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Abstract

Motivated by the demand for a fast flow simulation tool
that takes the interaction between rotor and helicopter
fuselage into account, an actuator disc boundary con-
dition suited for helicopter rotors in forward flight has
been implemented in the unstructured DLR TAU code.
The time-averaged effect of the rotor, which accel-
erates the flow and adds energy to the fluid is im-
posed using source terms in the Navier-Stokes equa-
tions where the actuator disc is located in the grid.
The transfer of this approach, previously implemented
in the structured DLR FLOWer code, involved adapt-
ing the strategy to the unstructured framework. It is
shown that propeller simulation results are in accor-
dance to FLOWer results and simple 1D theory pre-
dictions. Moreover, rotor in forward flight cases prove
the robustness of the implementation and resemble
FLOWer results. Further development involved test-
ing the implementation in parallel mode and a more
sophisticated rotor force distribution is applied instead
of a constant pressure jump. Finally, a comparison
of the viscous flow field around the EC145 helicopter
computed by TAU and FLOWer is performed. It shows
that there is good agreement between the two codes
in predicting the effect of the actuator disc on the fuse-
lage pressure distribution.

Nomenclature

Symbols
A area
c speed of sound
cp pressure coefficient
Cl, Cd lift and drag coefficient
CT thrust coefficient
d actuator disc diameter
~D artificial dissipation operator
E total specific energy
~f force density vector
~F force vector
¯̄F flux tensor
m mass, face index
M Mach number

~n unit normal vector
Nn number of neighbors
p pressure
~QΩ source vector
¯̄QS surface source tensor
R rotor radius, inner rotor radius Ri
~R residual vector
Re Reynolds number
~S face vector with face area S
T thrust
t time
~U vector of conservative variables
~V velocity vector, components (u, v, w)

Greek Symbols
α incidence angle
ρ density
ω rotation frequency
Ω volume
ψ azimuthal blade angle

Subscripts
AD actuator disc plane
eff refers to the true disc area
tip rotor blade tip
∞ free-stream condition
0 stagnation condition

Introduction

Nowadays CFD is routinely used in industry as a de-
sign and analysis tool. The comparison of different
designs enables the evaluation of a potential perfor-
mance increase. Compared to wind-tunnel experi-
ments CFD allows a much more detailed view of flow
phenomena. It therefore also provides explanations
for the potential performance increases. However, in-
dustry demands faster and more accurate analysis
tools that enable quick turnaround times.

In the framework of helicopter design a major chal-
lenge is flow unsteadiness due to rotating blades. Al-
though there exist some low-fidelity rotor modeling
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tools such as blade element methods and panel meth-
ods, they are not suited for an accurate computa-
tion of the viscous interaction between rotor and fuse-
lage. Such analysis demands high-fidelity methods,
i.e. methods based on a solution of the Euler or
Navier-Stokes equations, that compute both vortices
and the pressure field accurately. In general, model-
ing helicopters including rotors is nowadays possible
following two different approaches.

The first approach is to compute the unsteady flow
field by taking into account each rotating blade. This is
accomplished using the Chimera technique, with sep-
arate rotor blade grids moving over a fuselage back-
ground grid ([1],[2]). However, this approach is ex-
tremely time consuming and therefore not suited for
everyday industrial applications.

Drastically reduced geometrical complexity, compu-
tational time and user input can be achieved with a
second approach: modeling the flow field in a quasi-
steady sense by employing an actuator disc. An ac-
tuator disc represents the area that the rotor blades
sweep over during each revolution and is meant to im-
pose the time-averaged effect of the rotor blades. An
actuator disc, suited for rotor in forward flight cases,
has been successfully implemented into the structured
DLR FLOWer solver by Le Chuiton [3] and at ONERA
by Bettshart [4].

While the FLOWer actuator disc produces high-quality
flow solutions (see computation of EC145 [5]) a signif-
icant amount of work is involved to obtain these. The
generation of structured grids around complex bodies
such as a helicopter fuselage requires a lot of experi-
ence and time. Furthermore the Chimera technique is
used to place main and tail rotor actuator discs into the
fuselage grid. This requires special attention when ac-
tuator discs are close to the helicopter fuselage since
grid holes need to be defined.

To reduce the complexity associated with structured
grid generation it was decided to transfer the actua-
tor disc implementation approach from FLOWer to the
unstructured DLR TAU Solver. User input and the as-
sociated CAD work for the generation of an unstruc-
tured grid around a complex geometry is much lower.
Furthermore, unstructured grids enhance the amount
of geometrical complexity that can be modeled such
as antennas, the rotor mast and so on.

Numerics
Conservation Laws and Source Terms

To understand the implementation concepts of the ac-
tuator disc boundary condition it is worthwhile taking
a look at the conservation equations underneath. Ap-
plying the basic laws of flow physics, that is the con-
servation of mass, momentum and energy, to the vis-
cous flow of ideal gas yields the Navier-Stokes equa-
tions. In integral tensor notations for solving steady-
state problems they read as follows:

∂

∂t

∫

Ω

~U
�
Ω +

∮

∂Ω

¯̄F (~U) · ~n
�
S = ~QΩ �����

~U contains the conservative variables of three-
dimensional flow:
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The flux density tensor ¯̄F is composed of the inviscid
part ¯̄F c (related to convection) and the viscous part ¯̄F v

(related to diffusion):

¯̄F = ¯̄F c − ¯̄F v �
	��
Since both laminar and turbulent base numerics re-
main unaltered by the actuator disc implementation
the flux density tensors don’t need to be considered
in more detail. However, ~QΩ on the right-hand side
represents a vector of source terms. It is included in
Equation (1) because the present actuator disc bound-
ary condition implementation is based on a source
term formulation. ~QΩ is equivalent to a formulation us-
ing a generic surface source tensor using the Gauss’
divergence theorem as follows:

~QΩ =













ṁ

Fx
Fy
Fz
Ė













=

∮

∂Ω

¯̄QS ·~n
�
S =

∫

Ω

div( ¯̄QS)
�
Ω ����

This equation is meant to show that there are different
source term implementation possibilities. One may for
instance want to use an existing helicopter grid. Then,
one could prescribe the actuator disc geometry and
determine all volume elements that are cut. In a sec-
ond step appropriate volume source terms could be
applied [6]. Although this approach would be inde-
pendent of grid generator modifications it raises ques-
tions on an appropriate grid resolution in the disc vicin-
ity. Thus, refining the rotor region would be necessary.
The second approach utilizing surface source terms is
based on a clearly defined actuator disc surface in the
flow domain. Equation (4) shows that ¯̄QS in general
may contain mass flow sources, force stresses and
a power source term, where ¯̄QS may vary from con-
trol volume to control volume. The meaning of ¯̄QS is
similar to the flux density tensor ¯̄F . In the case of an
actuator disc that is supposed to model a rotor there
will be shear stresses inducing swirl, normal pressure
forces providing the rotor thrust and a power contri-
bution. On mass conservation grounds the mass flow
source term will be zero.

2.2



In the case of a finite volume scheme the discretiza-
tion of the flow domain is performed by breaking it into
small control volumes. Nodal flow variables represent
the average over the control volume. Then, Equation
(1) along with Equation (4) is cast into an expression
in terms of the temporal change of the flow variables:

d

dt
~U = −

∫

∂Ω

(

¯̄F (~U) − ¯̄QS

)

· ~n
�
S

∫

Ω

�
Ω

�����

Later on and along with this equation it will be shown
how source terms are applied. Although this work fol-
lows the source term approach it should be mentioned
at this place that other attempts have been made. In-
stead of applying source terms as in Equation (5) the
flow variables ~U may directly be modified so as to im-
pose the propulsion effect by prescribing a jump in
pressure and tangential velocity. Le Chuiton [3] has
tried several approaches and gives a comprehensive
overview on different methods. However, he encoun-
tered stability problems for boundary conditions on
variables and arrives at the source term approach. It
is more robust because the force is directly fed into
the flow field by means of source terms. This makes
the arbitrariness of extrapolations that go along with
boundary conditions on variables unnecessary, which
is critical in regions of reversed flow on an actuator
disc.

TAU Base Numerics
The flow solver TAU utilizes a finite volume scheme
to solve the Reynolds-Averaged Navier-Stokes equa-
tions (RANS) and offers turbulence modeling [7]. It
incorporates both central and upwind schemes for
the spatial discretization. Both steady and unsteady
problems can be solved. Beneath the classical ex-
plicit Runge-Kutta relaxation scheme there exists a
more modern quasi-implicit backward Euler method,
LUSGS. Compared to the Runge-Kutta scheme it of-
fers shorter computation times and better conver-
gence. Convergence acceleration techniques such as
multigrid, residual smoothing and low Mach number
preconditioning are available. TAU is typically used in
cell-vertex mode where the flow variables are stored
at the primary grid vertices and fluxes are computed
using the dual grid.

TAU Data Structure
As having an unstructured scheme, TAU employs its
own preprocessor for the transformation of the primary
grid into the dual grid, which is used for computation
[8].

Figure 1 is a simple 2D representation of the primary
grid with a boundary dual control volume. The vertices
of the primary grid coincide with the nodes of the dual
grid, with the dual control volumes surrounding each
node. The surface of a dual control volume is made up
of individual faces, each of which belongs to one pri-
mary grid edge. Faces are characterized by their nor-
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(4)
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mal vector with its magnitude equaling the face area
size. Figure 1 shows how primary grid edges and dual
control volume faces are linked together.

Figure 1 is a simple 2D representation of the primary
grid with a boundary dual control volume. It also
shows how primary grid edges and domain faces are
linked together.

Fluxes are computed face-wise by looping over all do-
main (primary grid) edges and residual contributions
are added to their corresponding nodes. This ensures
that all fluxes per dual control volume are taken into
account making nodal residuals complete.

On the domain boundary, the dual control volumes are
closed with respect to the boundary faces where the
node is located directly on the boundary as can be
seen in Figure 1.

This figure furthermore visualizes that a special treat-
ment needs to be applied to boundary nodes. First
of all, in terms of the data structure boundary faces
are stored separately from the domain faces. Second,
the domain flux scheme does not work on boundary
faces. Boundary conditions therefore aim at providing
either a special formulation of the boundary fluxes or
a way of determining the flow variables themselves.

Concept: Zero Thickness Disc and Node Pairs
The situation depicted in Figure 1 represents the way
that boundary conditions need to be set up in TAU:
the numerical flow domain is closed using boundary
faces that carry no information about what is beyond.
This makes it necessary to cover an actuator disc with
boundary faces on top and bottom and close the disc
watertight despite of its zero thickness.

In detail, such a disc is composed of border nodes,
which belong to both the top and bottom surface, and
two groups of nodes which make up these two bound-
ary surfaces, as it is shown in Figure 2. These find-
ings are based on thoughts and ideas of Axel Raichle
at DLR.

The task now is to determine the exact boundary face
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flux contribution to the residual of each actuator disc
boundary node and to add source terms. Prior to
adding the source terms a perfect through-flow con-
dition must be provided. The idea is to exchange in-
formation of both actuator disc sides. This method,
however, makes node pairs of top and bottom nodes
at the same physical location mandatory. This also
implies that corresponding boundary faces be identi-
cal except of their face vector orientation, which, of
course, is opposite in sign.

Centaursoft [9] implemented the zero thickness fea-
ture into their commercial grid generator according to
the specifications by Axel Raichle. The two different
actuator disc sides are stored separately with differ-
ent boundary markers so that one can distinguish be-
tween nodes which belong to the top or bottom side.

To summarize, the data structure concept for an actu-
ator disc in the unstructured TAU solver is as follows:
there are two disc sides with different boundary mark-
ers which share the border nodes as can be seen in
Figure 2. The pair nodes, however, exist on both sides
at the same physical locations. Face vectors of all
nodes belonging to one side have a counterpart on
the other side with the same magnitude but opposite
sign.

Concept: Through-Flow Condition
The actuator disc approach does not take individual
rotating blades with compressible flow phenomena
into account. Regarding the Mach number regime
therefore only the low subsonic regime where heli-
copters operate and the air can be assumed incom-
pressible needs to be taken into account. Due to the
essentially elliptic nature of this kind of flow the central
Jameson scheme with classical dissipation is appro-
priate and has been chosen for this work.

A benefit of this scheme is that inviscid fluxes are cal-
culated using only the two nodes that belong to a face.

(1)

(5)
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(2)

(4)
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That is, fluxes of the domain faces of an actuator disc
are calculated correctly without any information of the
other disc side.

Once the fluxes of all domain faces are computed and
their contribution is added to the respective nodes a
simple but exact through-flow condition is obtained as
follows: since the dual control volumes of top and
bottom pair nodes perfectly match together one only
needs to add the two incomplete residuals together so
as to obtain the exact through-flow residual. Figure 3
visualizes this concept.

This residual is then assigned to both nodes of the
node pair. This procedure amounts to treating bound-
ary nodes like domain nodes. Beneath simply adding
residuals together, however, it has to be taken care of
that node pairs are treated like one dual control vol-
ume throughout the whole solution process: both re-
siduals, volumes and time steps need to be identical
prior to relaxation. This is a way of ensuring that flow
variables of node pairs remain identical.

This, for instance, made it necessary to adapt the
smoothing algorithm for the Runge-Kutta relaxation.
Low Mach number preconditioning and dissipation did
not need to be changed.

Concept: Actuator Disc Source Terms
Having tackled the through-flow condition the final

step is adding source terms to the conservation equa-
tions. The discretized numerator of Equation (5) ac-
cording to the Jameson scheme applied to TAU reads
as follows:

~R =

(

Nn
∑

m=1

¯̄Fm ·
~Sm −

~D

)

−

Nn
∑

m=1

¯̄QSm
·
~Sm ��@��

The big bracket on the right-hand side represents
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fluxes computed by the central Jameson scheme with
the dissipation vector to aid numerical stability. The
summation over all source tensor contributions on the
far right hand side reduces to a single expression
since ¯̄QSm

·
~Sm is unequal zero only for one face per

boundary control volume adjacent to the actuator disc
surface:

−
¯̄QSAD · ~nADSAD = −SAD
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fx

fy

fz

~f ·
~V
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As a first step the force vector ~f for each actuator disc
boundary node has been implemented as a pressure
jump normal to the actuator disc as follows: ~f = ∆p ·~n
so that the following relation is obtained:

−
¯̄QSAD · ~nADSAD = −SAD













0
nx∆p
ny∆p
nz∆p

∆p ~VAD · ~nAD













�����

This implementation served for debugging and verifi-
cation purposes. Later on in this paper ~f will be a real
force distribution that needs to be provided by sepa-
rate methods and is read from a file during the solver
start.

Verification
Numerics Verification via Propeller Simulations

Prior to applying a pressure jump via source terms
it has been checked that the through-flow condition
works properly. With inactive source terms the L2 den-
sity residual is immediately at round-off error when
computing free-stream flow through an actuator disc
in an otherwise empty flow domain. That is, the actu-
ator disc itself as a grid cut introduces no disturbance
in the flow field.

For the verification of the source terms we shall con-
sider test cases where the free-stream flow is perpen-
dicular to the actuator disc. These cases are now re-
ferred to as propeller mode test cases. An actuator
disc flow computation is initiated with free-stream flow
and the source terms are active on the actuator disc.
As the driving force they alter the pressure field and in-
duce higher velocities at the actuator disc. Upon con-
vergence, the flow field exhibits a propeller slip-stream
with increased total pressure. Moreover, the pressure
field around the actuator disc has adapted to the pres-
sure jump across the actuator disc with lower pressure
upstream and higher pressure downstream.

A simple 1D propeller theory for incompressible flow
based on the momentum, Bernoulli and continuity
equation that describes this kind of flow field exists

in the literature [10]. Applying Bernoulli’s equation to
the flow upstream and downstream of the disc and re-
arranging these relations gives an expression for the
final stream velocity downstream of the actuator disc:

VStream =

√

2∆p

ρ
+ V 2
∞ �����

Applying the momentum equation gives a simple
equation for the propeller thrust:

T = ṁ (VStream − V∞) = ∆p ·AAD �������
Along with the actuator disc mass flow ṁ = ρ ·AAD ·VAD

the following expression for the actuator disc velocity
is obtained:

VAD =
VStream + V∞

2
�������

Finally, the continuity equation gives an expression for
the stream contraction downstream of the disc:

dStream

dAD

=

√

1 + VStream
V∞

2
�������

For the purpose of verifying that the actuator disc flow
results comply with flow physics a comparison be-
tween 1D theory and actuator disc results has been
drawn. Additionally, FLOWer results serve for com-
parison, too, since the same source term strategy is
implemented there.

Several propeller mode test cases in Euler mode at
different Mach numbers (from M = 0.2 to M = 0.02)
and different thrust coefficients CT have been com-
puted and are reported in [11]. The thrust coefficient
CT is defined as follows:

CT =
T

ρ∞ (Rω)
2
A

=
∆p Aeff

ρ∞ (c∞Mtip)
2
A

��� 	��

Aeff, the area that the pressure jump is applied to, with
Aeff = π

(

R2
−R2

i

)

is taken into account versus the
reference area A with A = πR2. This is because sim-
ulating real rotors is performed modeling the disc with
a hole (of radius Ri) at the center so that A and Aeff

differ.

One example propeller mode test case, which is rep-
resentative for the other cases, is shown here (with
A = Aeff). Flow solution data have been extracted
along the axis of symmetry perpendicular to the ac-
tuator disc. This is most meaningful for a comparison
to 1D theory.

Figure 4 shows both Mach number and pressure along
the axis of symmetry of a flow case at M = 0.04 and
CT = 0.006 which translates into a pressure jump of
348.6 Pa for a free-stream pressure of 101,325 Pa.
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With low Mach number preconditioning turned on a
high solution accuracy is obtained with the final slip-
stream velocity close to 1D theory predictions. More-
over, the pressure jump across the disc is symmet-
ric with respect to the free-stream pressure and ex-
actly matches the input ∆p. However, in contrast to
FLOWer there are wiggles both in pressure and Mach
number of the TAU solution. Since those wiggles re-
main bounded to the disc vicinity and do not change
the characteristics of the curves they do not deterio-
rate the solution quality. One thing to note is that the
TAU grid has been adapted once in the stream which
increases the solution quality significantly. Compar-
ing the TAU and FLOWer curves shows an excellent
agreement and verifies the two source term imple-
mentation concepts, that differ in detail due to the dif-
ference between structured and unstructured flow so-
lution strategies. Due to the low Mach number, con-
vergence in TAU is limited to approximately five and a
half orders of magnitude, which however is sufficient
for an accurate representation of the pressure and ve-
locity field.

Figure 5 shows a comparison of pressure fields and
bounding streamlines for this case. Beneath the dif-
ferences between a structured and an unstructured
flow solution there is a good agreement between both
pressure fields and bounding streamlines. This is
also reflected by the stream contraction ratio which
shows a relative error of approximately 2% compared
to FLOWer and 1% compared to 1D theory:

1D theory TAU FLOWer
dStream
dAD

= 0.865 0.873 0.856

Rotor in Forward Flight
Now considering rotor in forward flight test cases

�������
	�� �
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�� ��	 �
	������ �
	����$��% � �2� � � ��	�� �2,
&�������	���&6������� ���

M = 0.04
�

means essentially inclining the disc by only a few de-
grees up or down towards the on-flow. In this case,
there exists no simple theory as for propeller mode
cases. In contrast to the rather simple propeller flow
rotor in forward flight cases are characterized by a ro-
tor downwash as well as a strong vortex on each side
of the disc. As well as in propeller mode, several test
cases have been computed in Euler mode both in TAU
and FLOWer and compared [11].

Figure 6, for instance, shows streamlines in a 2D
plane perpendicular to the actuator disc at its down-
stream edge. The solutions have been obtained at
M = 0.04 and CT = 0.006 and the disc is rotated down
by 7 degrees towards the on-flow. The TAU solution
shows the disc left hand side while the correspond-
ing FLOWer solution shows the right hand side. The
streamlines in that 2D plane exhibit a very similar flow
topology. In addition, the pressure in the vortex core
drops to similar values. However, the vortex dissipates
faster on the TAU grid since it has not been adapted in
that case.

Figure 7 shows another test case at M = 0.1 and
CT = 0.006 at the same incidence as before. The pic-
tures show both the Mach number and the total pres-
sure gain fields with streamlines in a 2D plane parallel
to the flow and perpendicular to the actuator disc. As
before the flow fields resemble each other very well.
Performing grid adaptation for the TAU actuator disc
grid would further increase the solution quality.

Having computed both propeller mode and rotor in
forward flight test cases has verified the numerical
robustness and solution quality of both the TAU and
FLOWer actuator disc implementation.

Parallelisation
For the preparation of a primary grid for parallel flow
computations the grid is partitioned into a user-defined
number of domains. By default the geometric parti-
tioner in TAU is used for that purpose which splits the
grid applying geometric cuts. The resulting domains
will typically form a regularly connected flow domain.
Since the node pairs are the only additional data struc-
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ture it must be ensured that the node pair connectiv-
ity is not destroyed due to partitioning. By definition,
however, node pairs are at the exact same physical
location. Using the geometric partitioner therefore no-
thing needs to be altered in the preprocessor since
it is able to determine node pairs exactly in each do-
main. Moreover, it shows that due to the geometric
partitioner all code parts that have been added to the
solver also work in parallel automatically.

To confirm this a small isolated actuator disc flow case
has been computed both in sequential as well as in
parallel mode. It has been checked that partitioning
splits the actuator disc into two parts in separate do-
mains. Both physical flow results and convergence of
the two cases match.

Force distribution

The local on-flow conditions of rotor blades depend
on a variety of parameters such that the resulting local
force vector varies both with the radius and the rotation
angle. Imposing a more realistic force distribution to
the actuator disc shall therefore give more realism to
the flow results.

Rotor codes, be they based on a solution of the Eu-
ler or Navier-Stokes equations or on simpler profile-
database dependant methods, can be used to extract
span-wise line loads as a function of the azimuth an-
gle. Integration of that line load gives the overall rotor
blade force at each azimuthal position Fblade(ψ). Fur-
ther integrating the rotor blade forces over an entire ro-
tation and dividing by 2π gives the average rotor blade
force F̄blade:

F̄blade =
1

2π

∫

ψ

F (ψ)
�
ψ =

1

T

∫ t=T

t=0

F (t)
�
t � � ���

This relation, which is simply casting the integration
over the angle by assuming a constant rotation fre-
quency into an integration over time, shows that this
kind of averaging gives the time-averaged rotor forces.
It is the goal of an actuator disc force distribution to
provide this time-averaged force.

Typically, rotor codes provide individual forces at vary-
ing radial positions for a certain amount of (equally
spaced) azimuthal positions. Dividing the forces ev-
erywhere by the number of azimuthal stations there-
fore gives a time-averaged force distribution F̄m,n. The
index n refers to azimuthal positions (ranging from 1 to
N) and the index m to radial positions (ranging from 1
to M). The following equation is a discrete version of
Equation (14):

F̄blade =
n=N
∑

n=1

(

m=M
∑

m=1

F̄m,n

)

��� ���

The interpolation from the structured grid given by the
rotor code to the unstructured actuator disc grid in TAU
must be performed utilizing force densities for the sake
of staying conservative regarding the force F̄blade. That
is, the structured grid is broken into non-overlapping
surface fragments as can be seen in Figure 8 with an
area discretized as A(m) = R(m) · ∆R(m) · ∆ψ. Bi-
linear interpolation of the force densities onto the ac-
tuator disc grid is followed by a transformation of the
force density vectors from the rotor code coordinates
to the TAU coordinate system [3].

A small interface program has been written that incor-
porates the three steps: time-averaging, interpolation
and coordinate transformation. It is not included in the
TAU source code since a clean interface to TAU is the
surface grid file with the computation ready force distri-
bution. This could make it easy to adapt the interface
program to different rotor codes and empirically or ex-
perimentally provided force distributions. Thus, a wide
range of applications ranging from propellers to rotors
could be covered.
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Interaction between main

rotor and EC145 fuselage

A validation of the actuator disc boundary condition
would be possible comparing numerical flow solutions
to test flight data or wind tunnel measurements, in
terms of PIV for example. However, since the ex-
perimental data of the EC145 helicopter are company
property a comparison of numerical flow solutions ob-
tained by TAU and FLOWer has been performed.

Euler First Run
Prior to advancing to Navier-Stokes computations in
TAU the flow around the EC145 helicopter has been
computed in Euler mode first. Convergence of Navier-
Stokes flow computations is typically limited due to vis-
cous effects. Euler mode computations avoid these
issues and enable to determine to what extent the in-
teraction between main rotor and fuselage as well as
main and tail rotor limit the convergence. Accordingly,
a rather coarse Euler grid of the EC145 with approx-
imately half a million grid nodes featuring a main and
tail rotor actuator disc was generated using the com-
mercial Centaur grid generator. The flow test condi-
tions were as follows:

M∞ αFuselage αAD main CT main CT tail

0.2081 0o −5o 0.007673 0.008927

Since the multigrid agglomeration algorithm in the TAU
preprocessor had not yet been adapted to the needs
of the actuator disc implementation, this flow case
was computed in single grid mode. Nevertheless, the
flow solution converged to machine zero despite of the
small gap between main and tail rotor. This indicates
that the actuator disc source term implementation can
handle disturbed on-flow conditions.

Navier-Stokes Run
With the experience of which flow features are to be
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expected the final Navier-Stokes grid was generated
featuring a total number of 4.06 million nodes, 108286
surface points and 20263 main rotor actuator disc
nodes. Volume grid sources are placed in the grid to
ease later vortex capturing as well as the flow between
fuselage and empennage. The boundary layer grid
is made up of 30 prism layers with an initial spacing
of 0.01 millimeters in average. However, prism layer
chopping as well as layer contraction was unavoidable
with the Centaur grid generator due to CAD issues in
some corners which definitely reduces the boundary
layer resolution. Nevertheless, the non-dimensional
wall-distance y+ is around one on the whole fuselage
surface considering the flow solutions presented later
on. The structured FLOWer grid [5] in contrast is made
up of 8.28 million nodes, 80664 surface points and
8192 main rotor actuator disc nodes. Especially the
resolution normal to the actuator disc is better with a
much lower initial spacing.

Using the Runge-Kutta relaxation technique in single
grid mode has shown to cause severe convergence
problem. Instead, LUSGS has been tried as relax-
ation solver with the residual dropping to a significantly
lower level on the present TAU grid.

Figure 9 shows the convergence of the L2 density resi-
dual as well as the integral coefficients Cl and Cd (with
a reference area of 1m2 both for FLOWer and TAU).
The corresponding computations were performed at
the same conditions as above with a Reynolds num-
ber of Re = 4.33 millions, a main rotor actuator disc
force distribution and a constant pressure jump on the
tail rotor actuator disc. The turbulence models used
were the Spalart-Almaras one-equation model in TAU
and the LEA-kω two-equation model in FLOWer. Sim-
ilar solver settings with the central Jameson scheme
as well as the identical force distribution have been
applied.

Figure 10 shows the TAU force distribution in terms
of force density vectors (aerodynamic forces acting on
the actuator disc) that have been generated accord-
ing to the method described previously. Force vectors
are pointing down where the retreating blade faces re-

2.8



�������
	�� ���$� ��� � ��	�&�� � ���$���/� # *�� &:����	 � ��� ��	��� 
�)������� ���
���
�1,3�2��� 	�������	 ��&:���"������	 � ����&

versed flow and thus produces negative lift. For com-
parison purposes these computations were rerun at
the same flow conditions on each code with the actu-
ator discs turned off.

Figure 11 shows corresponding pressure iso-surfaces
on top of the EC145 fuselage. Globally, both flow re-
sults resemble each other quite well while there are
noticeable differences on the tail horizontal stabilizer.
Vortices emanating from the fuselage are more pro-
nounced in the FLOWer case such that they leave a
trace on both sides of the horizontal stabilizer. A more
detailed view on different flow phenomena becomes
evident in Figure 12. cp-curves of the top surface cen-
ter line are plotted along with the fuselage shape as
a reference for the observed peaks in pressure. Both
TAU solutions exhibit wiggles which are due to an in-
sufficient surface grid resolution. Indeed, those wig-
gles also appear in the surface shape while zooming
in closely. Nevertheless, corresponding TAU / FLOWer
cp curves match quite well in regions of attached flow.
That is, from the nose to the engine inlet and on the
tail vertical fin. A clear difference in cp is noticeable for
computations with versus without actuator disc.

However, the flow is largely dominated by vortices be-
tween the engine inlet and the tail vertical fin with a
strong impact on the cp curves. This also explains
the differences in Cd as can be seen in Figure 9. Lo-
cally, this effect is especially pronounced behind the
cabin on the tail boom where differences due to the
turbulence models as well as the grid density largely
influence the trace of the flow separation. Figure 13
reveals vortex traces on top of the tail boom in the
FLOWer case which do not appear in the TAU case.

Differences in vortex positions caused by the actuator
disc therefore have a stronger impact on the cp curves
shown in Figure 12 as the pressure difference caused

�������
	�� ����	� ��,��$��	��=�����>���
cp

�=� ��( ���
	��4��&6� ����� ���
� �
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	��4��&6�

by the actuator disc alone.

To complete the findings on the helicopter fuselage
Figure 14 shows a comparison of the difference in cp
due to the actuator discs between FLOWer and TAU.
It shows that the effect of the actuator disc on the sur-
face pressure in attached flow regions is a little bit
stronger in TAU than in FLOWer. Figure 14 further-
more shows that it is utmost important to be able to
predict the effects of flow separation accurately since
those are dominant on the tail boom. A more detailed
CFD investigation of the EC145 fuselage with special
emphasis on the interaction between vortices and the
empennage by applying different solvers and turbu-
lence models is reported in [12].

Last, but not least, the flow field in terms of vorti-
city and relative total pressure loss on a cut plane at
x = 8 m shall be discussed. Figure 15 and 16 show
that despite global similarity flow features are captured
sharper in FLOWer and appear to be more diffused
in TAU. The tip vortices in Figure 15, for instance,
are more compact in the FLOWer solution and there
are several vortex sheet layers. In addition, the vor-
ticity pattern around the tail boom exhibits noticeable
differences compared to the TAU solution. It is as-
sumed that these differences are due to both the tur-
bulence model used and the much higher grid density
in the FLOWer case. Performing several grid adapta-
tion steps in TAU would be necessary to capture those
details better. Adaptation has not been performed
since the present TAU version is a development ver-
sion where some solver features such as multigrid and
adaptation have not yet been adapted to the needs of
the actuator disc implementation.
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Conclusion

An actuator disc boundary condition suited for the
time-averaged flow simulation of helicopter rotors in
forward flight has been developed and implemented
into the unstructured DLR flow solver TAU. The ap-
proach previously implemented into the structured
DLR flow solver FLOWer was transferred to the un-
structured framework. It is based upon a disc of
zero thickness composed of two disc sides where
the information exchange from one disc side to the
other is performed using pairs of nodes at the same
physical location. This enables the formulation of
an exact through-flow condition augmented by energy
and momentum source terms which impose the time-
averaged effect of the rotor. Comparing pressure and
Mach number field as well as the stream contraction
ratio to FLOWer and 1D theory verified propeller flow
simulations. Moreover, rotor in forward flight cases
prove the robustness of the implementation and re-
semble FLOWer results. An interface has been writ-
ten that casts line loads of isolated rotor blade simu-
lations into a force distribution for the whole actuator
disc. The force distribution in terms of force density
vectors is directly used as input for the source terms
in TAU. The viscous flow field of the EC145 helicopter
has been computed in parallel with a force distribution
of this kind and a comparison to FLOWer has been
drawn. It shows that there is good agreement between
the two codes in predicting the effect of the actuator
disc on the fuselage pressure distribution. However, a
big portion of the flow is dominated by vortices ema-
nating from the fuselage and the position of those vor-
tices is altered by the rotor downwash. This makes a

high grid resolution and high-quality turbulence mod-
els for a more realistic flow field computation manda-
tory. Future work will address the integration of the ac-
tuator disc implementation into the central TAU version
and could involve the implementation of a trim proce-
dure by considering flight mechanics and coupling the
main rotor force distribution to a rotor code.
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