bu) (s +dis+v7)+3s (A -+ ,usg ' :
57
The characteristic equation, after substituting the
expressions for A and p, is rearranged to extract the
lead-lag damper coefficient (by,), and the aerodynamic
damping (bs = 8D/8¢) explicitly. The final expression
is approximated by

(5 +bu) (s* + o) + 3As+
bas(ays+az)+bps{ass+ay) 0, (68)

where
R
a = 3d3eRqa—‘?frg , (59)
29
by yg It
= . 0
ag IZQ ) (6 )
R? 1
az = 3d; (1+"neyg )+ , (61}
o Ta
be:
ay = . (62)
L.

The roots of the characteristic equation can be
thought of functions of three design parameters, A,
bs, and by, of which the first two parameters are fixed
for a given blade geometry and mass property, and the
third parameter is to be chosen during the design pro-
cess to assure rotor stability,

The roots of the lead-lag equation are analyzed us-
ing the Root Locus technique, and are shown in Fig-
ures 7,

To describe the dynamics of the entire rotor, in-
dividual blade lead-lag dyanmic equations are trans-
formed into multiblade equations. A scaled transfor-
mation matrix, Ty, for a three-bladed rotor is given

by (cf. 4])
Vs,

1 2
‘5_51 V3 \/5—‘31.01
66 | = | d e JZsw |06, (©63)

5'5'.3 H

2 2
73 \/';Cfﬁa '\/;‘51.[’3
8

where t; Is the azimuth angle of the ith blade, 8¢,
represents the lag angles of three rotating blades, £
represents the multiblade lag angles of the rotor : &g,

I1r.9.1.7
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Figure 7: Open-Loop Poles of Simplified Three-Bladed
Rotor

£1c,and &, are the collective, longitudinal cyclic, and
lateral cyclic angles, respectively.

Using the definition of the multiblade transforma-
tion in Equation (63), where the scaled transformation
matrix Ty 18 orthogonal, the lead-lag dynamics in
rotating blade coordinates is tranformed into nonro-
tating, multiblade coordinates as follows:

6, + Ty (2Tms + Ty + 1T 66, +
TE:;{; ('i‘mb + d;Tmb + I/FTmb + Cl/\U) 5§~nr‘
[ V3

0 } (=bw 6Qmr + d36Q., ), {64)
0

V3 0 0
where Uz | /3 0 0| .
V3 00

Further reduction of Equation (64) yields

. d; + 36‘1,& 0 0 )
5E+ 0 & W, | 86+

=1

0 »««-Qﬂmm d:’
v+ 3er A 0 0
0 Vi'z - Q?ﬂr‘o d;ﬂm"ﬁ 6§nr
0 **de1111"0 Vi'z - Qrzm‘o
g1 g2
=1 0 [ 8+ | O |dadQ.,, (65)
0 0

where

g = \/g("'clbw).: (66)
2 = V3. (67)

Similarly, the shaft dynamics is given by

er = 6er = d3 éQer - bw 6er"'
APy 8, —pPLEE (68)

where P; = [\/5, 0, 0] .

Take the Laplace transform of Equations (65) and
(68), the combined rotor and shaft dynamics for multi-
blade lead-lag state variables becomes

s +dis+v 0 0 —g3
0 pi(s)  pa(s) O
0 —p2(s) pi(s) O
V3 (us+A) 0 0 s+b,
6&0(s) g2
6616(8) 0
6613(5) 0 d3 5Qer ) (69)
852(s) 1
where
d = di+3ap, (70)
7E = pi+3aA, (71)
pi(s} = s djs+ (uf — ﬂfmo) , (72)
p2(s) = Qmey (25 +dp). (73)

Using this simplified rotor, we demonstrated that
the rotor speed DOF only affects the collective lead-lag
mode. The lead-lag mode and the rotor speed mode
are coupled. The transfer function from engine torque
to rotor speed is given by

§Q(s) _ da(s®+djs+1f
0Q..(3) q(s) ,

(74)

where

g(s) = (s +b) (P + s +78) +V3a1 (ns+A) .
(75)
The characteristic equation is exactly the same as
that of Equation (57), if e € 1, or ¢; = 1; therefore,
the results about pole locations for an individual blade
apply directly to the dynamics of the entire rotor (in
terms of the collective lag angle).

7 Further Improvement for

Spring-Damper Model

An articulated rotor usually contains at least three
blades. To analyze the torsional resonance for a multi-
biade rotor using the mass-spring-damper model, an
immediate question arises : how to characterize the



| Model Type | Flexible Mode ||

Truth Model -4.17 £ 1764
Generic Model ~1.79 £ 20.18 1
Proposed Model | -4.28 4 16.47 2

Table 3: Comparison of Natural Modes for Three Mod-
els of a Three-Bladed Rotor

cumulative effects of all blades in this model? A com-
mon approach is to add the centrifugal spring con-
stants from all blades, but a cumulative damper co-
effictent is usually not used in the analysis. However,
from the three-bladed rotor example, the additive ef-
fects for spring and damper only went into the roter
angular acceleration equation, where the rotor torque
was computed as the sum of the torques produced by
individual blades. So for a three-bladed rotor, the hub-
blade dynamics is modified from Equation (11) as

oy o 1 0
% || "1 TTE Ts
Ve 0 0 0
?, ¥y [0
5 oo | 0 |
-3 (ﬂ-+{}i;) Qe |

where “3” can be replaced by the number of blades
{ng)ifit is other than three.

Note in this equation that blade lead-lag motion
is still characterized by the original spring constant
and damper coefficient. So only the coupling paré is
changed, but the blade oscillation itself is not. This
effectively models the collective motion of the blades
in a rotor, and it fits well with the finding that only
the collective lead-lag motion needs to be considered
in torsional resonance studies.

If a cumulative spring constant (sum of all blades)
is used in the spring-damper model, the predicted reso-
nant frequency is higher than the actual frequency. On
the other hand, since the curmulative eficct of dampers
is not considered in conventional analyses, the damp-
ing ratio of Lorstonal modes are smaller. Figure 8 pro-
poses an improvement to the spring-damper model;
namely, to model individual blades explicitly.

Using the three-bladed rotor as an example, the
natural modes of the truth model, the spring-damper
model with cumulative spring constant and damper
coefficient (Figure 8), and of the generic model are
compared in Table 3. The predicted frequency for the
generic model is 15 % higher, and the damping ratio
is approximately 160 % less.

k) -
I
.
by
engine
torque ot B I

hub

Figure 8: Proposed Mass-Spring-Damper Model for
Three-Bladed Rotors

8 Simulations of Black Hawk
Rotor System

The effects of the rotor speed DOF on rotor system
natural modes are demonstrated for the simulated
Black Hawk rotor system. This rotor system (ROT-
SIM) (8] simulates the main and tail rotors of the Stko-
rsky Black Hawk helicopter.

A series of linear models for the rolor system were
generated with varying degrees of lag damping. The
damper stiflness is selected as a parameter because it is
a critical design factor for adequate torsional stabihty
(the nonlinearity and the stiffness of lead-lag dampers
were found to be factors inducing torque and speed
oscillations}.

Figure 9 shows the eigenvalues of the rotor in both
the constant and variable rotor speed conditions. In
the constant speed situation, the lead-lag modes be-
come more damped for increasing amounts of lead-lag
damper coeflicient. The fap modes are not affected.
When the rotor speed DOF 1s present, the collective
lead-lag modes are shifted due to the coupling, and
botls the undamped natural frequency and the damp-
ing ratio are increased. Eventually, as the lead-lag
damper gets stiff enough, collective lead-lag eigenval-
ucs become two real values,

In the figure, the natural frequency of the collective
lead-lag mode for a nominal value of damper coeflicient
is around 17 red/sec. This frequency corresponds to
the engine/rotor torsional oscillation, which is usually
veferred to as the first torsional mode. The frequency
of the first torsional mode, for the Black Hawk type
of helicopters, has been estimated to fall between 15
to 20 rad/sec (cf. [10] and [1]) using frequency sweeps
on analog computer simulations. So the analysis of
rotor/engine dynamics with rotor speed DOF in this
research agrees with published simulation results.

[11.9.1.9
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Figure 9: Rotor Eigenvalues for Varying Degrees of
Lead-Lag Damping

9 Conclusion

Couplings between rotor and engine systems are rep-
resented by the rotor speed DOF. The effect of this
DOF is to increase the damping ratio and natural fre-
quency of a blade’s lead-lag oscillations compared to
a constant rotor speed model. In multiblade coordi-
nates, the speed DOF affects only the collective lead-
lag mode for a rotor near hover flight condition. The
collective lead-lag mode, with this rotor speed DOF
included, represents the first torsional mode of a com-
bined rotor/engine system.

Torsional resonances can also be predicted by a
simplified mass-spring-damper model. The generic
spring-damper model was found inadequate; conse-
quently, two improvements for this model were pro-
posed which resulted in more accurate predictions of
the resonance. This improved spring-damper model
effectively models the collective lead-lag dynamics in
a rotor/engine system.

10 Acknowledgement

The authors gratefully acknowledge two organizations
for the support of this research. The Garrett Engine
Division of Allied-Signal Aerospace Company provided
financial support, and the Ames Research Center of
NASA provided a Black Hawk helicopter simulation
program.

A Derivations of Equations of
Motion for a Hypothetical
Rotor

The equations of motion for the hypothetical rotor
shown in Figure 2 are derived in this section. First,
the position vector of the center of mass (c.m., at point
C) expressed in the blade body axes (s) is

r2 = eRsinfip + (ecos +y,) R jB . (77)

The velocity of the c.m. is

[(ec0s€ + ) ROy ~ y, RE] i —
eRQmysiné jg . {78)

vB =

Summing moments about the lead-lag hinge, @,
and making small angle approximations for £ and &,
the equation of motion for the blade in the lead-lag
DOF becomes

Lg &+ b & + mey, R?QZ, ¢
RS Yy RD + (IzQ + meyy Rz) er ) (79)

where I, = L, + myZR? s the blade moment
of inertia about the hinge, by is the equivalent lag
damper coeflicient,

The second term on the right hand side of Equa-
tion {79) results from rotor shaft rotational DOF. If we
ignore this term ({2,,), then the natural frequency of
blade lag motion, v;, would be (based on the blade
properties of Table 1) \/mey,R?QZ /I, = 7.76
rad/sec, which is slightly above 1/4 per rev.

A.l

The (load) torque, @mr, that the damper and the
shear forces at lag hinge produce, is

Rotor Torque

Qur = eR(Ygsin€ — Xgcos€) +bné,  (80)

where Xq and Yy are the total shear forces that the
blade exerts on the hinge. There are two types of shear
forces at the hinge: inertial force and eerodynamic
force. Summing these forces at the hinge, we get total
shear forces in the blade body axes as follows :

Xq = meRQm siné —my,R (s‘zm,, - 5") -
meRQmy cosé — D cosdy (81)
Yo = MeRQmy? cos € + meRQ,,, siné +
N2
mng(Qm,- - 5) + Dsind; . (82)

For small & and £ , the angle #; can be approxi-
mated by
£

142

-4

(< &) . (83)

8, =3

[11.9.1.10



So the load torque is approximated from Equations
(79), (81), (82), and Equation(83) as

Qmr ~ eR(Yg&—Xg)+but,
~ eR(QO% €+ 926+ gD + ¢4 Qmy +
g5 mr ££) (84)
where
2,0 203
g = mng+ .n_“;yj_. y
zq
= my,R(1+3eyy) , (85)
- my, R 1
= b -
g2 rh( L., +3R)’
= 5 (3 + - ) (86)
2
I,,Q
2., 203
94 = meR - meyy K7 _ meRgs,  (88)
L,
m = —'megR- (89)

The drag produced by this simple, rectangular
blade can be estimated by blade element theory (cf.
(14]). At zero lift, the drag is just the profile drag of
the blade, and is approximated by

1 lp
f dD = f =cea, VERAr,
TR TR 2

P 1
¢ cana(/ Q2 ridr -
R

Dyrot =

&

1
f Whrr?dr)
rr
~ gccdoﬂfn,R:* (1—r}) -
-gccdoszmrf'fﬁ (1-r3); (90)

where 7p is the balde root cut-out ratio, 1. e., the drag
due to the root portion of the blade and hinge has been
neglected.

From Equation (90) the aerodynamic damping with
respect to blade and hub angular speeds are

(%), -
8 /4

(=), = - (%),
mr /o o¢

'"-'g'CCdueruRa (1 - T?E) ) (91)

that the rotor acceleration is caused by a change in
torque in the drive train.

Let the engine torque at the rotor speed (Q)
be Q.. , and let the rotor (load) torque be Qnr. A
change in @., (or Qmr) results in an angular accel-
eration {or deceleration) of the rotor hub :

Jh er = Qc.- - me 3 (93)

where Jy is the hub inertia.
Linearizing the load torque change about a nominal
operating condition yields :

Qmr =~ equﬂfm.o (€ —~ &o)+
N

&

alaen ()]

apD
+eR {QQIero {0 +qa (m) 0] 6er
+eRqy er ) (94)

where (2,,r, 15 the nominal value of rotor speed (27
rad/sec), and

@ = g2+ ¢5Qmro 0 s {95)
Dy
o meRQZ,, (%6)

The angular acceleration can be computed using
Equations (93) and (94) :

er = hw 6er -

J}] ‘+‘€Rq (6Q€r
ER‘thro —eRgl €), (97)

where

_ (0Qm
he = (magm)o

a0
= eR [2q19mr0£{) + ¢3 (69 ) } , {98)

P oD
42 = 92+f13(66) (99)
W

<0

Similarly, linearizing the lead-lag equation, (79),
gives

. R2Q2 b 8D

P 3 3 ~ meyy mrg h

-~ "é‘C Cdo erﬂR (1 - TR) (92) E IZQ 66 IZQ IzQ aé g

. . yeR { 0D 2meyy R2r, £0 50
A.2 Dynamics with Hub Angular Ac- + Lo \8mr /o To mr

celeration 7
The lag acceleration, £ in Equation (79), is affected mey, R?Y -
by rotor acceleration, Q,,, or vice versa. Also note +i Lo S - (100)
111.9.1.11



Finally the lead-lag angular acceleration is ob-
tained from Equation (100) and Equation (97) as

§ = _(meny2

7 Qv 66

qQ

+ C1d1€RQ1>

’ O
— ( i + c;dlequ{) £
L.,

—c1dyhy 60mr + 01 d) 5Qer s (101)
where
2
o = 14 MUR (102)
g
d = ! (103)
YT ¥ eRes’
an
M. = by - R(-——) ; 104
ih th = Ug 85 . ( )

and Equations (97) and (101) describe the coupled
hub-blade torsional dynamics for a single-bladed, ar-
ticulated rotor,
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Errata (943" Flaver Z.5.Z J

1. Page 1 : September 20, 1990
2. Page 1 : Subscripts

3. Page 3 : coordinates of the imaginary axis should be \/a%b? — dak;/2 and +/b? — 4l ki /2 g .

4. Page 4 : Equation (10)
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6. Page § : fifth line underneath Equation (23) 2/, Quare Biy 88i (in Equation (23)).
7. Page 9 : Equation (786)
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