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The paper consideres small oscillations of the rotor 

blades possessing anisotropic properties in conjunction with an 

elastic support oscillations. Among these rotors are two-

bladed and single-bladed ones of wide application as well as 

multi-bladed ones with non-uniform positioning of the blades 

over a rotor disc. The example is two two-bladed coaxial 

rotors having an arbitrary angle in plan between them. 

The blades have a non-zero angle of setting and an arbitrary 

principle of a geometrical twist which defines its oscillation 

coupling in two planes. The rotor hub is able to move in a 

plane of revolution owing to the elastic support deformabili-

ty. Under anisotropy of the support elastic properties an 

equilibrium of such rotors oscillation modes in conjunction 

with the support is possible only under a polyharmonic nature 

of motion. 

To compare structures of a support dynamic response vector 

and a rotor centre deflection vector let us specifY 

the latter vector for a rotary frame of axes as 

' 
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The vector transformation into a stationary frame of 

axes gives the following expression: 

where the matrix G has a form 

I 1 

G 
2. 2.L -
..L l 
2L 2.. 

11 G1U is a transposition matrix. and matrix 

transformations. 

-'f 
A is a coordinate lJ.U) 

The elastic support dynamic response vector to a given 

deflection has a form 

c 

- -c?=IIC!l~, 

--
A(p) l-l(p) 

H(p) B(p) 

Matrix UCU is a support dynamic stiffness coefficients 

matrix which elements are the functions of frequency p. 
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Vector ~ transformation into the rotary frame of axes 

gives the following form of the support dynamic response 

vector: 

where 

= {[G ll C(p.)HG + G1ll C(p~l\ G'J e~Pt+ 

+ [ G llc(p2.1 ll G' J e i.Cp+2c.J)t + 

The stated above provides that the dynamic response of the 

anisotropic support contains combinative harmonics in addition 

to a component having a frequency of the given deflection. 

For the case of an anisotropic support the two components 

of the dynamic response vector with combinative frequencies 

p ±2CIJ are reduced to zero. and this restricts the probable 

equilibrium state of the system to frequency p only. 

Taking into account the particular condition of 

combinative harmonics formation with the frequency shift by 

±2~ it is advisable to present the hub centre deflection 

vector structure in a form of harmonic series with a frequency 

step 2w 
Moreover if the frequencies multiple to rotor revolutions 

only are of interest one can get two series comprised of even 

and odd harmonics: 
_. P•ICW _. 

5"' = L ( DP eipt) 
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with -s"' 

When considering the equilibrium of the rotor combined 

the support for the adopted structure of the vector 

under the action of external forces affecting the 

hub in the revolution plane. we have: 

where 
... 
F 

-cpQI + 

.... 

..... 
=F 

is an external load vector, 

=IIDwilow is a dynamic response vector of the 

rotor blades. and 

is a dynamic stiffness matrix for 

the rotary :rame of axes; 

and providing the equilibrium conditions fer an every harmonic 

force component on the hub, we can get a set of algebraical 
~ 

equations for amplitude components Op of every even and odd 

harmonics series. 

The mentioned equilibrium is satisfied with an accuracy 

up to the value of two emitted items in the support response 

with frequencies beyond the harmonic range km.n -i-k max under 

consideration, that is (k ,,~ -2) and (k,..,a, +2). 

This circumstance should be taken into consideration when 

choicing the amount of series items (frequency range) and 

positions of k,.,~ or k min with respect to the particular 

number of a harmonic under consideration. which enables to 

acquire the desired accuracy of the solution for practical 

application. 
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The system of equations in a generalized form may be 

written as 

.... 
where OK is a vector of deformation harmonic arnpl i tudes, and 

f~ is a vector of load harmonic amplitudes, the matrix 

IIQII is comprised of three diagonals with 2*2-assemblies 

arising from II c II and IJDII matrix elements and takes the 

following form 

[% 
~ 

.' 

~ 
~ 
~ 

I ~ I 

I ~ 
I ~ 
~ 

The part of the matrix for even harmonics. for 4 

particularly, takes the form: 

GC(3w)G• 

GC{3w)G' +G'C(5~)G'+ G'C(Sw)G 
""Dw (4u.1

) 
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The matrix Dw (p) takes the form 

-4 i.wp Llmx 

Dw = 
2[(Ms •11m~) ~~~~: -([f•d)Mtl] 

where t.h, iS a b 1 ade mass, 

.6 mx (p) is an additional mass determined by a solution 

of the problem on natural oscillation of a blade for a model 

shown in fig.l. 

x. 

Fig. 1. 
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The stated method was applied to study the resonance 

properties of a two-bladed rotor. The results are presented 

as relationship between an amplitude spectrum of deformation 

harmonics and an angular speed of rotation (fig.2) and in the 

form of the traditional resonance diagrams (fig. 3,4). The 

load on the hub was specified as normalized vectors of diverse 

orientation. The obtained relationships allow to evaluate the 

resonance states of the system as well as the oscillation 

modes. 

The oscillations with frequencies of some harmonics 

distinguished by 2 W and 4 W from the frequency of 

external load and from frequency of the dominant component were 

arised in such resonance states. Resonance peaks on components 

adjacent to the dominant one are named here echo-resonances. 

Among the cross excited oscillations of interest also are 

oscillations with the frequency of 2 (I) excited by a 

constant load due to mass or aerodynamic disbalances. 

The resonance diagrams on fig.3 and 4 correspond to two 

values of the support anisotropy level and the equal mean value 

of stiff ness. 

t. C =.A£_ - 0, f5 and 0,65 
2Co 

The difference between a low anisotropy case and an 

isotropy case shows itself basicly in two diverse oscillation 

modes with frequencies of p:!:W corresponding to minimum and 

maximum of support stiffness. The echo-resonances are 

practically lacking and can be exposed only by means of 

particular diagnostics. 
For a high anisotropy case, C = 0.65 (fig.4), the echo-

resonances become commensurable with the main ones. and some 

oscillation modes combine three and even four harmonics. The 

points corresponding to the resonance peaks are groupped along 
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directions of combinative harmonics and produce a developed 

system (net) of resonance states. At these points ellipses 

representing the mechanical trajectory of the rotor centre 

in a normalized form at a given frequency are shown. The 

orthogonality between load mode and motion (trajectory) mode 

belonging to the particular oscillation tone may result in 

the "absence" of some resonance peak. This fact should be 

remembered when an analytical study and full scale diagnostics 

of rotor dynamics are carried out. 

It should be noted also the appearance of an additional 

blade oscillation tone located between two combinative 

harmonics of ( P,.i,. + W ) and ( P,.u + W ) . For this tone the 

ellipse orientation of the rotor centre trajectory is opposite 

to the orientation of the main tone. 

The results of analytic investigations on resonance 

conditions occuring in so-called X-shaped rotor constructed as 

two coaxial two-bladed rotors with an angle in plan between 

them taken to be arbitrary are presented here as an example of 

similar research in anisotropy rotor dynamic properties. The 

support properties are consided to be isotropic to make the 

perception easier. 

In this case the matrix Dn~U of dynamic stiffness was 

derived by similitude transformation of the matrix Unwll into 

rotor symmetry axes with rotating through the angle of ~ /2 

and followed by summation. 

Dt =L:t.·Dw(p)·~ 1 

Fig. 5 shows a resonance diagram for the particular case 

of ~ =90 degrees, when the rotor becomes isotropic. 
The two of the oscillation modes under consideration are 

based primarily on the blade bending at different signs of 

deflection occuring in the tip blade and the hub (blade tone) 

and the other two modes are based primarily on the deformability 

of the support with bending in the direction of the hub 

deflection. The frequency of the lower oscillation mode 

decreases up to zero and this manifests the critical rotation 

speed. For all the oscillation modes the trajectories of the 

rotor centre are circular, but one of each couple has 

precession direction coinciding with the rotor rotation 

direction and the other two are directed oppositly (shown by a 
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dotted line). As mentioned above the diverse load form is 

required for their excitation. 

Fig. 6 shows the generalized resonance diagram which 

displays a family of curves corresponding to a gradual altering 

of the angle between blades from described position of 

0( =90 degrees up to the value of 0( =0 degrees, when rotor 

becomes two-bladed. For simplification the ellipses are not 

shown. The significant change in resonance frequencies 

depending on the angle value is observed.The motion 

trajectories for the both blade tones are elliptic with 

opposite orientation of principal axes. The mentioned tones are 

excited almost identically by loading modes being typical for 

the full-scale conditions. This fact arises additional 

difficulties when designing. 

Conclusions 

The solution of the problems dealing with an oscillation 

conditions in a rotor on a support possessing anisotropic 

properties is realised provided the trajectory of a rotor 

centre be presented as a polyharmonic series with a step in 

frequency equal to 2~ Such an approach enables to reduce the 

problem solution to a system of a linear algebraic equations. 

The choice of the amount of the i terns in series provides t.he 

desired accuracy demanded for a practical application. The due 

resard for anisotropic properties of the rotor and the support 

results in significantly more precise location o£ the resonance 

frequencies and specify more accuratly the motion character. 
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