AN EXPERIMENTAL STUDY OF ROTOR/FUSELAGE INTERACTION

Yasutada Tanabe, Shigeru Saito, Noboru Kobiki and Katsuichi Murota Japan Aerospace Exploration Agency, Chofu, Tokyo, JAPAN

Hideaki Sugawara Ryoyu Systems Co., LTD., Nagoya, JAPAN and Kyohei Hayashi, Katsumi Hiraoka Graduate School, Tokai University, Hiratsuka, Kanagawa, JAPAN

Abstract

Rotor/Fuselage Interaction remains as an important problem for engineers and scientists working on helicopter aerodynamics. A model rotor test stand (JAXA Multi-purpose Rotor Test Stand, JMRTS) is used to build an experimental database for CFD code validations. Four blades are connected to an articulated rotor hub. Feathering, flapping and lead-lag angles at the hinges are measured using Hall-sensors which give high accuracy. Miniature Kulite pressure sensors are installed on the cowling surface which simulate a type of helicopter fuselages. Time-averaged and ensemble-averaged periodic data are obtained. Good correlations were obtained in the measured results between the blade angles and six-component forces and moments as well as the pressure fluctuations on the fuselage and blade surfaces. Datasets of several selected test cases are presented together with geometric descriptions of the blade and the fuselage to enable CFD validations by other parties.

1. INTRODUCTION

Rotor/Fuselage Interaction remains as an important problem for engineers and scientists working on helicopter aerodynamics. Because of the rotor downwash, periodic airloads impact on the fuselage which cause vibration and noise inside the Also the fatigue life of the passenger cabin. airframe is influenced. Detailed experimental data of ROBIN (ROtor Body INteraction) configuration¹⁾ have been published and they become representative test cases for CFD method validations. Besides this configuration, few data with other realistic helicopter fuselage configurations are available. A very simple model was used in Georgia-Tech (called GT-model) to study the interference between a rotor and a cylinder body²⁾. A Dauphin 365N helicopter model was used in the investigate rotor-fuselage ONERA to aerodynamic interaction problem³⁾.

JAXA is working on an integrated CFD-based comprehensive analysis tool for low noise rotor design. A model rotor stand (JAXA Multipurpose Rotor Test Stand, JMRTS) is used to build an experimental database for the CFD code validations. This rotor stand has been used for BVI studies and other tests⁴⁻⁶⁾ till now. Four blades are

installed through an articulated rotor hub. Feathering, flapping and lead-lag angles at the hinges are measured with Hall-sensors which give high S/N ratios compared with potentiometers used before. Miniature Kulite pressure sensors are intalled on the cowling surface which simulate a type of helicopter fuselages.

Experiments were carried out in November 2008. Simple time-averaged and ensemble averaged periodic data are obtained. Good correlations were obtained in the measured results between the blade angles and six-components forces and moments as well as the pressure fluctuations on the fuselage and blade surfaces. Flight conditions include hovering, and forward flight up to advance ratio of 0.3. The whole model was tilted from forward -2 deg to backward 4 deg to simulate the general forward flight and descending flight where BVI occurs. Datasets of selected forward flight condition cases presented together with the geometric are descriptions of the rotor blade and the fuselage to enable CFD validations by other parties.

2. EXPERIMENTAL APPARATUS

2.1. Wind tunnel

Experiments were carried out in JAXA 6.5m x 5.5m Low-speed Wind Tunnel in November, 2008. This wind tunnel is a closed circuit, continuous atmospheric tunnel with free stream velocity of 1 ~ 70 m/s. The test section is a closed-wall-type with 6.5 m in height and 5.5 m in width. The rotor system is mounted with a strut to place the rotor centre in the centre of the test section. Hovering tests were carried out inside the closed wall test section. Although the rotor diameter of about 2m is relative small compared with the test section size, air circulations were expected that may have influences on the hovering test results. For experiments with relatively high advance ratios, the influences of the test section walls are considered small. Future CFD study of the effects of the test section walls is expected.

2.2. JAXA Multi-purpose Rotor Test Stand (JMRTS)

Figure 1 shows the JAXA Multi-purpose Rotor Test Stand (JMRTS) installed inside the test section. This rotor test stand was designed to drive differenttypes of rotors in the wind tunnel for measuring aerodynamic and acoustic characteristics of the rotors. In the present test, a rotor with four 1.021 m radius, rectangular blades are connected to the rotor head by hinges to allow flapping, lead-lagging and feathering motions. All the three hinges have a common hinge centre with offset of 44.5 mm. The wing section of the blade is NACA0012 with a chord length of 6.5 cm. Two blades have unsteady pressure sensors and other two blades have strain gauges installed. The linear twist angle for the blades is -8 deg/m. All the pitch angles are referred to that at the blade root where r=21 mm. Root-cut is at 206 mm (20.2%R). The flapping inertia moment of the blade is $I_{b} = 0.186 kg \cdot m^{2}$ with the blade grip. Total mass is 2.4 kg together with the grip while 0.74 kg is for the blade itself. Illustration of the blade is shown in Figure 2.

The side view of the rotor stand is shown in Figure 3. The height of the rotor centre is at the centre of the wind tunnel test section. The layout of the main components of the rotor stand is shown in Figure 4. The rotor shaft angle can only be changed together with the fuselage attitude. Rotor is driven with a water-cooled electric motor with a maximum output of 37 hp.

2.3. Fuselage model

The cowling for the rotor stand was designed to be similar to one type of the representative helicopter fuselage designs. The fuselage nose extrudes ahead and the fuselage surface curvature has an abrupt change at the junction line formed by the nose and the body. Compared with ROBIN shape, current shape is more realistic and more complicated. Totally 15 positions at the upper and side surfaces are selected where the miniature Kulite high response pressure sensors are placed in a line on the upper surface center longitudinally and a line at the fore body laterally.

The shape of the fuselage is shown in Figure 5 where the contour lines are given. Rotor center is at the axis origin. The pressure sensor positions are shown in Figure 6 and tabulated in Table 1.

2.4. Sensors and measurements

New blade angle sensors are installed to improve the accuracy in the measurement of the blade motions. Hall-sensors are placed at the hinges to directly measure the flapping / lead-lagging and feathering angles. Good linearity is obtained in the calibrations. However, output offset of the flapping angle sensor is found to be influenced by the centrifugal forces. Calibration test with several different rotating speeds is carried out and a empirical compensation curve is obtained.

The unsteady pressure sensors installed in the rotor blade are gauge-types. Increasing offset is observed with higher rotating speed. Pressure variations around the average are obtained. Typical oscillations are observed at the BVI test conditions.

The elastic deformations of the blades are not measured during the test. Because a full articulated hub is used, the elastic deformations of the blades are considered small. The effects will be studied numerically and/or experimentally in the future.

Totally 32 channels of data are recorded during the test as shown in Table 2. Wind tunnel testing conditions necessary for data reductions are recorded separately at the same time.

3. EXPERIMENTAL METHODS

3.1. Test conditions

Test conditions for all of the related RUNs are summarized in Table 3. In this report, we will concentrate mainly on the forward flight case with tip Mach number of 0.56 (RUN009).

3.2. Data processing

The outputs of the sensors are recorded with 16-bits A/D converters. The initial offsets are removed from the data then all the data are converted into physical values with calibrated factors. The outputs from the 6-component balance are converted into forces and moments in each axis with corrections of the interferences from other components using a 6x6 calibration matrix.

For each physical quantity, simple time-averaged values are obtained at first. To obtain the periodically time-varying values per each revolution, ensemble averaging is performed based on the pulse signal once a revolution. Every data record consists of 5 seconds of data sampled at 50kHz. The rotating speed may have small variations during the recording time. As a result, the data number between the pulses may differ by about ± 3 for a typical 1667 samplings when the rotor is running at 1800 rpm where 150 periods are included. Ensemble-averaging are performed by defining a common azimuth angle step (0.5 deg in this report) and averaging the interpolated values from each rotation. Typical effect of this processing is shown in Figure 7 and we can see the obtained ensemble-averaged variations are smoother than the original instantaneous 1-period data and the signal uncertainties caused by random noise are removed.

4. RESULTS AND DISCUSSIONS

4.1. CT-CQ curve at hover

Hovering CT-CQ curve for different tip Mach number are shown in Figure 8. Although some small differences are found at the low CT range, good agreement are found between these two different tip Mach numbers elsewhere.

4.2. Averaged surface pressure

RUN011 is selected as a representative case of forward flight. Detailed test conditions and rotor control and blade motion data are shown in Table 4. In this table, C_{pa} is referred to sonic speed and defined as:

(1)
$$C_{pa} = \frac{p - p_{\infty}}{\frac{1}{2}\rho_{\infty}a_{\infty}^2}$$

Only 1st harmonic coefficients of the blade angles are tabulated. The pitch angle is:

(2)
$$\theta(\Psi) = \theta 0 + \theta 1 * \cos \Psi + \theta 2 * \sin \Psi$$

so that $A1 = -\theta 1$, and $B1 = -\theta 2$. The flapping

angle is:

(3) $\beta(\Psi) = \beta 0 + \beta 1 \cos \Psi + \beta 2 \sin \Psi$

and the lead-lag angle is defined as positive forward:

(4) $\varsigma(\Psi) = \varsigma 0 + \varsigma 1 * \cos \Psi + \varsigma 2 * \sin \Psi$

A periodically ensemble-averaged sample of the blade angles is given in Figure 9. Also the reconstructed signals with only the first harmonics are compared. It can be seen low noise level is attained for these data.

Averaged surface pressure distributions with different advance ratios are shown in Figure 10 where the coefficients of pressure are referred to freestream velocities as:

(5)
$$C_{p\infty} = C_{pa} / M_{\infty}^{2}$$

Please note that in Table 4, the first row is for hovering case with a different C_{τ} setting. This have been done to avoid over-current for the drive motor. This row of data must be excluded when making trend study under a constant C_{τ} condition.

4.3. Periodic surface pressure variation

The ensemble-averaged periodic surface pressure variations for different advance ratios are shown in Figure 11. It can be seen as the advance ratio increases, pressure fluctuations also increase. Especially, at position Pbody04 and Pbody08, the pressure oscillations are remarkably high for advance ratio of 0.29.

In the longitudinal line, azimuth angles where the peaks observed are almost the same. But for the pressures in the lateral line, significant phase differences are observed with regard to the blade-passing in the order of 10 -> 09 -> 08 -> 04 -> 07 -> 06 -> 05.

Behind the rotor hub, pressure sensor position 11-15, turbulent fluctuations were observed in the instantaneous pressure signals. Flow separation and influence of the rotor shaft are expected.

5. CONCLUSION

An experimental study of Rotor/Fuselage Interaction using JMRTS (JAXA Multi-purpose Rotor Test Stand) is conducted. Blade angles are obtained with good accuracy. Besides the averaged six component balance data, periodically ensembleaveraged pressure variations on the fuselage surface are also obtained. Descriptions about the rotor blade and fuselage shape are provided to enable CFD validations.

REFERENCES

- [1] Mineck, R. E., et al, "Steady and Periodic Pressure Measurement on a Generic Helicopter Fuselage Model in the Presence of a Rotor," NASA TM-2000-210286, June 2000.
- [2] Liou, S.G., et al, "Measurement of the Interaction Between a Rotor Tip Vortex and a Cylinder," AIAA Journal, Vol.28, No.6, June 1990.
- [3] A. Le Pape, J. Gatard and J.-C. Monnier, "Experimental Investigations of Rotor-Fuselage Aerodynamic Interactions", J. AHS, April 2007.
- [4] Kenta Masaki, et al, "Wind Tunnel Test for BVI Noise and Vibration Reduction Using Blade Active Control," 31st ERF, Sept. 13-15, 2005, Florence, Italy.
- [5] Hiroyuki Kato, et al., "Application of Stereoscopic PIV to Helicopter Rotor Blade Tip Vortices," 20th International Congress on Instrumentation in Aerospace Simulation Facilities, Aug. 25-29, 2003, DLR Gottingen, Germany.
- [6] Kenichiro Nagai, et al., "Array Measurement Techniques for Noise Source Location of Helicopter Main Rotor Noise, "InterNoise2003,

No	X [m]	Y [m]	Z [m]
Pbody01	-0.680	0	-0.459
Pbody02	-0.526	0	-0.285
Pbody03	-0.369	0	-0.213
Pbody04	-0.212	0	-0.068
Pbody05	-0.212	-0.207	-0.125
Pbody06	-0.212	-0.167	-0.083
Pbody07	-0.212	-0.112	-0.066
Pbody08	-0.212	0.111	-0.067
Pbody09	-0.213	0.165	-0.081
Pbody10	-0.213	0.205	-0.120
Pbody11	0.257	0	-0.072
Pbody12	0.412	0	-0.141
Pbody13	0.569	0	-0.214
Pbody14	0.725	0	-0.258
Pbody15	0.880	0	-0.402

Table 1 : Coordinates of locations of unsteady surface pressure sensors

Ch	Nomenclature	Range
01	Fx	± 5V
02	Fy	± 5V
03	Fz	± 5V
04	Mx	± 5V
05	Му	± 5∨
06	Mz	± 5V
07	Pbody01	± 10V
08	Pbody02	± 10V
09	Pbody03	± 10V
10	Pbody04	± 10V
11	Pbody05	± 10V
12	Pbody06	± 10V
13	Pbody07	± 10V
14	Pbody08	± 10V
15	Pbody09	± 10V
16	Pbody10	± 10V

Ch	Nomenclature	Range
17	Pbody11	± 10V
18	Pbody12	± 10V
19	Pbody13	± 10V
20	Pbody14	± 10V
21	Pbody15	± 10V
22	Pblade11	± 10V
23	Pblade12	± 10V
24	Pblade13	± 10V
25	Pblade14	± 10V
26	SGblade1	± 10V
27	Gsensor1	± 5∨
28	Rotation	± 5V
29	B1_Flap	± 5V
30	B2_Pitch	± 5V
31	B1_LdRg	± 5V
32	Pulse	± 5∨

				Wind Tunnel Parameters					Rotor Parameters							
RUN NO.	Test Title	Case Numbers	Date	V∞	т	ρ	a	M∞	μ	Mtip	α	С _т	θ,	A ₁	B ₁	N
				m/s	°C	kg∕m³	m/s		-		deg	× 10 ⁻³	deg	deg	deg	rpm
RUN 001	Hub drag, Fuselage pressure Measurement	7	08.11/05	30•60	16.5	1.23	341	0.09•0.18	0.29	0.3~0.56	0					1000-1950
RUN 002	Hub drag, Fuselage pressure Measurement	7	08.11/05	30.60	17.8	1.22	341	0.09•0.18	0.29	0.3~0.56	-2					1000-1950
RUN 003	Test Run, Hovering Performance	39	08.11/06	0	15.4	1.22	340	0	0	0.19~0.56	0		4~18	0	0	600~1800
RUN 004	Hovering Performance & Control Response	39	08.11/06	0	15.4	1.22	340	0	0	0~0.3	0		6~18	-2~2	-2~2	1000
RUN 005	Forward Flight Conditions	11	08.11/06	5~30	17	1.21	341	0~0.09	0.05~ 0.29	0.31	-2	3				1000
RUN 006	Forward Flight Conditions	11	08.11/06	5~30	17	1.21	341	0~0.09	0.05~ 0.29	0.31	-2	5				1000
RUN 007	Forward Flight Conditions	11	08.11/06	5~30	17	1.21	341	0~0.09	0.05~ 0.29	0.31	-2	6.4				1000
RUN 008	Forward Flight Conditions & Control Response	16	08.11/06	15	17	1.21	341	0~0.09	0.14	0.31	-2	5		-2~2	-2~2	1000
RUN 009	Hovering Performance & Control Response	35	08.11/07	0	17.2	1.20	342	0	0	0~0.56	0		6~14	-2~2	-2~2	1800
RUN 010	Forward Flight Conditions	16	08.11/07	5~55	17.2	1.20	342	0~0.16	0.05~ 0.29	0.56	-2	3				1800
RUN 011	Forward Flight Conditions	16	08.11/07	5~55	17.2	1.20	342	0~0.16	0.05~ 0.29	0.56	-2	5				1800
RUN 012	Forward Flight Conditions & Control Response	16	08.11/07	25	17.2	1.20	342	0~0.16	0.13	0.56	-2	3				1800
RUN 013	BVI Condition	14	08.11/07	12~20	17.2	1.20	342	0~0.16	0.11~ 0.19	0.31	4	8				1000
RUN 014	BVI Condition	14	08.11/07	12~20	17.2	1.20	342	0~0.16	0.11~ 0.19	0.31	4	6.4				1000
RUN 022	Hub drag, Fuselage pressure Measurement	8	08.11/12	10~30	14	1.23	339	0~0.08	0.09~ 0.28	0.31	4					1000

Table 3: Test conditions

Figure 1: Photograph of JMRTS in JAXA 6.5mx5.5m Low-Speed Wind Tunnel

35th European Rotorcraft Forum 2009

(b) Blade section with pressure sensors

Figure 2: Rotor blade

Side View

Figure 3: Side view of the rotor stand

Figure 4: Main components of JMRTS

Figure 5 : Fuselage shape and contours (Axes origin at rotor center)

Figure 6 : Locations of unsteady pressure sensors on fuselage surface

(a) Instantaneous (b) ensemble-averaged

Figure 7: Ensemble averaging of periodic data

Table 4: Detailed test conditions and averaged data for RUN011 (Mtip=0.56)

	Test condition												
μ	0	0.03	0.05	0.08	0.1	0.13	0.16	0.18	0.21	0.23	0.26	0.29	
M∞	0	0.015	0.029	0.044	0.059	0.073	0.088	0.102	0.117	0.131	0.146	0.161	
Mtip	0.561	0.561	0.561	0.561	0.561	0.561	0.561	0.560	0.560	0.560	0.559	0.559	
C _T × 10 ³	2.97	4.78	4.77	4.79	4.76	4.80	4.80	4.78	4.81	4.77	4.76	4.78	
θ_0 [deg]	10.98	12.52	11.70	11.06	10.45	10.25	10.05	9.88	9.82	9.77	9.81	9.89	
A1 [deg]	-0.02	-1.76	-3.01	-3.30	-3.15	-2.93	-2.72	-2.74	-2.66	-2.69	-2.76	-2.76	
B1 [deg]	0.03	0.49	0.78	1.09	1.47	1.74	2.08	2.33	2.57	2.85	3.21	3.50	
α [deg]	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	

averaged-6 component balance												
C _H	-1.07E-04	-1.45E-04	-1.00E-04	-7.68E-05	-4.59E-05	-7.81E-06	4.24E-05	1.11E-04	1.97E-04	2.64E-04	3.39E-04	4.38E-04
Cy	-3.38E-05	-2.03E-04	-2.71E-04	-2.82E-04	-2.67E-04	-2.51E-04	-2.44E-04	-2.48E-04	-2.72E-04	-2.97E-04	-2.92E-04	-3.29E-04
C _T	2.94E-03	4.74E-03	4.73E-03	4.75E-03	4.72E-03	4.76E-03	4.77E-03	4.75E-03	4.79E-03	4.76E-03	4.76E-03	4.78E-03
C _R	-1.65E-05	1.33E-06	1.04E-05	7.77E-06	-1.53E-06	-2.99E-06	-1.52E-06	-1.32E-06	-3.62E-06	-6.18E-06	4.16E-06	-2.62E-06
C _M	-8.24E-06	9.07E-06	9.22E-06	-3.82E-06	-9.22E-06	3.89E-06	-3.54E-06	5.27E-06	2.96E-05	1.25E-05	7.27E-06	1.71E-05
Cq	2.35E-04	3.37E-04	3.07E-04	2.76E-04	2.44E-04	2.27E-04	2.18E-04	2.09E-04	2.03E-04	1.99E-04	2.02E-04	2.01E-04

blade angle												
β ₀	0.98	1.21	0.93	0.98	1.01	1.15	1.10	0.98	0.90	0.86	0.74	0.71
β ₁	-0.05	0.12	0.14	0.13	0.17	0.18	0.05	0.21	0.18	0.21	0.24	0.23
β2	-0.03	-0.04	-0.03	-0.02	-0.17	-0.14	-0.14	-0.08	-0.07	-0.05	-0.02	0.04
θ,	10.98	12.52	11.70	11.06	10.45	10.25	10.05	9.88	9.82	9.77	9.81	9.89
θ1	0.02	1.76	3.01	3.30	3.15	2.93	2.72	2.74	2.66	2.69	2.76	2.76
θ2	-0.03	-0.49	-0.78	-1.09	-1.47	-1.74	-2.08	-2.33	-2.57	-2.85	-3.21	-3.50
ξ.	-1.01	-1.24	-1.47	-1.33	-1.22	-1.03	-1.06	-1.18	-1.26	-1.31	-1.45	-1.53
ζ1	-0.06	0.15	0.19	0.16	0.20	0.20	0.05	0.22	0.20	0.21	0.24	0.20
ζ2	-0.04	-0.07	-0.06	-0.06	-0.23	-0.18	-0.17	-0.10	-0.07	-0.06	-0.02	0.06

	averaged-Cpa × 10 ²											
Pbody 01	-0.228	-0.134	0.063	0.171	0.319	0.506	0.737	1.002	1.318	1.671	2.067	2.503
Pbody 02	0.133	0.205	0.050	0.101	0.143	0.191	0.244	0.302	0.368	0.435	0.511	0.600
Pbody 03	0.117	0.201	0.181	0.135	0.236	0.362	0.513	0.685	0.889	1.112	1.366	1.648
Pbody 04	0.052	0.159	0.181	0.138	0.120	0.135	0.109	0.070	0.003	-0.080	-0.182	-0.300
Pbody 05	-0.090	-0.307	-0.352	-0.236	-0.478	-0.751	-1.098	-1.504	-1.989	-2.515	-3.102	-3.756
Pbody 06	-0.026	-0.096	-0.139	-0.198	-0.303	-0.469	-0.693	-0.960	-1.293	-1.658	-2.057	-2.494
Pbody 07	0.066	0.085	0.087	0.014	-0.036	-0.098	-0.204	-0.336	-0.514	-0.717	-0.946	-1.186
Pbody 08	0.047	0.181	0.200	0.161	0.118	0.094	0.039	-0.030	-0.132	-0.256	-0.384	-0.536
Pbody 09	0.054	0.136	0.108	0.044	-0.066	-0.185	-0.361	-0.569	-0.824	-1.113	-1.433	-1.791
Pbody 10	0.031	-0.023	-0.103	-0.162	-0.284	-0.505	-0.786	-1.124	-1.535	-1.988	-2.490	-3.048
Pbody 11	0.138	0.151	-0.098	-0.124	-0.179	-0.246	-0.319	-0.412	-0.540	-0.653	-0.795	-0.985
Pbody 12	0.167	0.185	0.060	0.007	-0.063	-0.141	-0.220	-0.318	-0.436	-0.591	-0.775	-0.939
Pbody 13	0.176	0.254	0.118	0.035	-0.012	-0.074	-0.129	-0.205	-0.275	-0.384	-0.467	-0.593
Pbody 14	0.139	0.189	0.045	-0.012	0.010	-0.019	-0.035	-0.067	-0.095	-0.136	-0.141	-0.204
Pbody 15	-0.196	-0.418	-0.059	-0.010	0.011	0.018	-0.001	-0.027	-0.055	-0.104	-0.139	-0.197

Figure 9 : Signals of blade angle sensors

Figure10 : Averaged surface pressure distribution with different advance ratios at Mtip=0.56

(b) Lateral line

Figure 11: Periodic variations of surface pressure with different advance ratios at Mtip=0.56