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The paper consideres small oscillations of the rotor
blades possessing anisotropic properties in conjunction with an
elastic support oscillations. Among these rotors are two-—
bladed and single~bladed ones of wide application as well as
multi—-hladed ones with non—uniform positioning of the blades
over &4 rotor disc. The example is two two~bladed coaxial
rotors having an arbitrary angle in plan between them.
The blades have a non-zero angle of setting and an arbitrary
principle of a geometrical twist which defines its oscillation
coupling in two planes. The rotor hudb is able to wmove in.a
plane of reveoluticon owing to the elastic support deformabili-
ty. Under anisotropy of the support elastic properties an
equilibrium of such rotors oscillation modes in conjunction
with the support is possible only under a polyharmconic nature
of motion.

- To compare structures of a support dynamic response vector
Cb and a rotor centre deflection vector S let us specify

the latter vector for a rotary frame of axes as
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The vector transformation into a stationary frame of

axes gives the following expression:
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where the matrix G has a form
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16l is a transposition matrix. and matrix Aw is a coordinate

transformations.

The elastic support dynamic response vector tc a given

deflection has a form

S=llc|l ¥,
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Matrix JJClf is a support dynamic stiffness coefficients

matrix which elements are the functions of frequency p.
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Yector ES transformation into the rotary frame of axes
gives the following form of the support dynamic response
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where Pi:p“u}, Pz'-'lp'l'w.

The stated above provides that the dynamic response of the
anisotropic support contains combinative harmonigs in addition
to a component having a frequency of the given deflection.

For the case of an anisotropic¢ support the two components
of the dynamic responss vector with ccmbinativelfrequencies

PZtZQJ are reduced to zero, and this restricts the probable
equilibrium state of the system to frequency p only.

Taking intc account the particular condition of
combinative harmonics formation with the frequency shift by

22w it is advisable to present the hub centre deflection
vector struciure in a form of harmonic serées with a frequency
step 2w

Morecover if the {requencies multiple to rotor revolutions
only are of interest one can get two series comprised of even

and o©dd harmonics:
Pl

gw = Z (gp eipt)
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K= 0,2,4, ..
K= 1,3,5, ..
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¥hen considering the equilibrium of the rotor combined
wgap the support for the adepted structure of the vector
5;: under the action of external forces affecting the

hub in the rsvoluticon plane, we have:

q)m + F?m = E?

-y
where F is an external load vector.
i . N e g
R, = I Dall fw is a dynamic response vector of the
rotcr blades. and

HD M is a dynamiz stiffness matrix for

the rotary ‘rame <f axes:

and providing the equilibrium conditicns for an every harmonic
force component on the hub, we canﬁget a set of algebraical
equations for amplitude components 5} of every aven and odd
harmonics seriss.

The mentioned equilibrium is satisfied with an accuracy
up to the wvalue cf two omitted items in +the support response
with frequencies beyond the harmonic range Kpua, =K mex under
consideration., that is (Kmon —=2) and (K mg, +2).

This circumstance should be taken into consideration when
choicing the amount of series items {(freguency range)} and
positions of Kipux ©r K min with respect to the particular
number o©of a harmonic under consideration. which enables to
acquire the desired accuracy of the solution for practical

application.
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The system of equations in a generalized form may be

‘!O “'gx:sz
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where 5# is a vector of deformation harmonic amplitudes, and

f% is a vector of lcad harmonic amplitudes, the matrix
ja|l is comprised of three diagonals with 2*X2-assemblies
arising from ||C}i and ||Dji matrix elements and takes the

following form

The part of +the matrix for even harmonics. for 4

particularly., takes the form:

GC3w)G +
GC(3w)G" |+ 6'C(5w)G 6 C(5w) G
+ Du;(Acu)
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The matrix D (p) takes the form

2(p*+aw’)amx ~4lwp AMx

‘ F 2 pd -
4iwp sma 2[(MB *Afﬂ;)%"(ﬁ@‘)m]

where My 18 a blade mass,
AMx(p) is an additiocnal mass determined by a sclution
of the problem on natural oscillaticn of a blade for a model

shown in fig. 1.

Fig.1l.
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The stated method was applisd to study the resonance
properties of a two-bladed rotor. The resulis are presented
as relationship between an amplitude spectrum of deformation
harmonics and an angular speed of rotation (fig.2) and in the
form of the +traditional resonance diagrams (fig. 2.,4). The
load on the hub was specified as normalized vectors of diverse
orientation. The obtained relationships allow to evaluate the
resonance states of the system as well as the oscillation
modes.

The oscillations with f{requencies of some harmonics
distinguished by 2 &J and 4 W from the frequency of
external lcad and from frequency of the dominant component were
arised in such rescnance states. Rescnance peaks’on components
adjacent to the dominant one are named here echo-resonances.
Among the cross excited oscillations of interest also are
oscillations with the frequency of 2 & . ©exXcited by a
constant load due to mass or aerodynamic disbalances.

The resonance diagrams on fig.3 and 4 correspond to two
values of the support anisotropy level and the equal mean value

of stiffness.

-

A ='%gj = 0,15 and 0,65

The difference between a low anisotropy case and an
isotropy case shows itself basicly in two diverse oscillation
modes with frequencies of f)iCd correspohding to minimum and
maximum of support stiffness. The ec¢ho-resonances are
practically lacking and can be exposed only bdy means of

particular diagnostics.
For a high anisotropy case, C = @g.65 (fig.4), the echo~-

resonances become commensurable with the main ones, and some

oscillation modes combine three and even four harmonics. The

points corresponding to the resonance peaks are groupped along
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directions of combinative harmonics and produce a developed
system (net) of resonance states. At these points ellipses
representing the mechanical 1irajectory of the rotor centre
in a normalized form at a given frequency are shown. The
orthogonality between load mode and motion (itrajectory) mode
belonging to the particular oscillation tone may result in
the '"absence" of some resonance peak. This fact should be
remembered when an analytical study and full scale diagnostics
of rotor dynamics are carried out.

It should be noted alsc the appearance of an additional
blade oscillation tone located between two combinative
harmonics ©f (Ppin *W ) and (Pmax +& ). For this tone the
ellipse orientation of the rotor centre trajectory is opposite
to the orientation of the main tone.

The results of analytic investigations on resonance
conditions occuring in so—-called X~shaped rotor constructed as
two coaxial two~-bladed rotors with an angle in plan between
them taken to be arbitrary are presented here as an example of
similar research 1in anisotropy rotor dynamic properiies. The
support properties are consided to be isotropic to make the
perception easier.

In this case the matrix IDx[ of dynamic stiffness was
derived by similitude transformation of the matrix lDwll  into
rotor symmetry axes with rotating through the angle of o /2
and followed by summation.

Dy = Z A'Dw(P)-A“I

Fig. 5 shows a resonance diagram for the particular case
of X =99 degrees., when the rotor becomes isotropic.

The two of the oscillation modes under consideration are
based primarily on the blade bending at different signs of
deflection occuring in the tip blade and the hub (blade tone)
and the other two modes are based primarily on the deformability
of the support with bending in the direction of the hub
deflection. The f{requency of the lower oscillation mode
decreases up to zero and this manifests the critical rotation
speed. For all the oscillation modes the trajectories of the
rotor centre are circular, but one of each couple has
precession direction coinciding with the rotor rotation
direction and the other two are directed oppositly (shown by a
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dotted line). As menticoned above the diverse locad form is
required for their excitation.

Fig. 6 shows the generalized resonance diagram which
displays a family of curves corresponding to a gradual altering
of the angle o between blades from described position of
o =99 degrees up to the value of =@ degrees. when rotor
becomes two-bladed. For simplification the ellipses are not
shown. The significant change in resonance frequencies
depending on the angle value is observed.The motion
trajectories for the both blade +tones are elliptic with
opposite orientation of principal axes. The mentioned tones are
excited almost identically by 1lcading modes being typical for
the full-scale conditions. This fact arises additional

difficulties when designing.

Conclusions

The solution of the-_;;;;;;;;—dealing with an oscillation
conditions in a rotor on a support possessing anisotropic
properties is realised provided the trajectory of a rotor
centre be presented as a polyharmonic series with a step in
frequency equal to 2&J) . Such an approach enables to reduce the
problem solution to a system of a linear algebraic equations.
The choice of the amount of the items in series providezs the
desired accuracy demanded for a practical application. The due
regard for anisotropic properiies of the rotor and the support
results in significantly more precise location of the resonance

fregquencies and specify more accuratly the motion character.
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oA

B0 7w bw Sw 4¢ 3w
7
The load
" form
, / Re Im
thedtote) 1 | O
Qerols 0 i
2w
»
i 3’
P -4
P 4
(

500

rpm

1000

1500

Fig. o

470




FREQUENSY (cvcLES PER MIN.)

4000

3000

2000

1000

bw 7w 6w Sw 4w Sw
07
45°
70°
P— 900
@
500 1000 1500

rom

Fig. 6



