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Nomenclature 
 
ADOCS Advanced Digital Optical Control 

System 
FCS Flight Control System 
LMI  Linear Matrix Inequalities 
PIO Pilot Induced Oscillations 
 

Abstract     
 

Rotorcraft flight dynamics is not only 
governed by the properties of the bare airframe 
but also by the signicant ones of the pilot and of 
the flight control system. The way they acquire 
and assimilate the information, the delay and the 
limitations which restrict their response are key 
elements in the overall behaviour. The presence of 
a nonlinear element in the flight control system 
such as a rate limiter can lead to both 
problematic phenomenons of pilot induced 
oscillations and of wind-up. 
 

Pilot induced oscillations due to rate 
saturation are analysed thanks to the describing 
function method. As perspective, an anti-windup 
scheme is designed by optimisation of domains of 
attraction. The dynamical system theory 
formalism (bifurcation theory, etc.) is used to 
examine and to describe the abrupt changes. 
 

Finally, the mathematical tools used in 
this study reveal to be interesting when 
performing investigations and concrete 
calculations about the nonlinear rotorcraft pilot 
couplings and the design of anti-windup schemes. 
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I. Introduction 
 

This paper deals with the analysis and 
improvement of a rotorcraft flight control system 
including nonlinear elements such as a rate 
limiter. In practice the presence of a rate limiter in 
the command channel may give rise to 
problematic phenomena such as pilot induced 
oscillations (PIO) and wind-up (large overshoots 
and possible loss of stability due to saturation). 
The interest is here mainly focused on the 
methodological aspects. A mathematical approach 
using bifurcation theory is proposed for 
addressing such an issue in a practical way. 
 
 The pilot induced oscillations correspond 
to a critical dynamic coupling between the pilot 
controls and the aircraft responses which leads to 
a global destabilisation of the aircraft-pilot closed-
loop system. The terminology of “nonlinear PIOs” 
is employed when the trigger is a nonlinear 
element. Some practical cases of such PIOs will 
be examined “through the prism of” the 
describing function method which considers the 
evolution of the first-harmonic properties of the 
signal. The results will be expressed by the 
formalism of bifurcation theory and interpreted 
from the viewpoint of flight dynamics. 
 
 The saturated actuators (in position or 
rate) which are physically or numerically 
restricted remain besides the source of 
disturbances. The phenomenon of wind-up caused 
by (integrator) saturation can be handled and 
smoothed through several approaches. Here the 
calculations are based on a LMI (Linear Matrix 
Inequalities) formulation which determines the 
gains of an eventually added anti-windup 
compensator. It also provides a “guaranteed 



domain of attraction” of the system near the 
equilibrium point. 
 
 The selected concrete case is the (near-) 
hover flight of the ADOCS (Advanced Digital 
Optical Control System) helicopter prototype and 
the physical data comes from flight tests and 
identification results of M. B. Tischler [1,2]. 
 
 Different configurations giving rise to 
pilot induced oscillations will be studied. Tasks 
with fixed target or with sinusoidal inputs will be 
examined. The pilot nervousness for which some 
PIO occur will be assessed. Next a first try to 
apply anti-windup techniques based on LMI 
formulation will be accomplished. 
 
 

II. Pilot induced oscillations 
analysis using the 
describing function method 
 

The rotorcraft flight dynamics is governed 
not only by the equations modelling the air 
vehicle behaviour (airframe plus rotors), but also 
by a key contributor which must not be forgotten, 
(even if it often is) : the pilot.  The closed-loop 
combination of the pilot and the aircraft can be at 
the origin of the so-called Pilot Induced 
Oscillations. Besides, in order that pilots seem 
less guilty for the appearance of such undesirable 
behaviour, other names are employed such as 
pilot-in-the-loop. 
 

Several categories of PIO can be 
distinguished [3]: 

• Category I: Linear PIOs resulting from 
excessive time delays generated by 
sensors, signal filters, actuators, incorrect 
control/response sensitivity, … 

• Category II: Quasi-linear PIOs whose 
trigger is an identifiable nonlinear 
element. They are mainly caused by 
position saturations or rate limiters 
present in actuators. 

• Category III: Nonlinear PIOs with 
transients corresponding to abrupt 
changes of the controlled element or pilot 
behaviour. There are the most 
unpredictable and dangerous ones, but 
their occurrences e. g. mode switching in 

the Flight Control System (FCS) are less 
commonly seen. 

 
As nonlinear behaviour is the heart of this 
research contribution, the analysis will concern 
the PIOs of category II which consist of the 
simplest nonlinear occurrences. As far as 
rotorcraft field is concerned, category I PIOs are 
still under study whereas for fixed-wing aircraft, 
the ones of categories I and II were examined and 
research is actually conducted on the category III 
PIOs. 
 
 For the examination of a helicopter FCS 
containing a nonlinear element, the describing 
function method is applied. This last one is based 
on considering the evolution of the first-harmonic 
properties. It is chosen for its simplicity of use 
among other nonlinear-PIO analysis tools such as 
limit cycle continuation (bifurcation theory), mu-
tools or robust stability methods (cf. European 
project GARTEUR FM/AG 12 or [4]). 
 
 This part about PIO is built on several 
steps. After presenting some theory about the 
underlying mathematics of the describing function 
method and about PIOs, several concrete cases are 
analysed. Firstly, PIOs are considered in the case 
of a fixed target or control reference. Then, PIOs 
occurring with a sinusoidal piloting demand and a 
closed-loop system are treated. Finally, an open-
loop system with sinusoidal inputs is examined. 
 

A. Theory about describing 
function method and PIO 

 
The describing function method [5] is 

based on considering the evolution of the first-
harmonic properties (amplitude and pulsation) of 
a signal in a closed-loop system. Several 
constraints must be verified in order to apply this 
approach successfully. Firstly, the system must be 
separable in a linear part and a nonlinear one (i.e. 
an identifiable quasi-linear element). Secondly, 
the linear part must behave like a low-pass filter. 
If these two assumptions are verified, this method 
allows predicting the existence of limit cycles and 
their characteristics. 
 

The procedure corner stone consists of 
solving the “harmonic balance equation” whose 
other name is “self-oscillation equation”. Let A 
and ω be respectively the amplitude and pulsation 



of potential oscillations, L(jω) be the linear part 
(of whole system : aircraft, control system and 
pilot) and N(A,jω) the nonlinear part, the 
necessary condition for the existence of 
oscillations is then written: 
 

( ) ( )( )det 1 , 0L j N Aω ω+ =  

 
It is necessary to find the values of the 

variables (A,ω) and of every other unknowns of 
the system (intervening in the expressions of 
L(jω) and N(A,ω)). 
 

For a one-dimensional system, the 
equation can be rewritten: 

( )
( )

1

,
L j

N A j
ω

ω
= −  

In this case, solving can be accomplished 
graphically by tracing the Nichols or Nyquist 
diagrams of L(jω) and -1/N(A,jω). The existence 
of an intersection point reveals the existence of a 
limit cycle. Moreover the values of A and ω 
associated to the intersection point are estimations 
of its amplitude and pulsation. 
 

Furthermore the stability of the limit cycle 
is given by another theorem which is called the 
Loeb criterion [5]. When the describing function 
is only amplitude-dependent, it stipulates that: 

The oscillation is stable if the intersection 
of L(jω) and -1/N(A) is such that by going along 
the Nyquist locus of L(jω) with the increasing-
frequency order, it leaves on the left the locus of -
1/N(A) with rising A. When using the Nichols 
diagram, “left” must be replaced by “right”.  
There exists besides a generalised version (with 
the describing function N(A,jω) depending both 
of amplitude and pulsation).  
 
 After dealing with the describing function 
method, further elements need to be exposed in 
order to initiate the analysis: some information 
about the identification of a pilot model and some 
clues about a rate limiter. 
 

During this research, the model used to 
represent the pilot is selected as simple as possible 
i.e. the pure gain. It indicates that the pilot 
corrects immediately the gap between the 
reference and the observed state with a 
proportional response. Of course, there are other 
possible modelling ways. A delay in the pilot 
response may be taken into account (Kpe

-sT). More 
complete models are also available such as the 

Neal-Smith one (taking into account closed-loop 
resonance property, gradients of variation and 
bandwidth Kp(Tp1 s+1)/(Tp2 s + 1) e-sT) [6] or the 
structural one (including descriptions of nervous 
and neuromuscular systems) [6]. 
 

In order to identify the pilot model, 
several theories have been developed and are 
based on different kinds of assumptions. Usually, 
the pilot control over the vehicle may be 
compensatory or precognitive synchronous.  
 

In compensatory control, the pilot seeks to 
reduce the observed error by adapting the 
controls. Such a philosophy makes the pilot-
vehicle system behaviour tends to the so-called 
crossover model [3]:  

When the gain of the open-loop pilot-
vehicle system is equal to 1 (0 dB), (researchers 
remarked that) the global system transfer function 
looks generally like K/(jω) e

-τjω which corresponds 
to an integrator plus a delay.  
 
In precognitive synchronous control, the pilot 
commands the vehicle thanks to learning process 
and experience. When the PIO is fully developed, 
it may be successfully assumed that the pilot 
reacts like a completely synchronous pure gain. 
 
 Another point to note in this study 
concerns the rate limiter. It is the trigger of many 
category II PIOs of fly-by-wire aircraft like the 
well-known ones of the Saab Gripen or YF-22 
[4,7]. 
 

Actually, it is important to be aware of the 
fact that the describing function of that kind of 
nonlinear element depends only on the ratio 
(Aω/R) where R is the variation velocity bound. 
For low amplitudes and pulsations, the rate limiter 
is not activated and its equivalent complex gain is 
N(Aω/R)=1, but when the signal characteristics 
are too high, the rate limiter is completely 
saturated and its corresponding formula is 
N(Aω/R)=4/(πR) exp(-j arccos(π/2 1/R)). Between 
this two states, there is a continuous variation of 
N(Aω/R). 
 
 

B. Case of a fixed reference 
signal 

 



1. Presentation of the 
helicopter model and of 
the flight conditions 

 
The ADOCS concept is a helicopter 

prototype whose name is an acronym of 
“Advanced Digital Optical Control System”. It 
was a program involving the NASA research 
centre and its Canadian counterpart which were 
aiming at developing an advanced flight control 
system for combat rotorcraft. Flight tests and 
concrete realisations were made by equipping an 
UH-60 Black Hawk in the eighties [1,2]. 
 
The flight case is a near hover flight and the pilot 
tries to maintain the pitch angle at the desired 
attitude e.g. for target tracking. In the first 
configuration examined hereafter, in order to 
avoid that abrupt stick inputs might be transmitted 
to the remaining command channel, a rate limiter 
is included. Unfortunately, such an element can 
provoke PIO phenomenon. 

 
The response of the pitch angle θ in function of 
the stick position δs is a second-order system (with 

a delay): 
( )

[ ]

0.2445.26 0.2

0.964,2.35

se

s

−

with the conventional 

notations (a) for (s+a) and [ζ,ω] for (s2
 +2 ζ 

ω+ω
2) [2]. Besides, the actuator variation rate is 

restricted to 15deg/s. 
 
 

2. Fixed nervousness 
of the pilot 

 
The pilot gain Kpil is chosen to be equal to 3.9 (the 
reason of this choice will appear more clearly in 
the next part). The Nyquist and Nichols diagrams 
of the linear part (bare airframe, pilot) and of the 
negative inverse describing function of the 
nonlinear element (rate limited actuator) are 
presented on Fig. 1.  

 

    
Nyquist Nichols 

Fig. 1: Determinination of the limit cycles with the Nyquist and Nichols diagrams. 
 
 
 There are two intersection points. The 
corresponding pulsations are 3.8rad/s and 
2.5rad/s whereas the ratios X=Aω/R are 1.3 and 
2.3. As a consequence, at the entry of the rate 
limiter, the amplitudes of the limit cycles are A=X 
R/ω i.e. 0.1rad and 0.25rad respectively. 
Moreover, the Loeb criterion allows predicting 
their stability. In short, there are one unstable limit 

cycle of pulsation ω=3.8rad/s and amplitude 
A=0.1rad and one stable limit cycle of pulsation 
ω=2.5rad/s and amplitude A=0.25rad/s. The 
unstable periodical orbit is inside the stable one. 
 
 Time simulations with initial conditions 
inside and outside the unstable limit cycle 
illustrate the prediction (Fig. 2). 

 
 



  
  

θ(0)=0.02 θ(0)=0.03 
Fig. 2: Time simulations showing the system behaviour with respect to these limit cycles. 

 
 

The first simulation converges to zero (i.e. 
at the equilibrium point for which the model has 
been linearised) whereas the other one converges 
to the stable periodical orbit. Thus this 
configuration may give rise to pilot-vehicle 
couplings and oscillations depending on the input 
amplitude. On the right diagram of figure 2, the 
situation exposed is such that the pilot doesn’t 
succeed in obtaining the desired longitudinal 
attitude and the pilot-aircraft system oscillates. 
 
 
 

3. Varying nervousness 
of the pilot 

 
The appearance of pilot induced 

oscillations depends often on the pilot 
nervousness. A quiet pilot is less likely to meet 
such negative phenomenon than a nervous one. 
The overall dynamics and the critical values for 
which changes occur are important to diagnose. 
 

In order to predict the global aircraft 
behaviour, it is necessary to solve the harmonic 
balance equation which involves the transfer 
function H of the linear aircraft response the pilot 
gain Kpil and the first harmonic N(A,ω) of the 

nonlinear element: ( ) ( ), 1 0pilK H j N Aω ω + = . 

 

    
amplitude pulsation 

Fig. 3: Effect of the pilot gain on the PIO occurences. 
 
 



According to the graph, three ranges of 
pilot gain values Kpil can be distinguished and 
correspond to different numbers of limit cycles: 

• For Kpil<3.72, there is no limit cycle. 
• For 3.72<Kpil<4.1, there are two limit 

cycles : the one with the lowest amplitude 
and biggest pulsation is unstable whereas 
the other one is stable. 

• For Kpil>4.1, there is one unique stable 
limit cycle. 

 
The time simulations corroborate the 

predicted behaviours even if some oscillations 
appear for a little bit higher pilot gain than the 
predicted critical one. 
 
  From the mathematical point of view, 
there is a saddle-node bifurcation of periodical 
orbits i.e. creation of two branches of periodical 
orbits: one stable and one unstable. As partial 
conclusion, in the ADOCS prototype whose 
equations were adapted here some PIOs may 
occur even if the pilot is only a little nervous. 
 
 

C. Closed-loop system with 
sinusoidal target 

 
 
 The second longitudinal command 
channel under consideration here contains more 
details and is more realistic. The command block, 
the actuator system, the rotor tip path plane 
dynamics, the rigid body airframe and the 
feedback stabilisation are precisely described. The 
upper boost actuator which represents the 
swashplates is mechanically limited in rate 
variation with a bound of 10 inch/s.  
 

In this situation, the rate limiter is 
included in the feedback loop, which implies a 
bigger instability. That is why the feedback gains 
are reduced to Kθ=14.52, Kq=9.19. The task that 
the pilot must achieve consists of following a 
sinusoidal reference (pitch attitude) e.g. during 
obstacle avoidance maneuvers. The pilot model is 
precognitive synchronous and identified by the 
crossover model theory. The pilot is chosen such 
that the “crossover phase angle” is -130° and such 
that the pilot is quite nervous, concretely Kp=1 
[6,8]. 

  
Fig. 4: Block diagram of the closed-loop system. 

 
In order to determine the amplitude A and 

the phaseφ of the entry state of the rate limiter, the 
following equation must be solved. It depends on 

the reference amplitude θc and exhibits the 
relationship between the different components:

 

( ) ( )( ) ( )1 , expp

c

Rotor RigidBody N A Actuator K Command Feedback A j

Actuator Command

φ φ

θ

+ ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅

= ⋅ ⋅
 

The continuation algorithm is used to find 
the solution of the (implicit) problem whose 
equations are the real and imaginary parts of this 
expression and whose variables are , , cA φ θ (one 

equation less than the number of variables). 
 



 
Fig. 5: Equilibrium curve with a fold (two 

bifurcations). 
 

An amplitude jump is observed when the 
reference signal pulsation is increased from 

0.33rad to 0.34rad. This bifurcation leads to the 
sudden variation of the entry state of the rate 
limiter from 6 to 10. 
 
 

D. Open-loop system with 
sinusoidal inputs 

 
In this open-loop configuration, the pilot 

gives direct sinusoidal inputs to the rotorcraft 
command channel without taking into account the 
pitch angle value. The input signal amplitude is 
20deg=20π/180rad and the pulsation is varied.

 

  
Fig. 6: Open-loop command channel. 

 
The Nichols diagrams of the linear (blue) 

and nonlinear (green) command channels are 
compared. In fact the parameters of the nonlinear 
configuration are determined for the closed-loop 
system. Then formulas permit to calculate the 
values of the equivalent open-loop system. These 
last ones are presented on the diagram. 
 

 
Fig. 7: Nichols diagram of the linear and 

nonlinear command channels. 
 
 

A jump is observed at a critical pulsation. 
For bigger input pulsations than this one, the 
properties of the linear and nonlinear 
configurations differ absolutely. 
 

Nevertheless at the beginning of the 
simulation, the steady regime is not established 
and rapid transient changes can occur. It produces 
persistent saturation of the rate limiter for 
numerical reason and the simulation cannot be 
exploited. That’s why the rate limiter is activated 
here only after 40s.  
 

  
ω=3.2rad 



  
ω=3.3rad 

Fig. 8: Time simulations before and after the 
critical pulsation. 

 
Time simulations showing the entry of the 

rate limiter illustrates that the oscillation 
amplitude increases abruptly at this critical 
parameter value. A little increase of the pulsation 
from 3.2rad to 3.3rad makes the oscillation 
amplitude jump from 4 inches to 6 inches. 
 

From the point of view of flight dynamics, 
“handling qualities cliffs” may occur in the 
meaning that a small parameter perturbation may 
lead, to abrupt significant variation of the 
rotorcraft behaviour. They correspond to the 
mathematical phenomenon of resonance jumps. 
 

III.  Anti-wind up design with 
stability domain optimisation 
 

This part dealing with anti-windup is 
organised as follows. First the main general 
elements of the anti-windup approach are 
presented. Then the practical application to the 
present rotorcraft case is addressed. As far as we 
know, that is a first attempt of application to 
helicopter system. 

A. Elements about the anti-
windup approach by LMI 
synthesis 

 
Saturations in position and velocity of 

elements within a command channel may 
destabilise it and lead to state value deviation. For 
example, the saturation of an integrator induces 
often large overshoots because the integrator does 
not succeed in unloading itself. Several techniques 

exist to avoid this bad situation. The so-called 
anti-windup approach aims at improving the 
stability and performance of saturated systems. In 
this research contribution, the gains of the anti-
windup scheme will be calculated thanks to a 
mathematical description of the problem under 
LMI form and its optimisation. 
 

Following some recent developments as 
the ones of J-M. Biannic and S. Tarbouriech 
[9,10], the system is in fact (re-)written with dead-
zones instead of saturations. It aims at relaxing the 
constraints of the optimisation problem by 
modifying the sector conditions. The problem has 
a less conservative formulation, therefore the 
solution is more exact and provides a bigger area 
of admissible solutions. 
 

  
Fig. 9: Standard configuration for a system with 

an anti-windup compensator. 
 
 As summed up by the diagram on Fig. 9, 
the problem of anti-windup includes the plant 
P(s), the controller K(s) (which contains also the 
anti-windup gain) and the set of dead-zones (or 
saturations) Φ(v). The variables are the inputs w, 
the outputs z, the controls u, the inner states y and 
the entries of the nonlinear elements v. 
 
 

B. Standard 
interconnection plant 

 
Before initiating the analysis, the 

“standard interconnection plant” representing the 
components of the system and their relationships 
must be described. 
 

The linear plant model corresponds to the 
bare rotorcraft (i.e. the rigid body and the rotor 



dynamics) whereas the controller is built with the 
(ADOCS and upper boost) actuators, the feedback 
stabilisation system and at the end with the anti-
windup device as well. The set of saturations 
contains only one item which corresponds to the 
rate limited displacement of the swashplates 
(upper boost actuator) and whose bound is 
R=10inch/s. 
 
 The command channel is the same one as 
in the section on the open-loop system. But in 
order to use successfully the optimisation 
algorithms, the transfer functions of the elements 
are simplified. 
 

After presenting the theoretical 
background and the concrete helicopter control 
system, the main design steps of an anti-windup 
scheme are briefly exposed hereafter.   
 

C. Gain calculation of the 
anti-windup scheme and 
time simulations  

 
The design of the anti-windup scheme is 

performed thanks to the optimisation of a LMI 
problem. First, stability and performance are 
assessed. Then time simulations allow illustrating 
and comparing the systems with or without the 
anti-windup element by considering the reaction 
to larger inputs or the stabilisation delay at the 
final value. 
 

The desired pitch angle 
θc=30deg=30π/180rad is selected high (maybe 
too high to be fully realistic) in order to be able to 
observe easily the effect of the anti-windup 
device. The responses of the systems with or 
without anti-windup device and of a simplified 
linearised model are observed. 

 
Fig. 10: Time simulations of the system without 

or with an anti-windup compensator. 
 

On one hand, without any anti-windup 
scheme, the rate limiter saturates too much and 
the command channel is completely destabilised 
as the blue dash-dotted simulation shows. On the 
other hand, with an anti-windup scheme, the 
system succeeds in reaching the demanded value, 
as exposed by the red dashed simulation. The 
observation of the difference between this last one 
and the reference linearised model (continuous 
dark line) give some information about the 
efficiency and properties of the controller as the 
time needed for stabilisation or the robustness. 
 

Once the stability analysis performed, the 
next step aims at estimating the performance of 
the complete command channel. Indeed it is also 
interesting to evaluate the discrepancy between a 
first reference model that has no saturation and no 
added device and a second system with 
saturations and a modified controller. Noting z(t) 
the difference of response between the real system 
and the linear model, the performance measures 

the biggest possible error ( ) ( )
0

T
z t z t dt γ

∞

=∫  for 

input signals whose maximal amplitude is θc. 
 



  
Fig. 11: Performances of both configurations. 

 
The figure 11 shows the performance 

bound in function of the input magnitude θc. 
(Ignoring the numerical calculation problems for 
low inputs,) it is visible that the anti-windup 
device contributes to improve the performance at 
high input amplitudes where it plays actively its 
stabilising role. 
 
 

IV. Conclusions  
 

During this research, the impact of 
nonlinear elements in the command channel of a 
helicopter has been analysed and ways to 
attenuate their negative effects such as pilot 
induced oscillations, destabilisation or divergence 
have been studied. Mathematical methods and 
tools for nonlinear analysis and control have been 
used successfully in this first application to the 
rotorcraft case. 
  

In a first part, the describing function 
method turns out to be a practical and efficient 
way to diagnose the existence of limit cycles and 
their first-order harmonic properties. Closed-loop 
or open-loop systems with fixed or sinusoidal 
inputs have been examined. As observed, the 
ADOCS helicopter may suffer from some PIO in 
the studied configurations even with little pilot 
gain. As the crossover model theory associates 
pilot nervousness to concrete pilot gain, the fact 
that PIO occurres for little pilot gains that is to say 
low nervousness is a hint (or of) about the 
sensitivity of the phenomenon. 
  

In a second part, in order to be able to 
apply larger inputs without divergence of the 
system, an anti-windup scheme is designed. The 

level of saturation is taken into account such that a 
correction is added to the command value 
transmitted to the flight control system. The 
description under LMI form and the resolution of 
the associated optimisation problem permit to 
make the system as stable or as insensitive to 
perturbations as possible. 
 

As a conclusion, such mathematical tools 
are quite efficient to analyse and improve a 
command channel containing nonlinear elements. 
They give interesting insights and concrete values 
which help orienting the engineer in his choices 
when accomplishing the next step: designing and 
building the effective flight control system. 
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