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Abstract 

Helicopter dynamic response is one of the most important criterions of the helicopter design. For an accurate 
prediction and calculation of the vibratory responses of the helicopter structure in different flight conditions, an 
exact modelling is essential. The accuracy of the results returns back to the accuracies of the model and 
calculation procedures.  
The multibody dynamic simulation tool allows using modular models to build a complete detailed system. This 
could be used to model a complex helicopter. SIMPACK (SImulation of Multibody systems PACKage) as a 
multibody simulation tool has shown considerable ability to model and analyse linear and non-linear systems 
during different DLR-projects, however use of this tool for modelling the helicopter dynamics is something 
which is currently being investigated [1], [2]. This tool was originally developed by DLR (German Aerospace 
Center) and is now further developed and commercially distributed by SIMPACK AG. 
In this work the multibody simulation of the ground resonance effect is investigated. For this purpose, the 
interface of SIMPACK with a FEM code for modelling the elastic rotor blades is considered. This interface 
creates a Standatrd Input Data, SID, based on blade geometry and eigenvalue analysis. The SID-file is then 
used for the calculation of elastic deformation. SIMPACK provides also an interface with MATLAB, which 
allows performing a part of postprocessing within this program. Fig.1 shows the general view of the ground 
resonance analysis using multibody dynamics simulation.  

  
Fig.1 General view of the ground resonance analysis procedure 

 
Helicopter ground resonance is a self exited dynamic instability, which may occur when helicopter is in 
contact with the ground. Elastic deformation and out of phase lagging motion of the rotor blades during rotor 
rotation lead to the oscillation of the rotor centre of gravity around the rotor rotation axis. Due to the 
interaction between rotor and fuselage, this oscillation excites the flexible fuselage and the rotor support and 
may cause a violent damage of the helicopter structure. This phenomenon is known as ground resonance. 
Modelling this phenomenon needs consideration of the following points: Linearisation, Geometric stiffening 
effect, Time-periodic system, Multiblade coordinates transformation. The work described within this paper is 
generally divided into three main parts. The first part is related to the “linearization and geometric stiffening 



effect”, which is a preliminary step for the dynamic stability analysis of a rotating system. Here, the simulation 
results are compared with analytical results. Creating the Fan-Diagram of an isolated rotor and comparison of 
the results with those produced with CAMRAD II belongs also to this part. The second part deals with the 
helicopter ground resonance analysis.  Modelling the ground resonance starts with a simplified model (rigid 
blades with mechanically equivalent elastic lagging deformation and fuselage with two translational degrees 
of freedom) and is continued with more complex models comprising elastic blades and fuselage. Data used 
in this part belongs to DLR scaled (1:2.5) BO105 research rotor model (configuration K20) [3] and CAMRAD 
II model of full scale BO105 with modified skid gear provided by Eurocopter Germany. One of the features of 
the ground resonance model is its time-periodic characteristic, which leads to the invalidity of the direct usage 
of the classical eigenvalue method for the dynamic stability analysis. To perform the ground resonance 
analysis, the model is first linearized about the equilibrium state. Then the linear system matrix of the model 
is extracted and transformed from the rotating coordinates to the non-rotating multiblade coordinates. This 
coordinate transformation changes the system from a time-periodic to a time-invariant one. Finally, a 
classical eigenvalue analysis of the transformed system matrix results in the frequencies and damping of the 
system. To evaluate the simulation procedures, the SIMPACK results are compared with results produced 
with CAMRAD II model. To validate the model and calculation procedures in addition to a comparison with 
the CAMRAD II-results an analytical validation of the dynamic response of the system is also performed. The 
third part of the work deals with the parametric studies of the ground resonance effect and analysing the 
results and tendencies of the changes of the dynamic response. 
 

1. INTRODUCTION 

Testing of rotorcraft dynamic stability is a necessary step 
for the successful development of a new design. Testing a 
prototype at full scale or model scale is typically very 
expensive. Therefore usage of a simulation code for 
investigation of dynamic stability is a considerable 
alternative solution. Each simulation code has its own 
computational methods and modelling approaches, which 
results in different accuracies. Therefore usage of a 
simulation code for a special analysis demands pre-
investigations and validations.    
The multibody dynamic simulation tool allows using 
modular models to build a complete detailed system. This 
could be used to model a complex helicopter. SIMPACK 
(SImulation of Multibody systems PACKage) as a 
multibody simulation tool has shown considerable ability 
to model and analyse linear and non-linear systems 
during different DLR-projects, however use of this tool for 
modelling the helicopter dynamics is something which is 
currently being investigated [1], [2]. 
In general helicopter dynamic instability happens less 
frequently but ends more dramatically. A vibratory mode 
of a rotor can be stable over a wide range of operating 
conditions and with a small change in speed or torque 
may become violently unstable with a rapid growth in 
amplitude leading either to failure or to a limit cycle if 
nonlinearities limit the growth.  
Having deep knowledge of the physics of the aeroelastic 
instability of a system makes it easier to find an effective 
technical solution to prevent it. To achieve this, parametric 
studies, using simulation code, for investigation of the 
effects of different system parameters on the instability 
will be beneficial. 
Inside each simulation code first physical model is 
estimated with a mathematical model. This mathematical 
model is generally in form of a system of nonlinear 
differential equations: 

(1) ( )nii xxxfx ,,, 21 K& =  

For stability analysis of this system, the response of the 
physical system after a small perturbation from its 
equilibrium state is studied. In general the behaviour of 
this nonlinear system could be approximated with the 
behaviour of a dynamically equivalent linear system.  
Applying the Jacobian linearization method for equation 

(1) with consideration of the linearization point “LP” results 
the following linear equation: 
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This equation can be rewritten in the following form: 

(3) [ ] XAX ⋅=&  

The matrix [ ]A is called “system matrix”.  

For the stability analysis of the linear equation (3) 
following methods can be utilized: 

• If the system matrix is constant in time, then 
eigenvalue analysis leads to stability/instability 
prediction 

• If the system matrix is time dependent and 
periodic, then applying the Floquet theory or an 
approximation method (for example usage of 
multiblade coordinates transformation with time 
average approximation) is common.  

1.1. Helicopter Ground Resonance 

The theory of helicopter ground resonance was originally 
developed by Coleman and Feingold [4]. This 
phenomenon is a self-excited dynamic instability caused 
by the interaction of the lagging motion of the rotor blades 
with other modes of the motion of the helicopter. Elastic 
deformation and out of phase lagging motion of the rotor 
blade during rotor rotation causes the oscillation of the 
rotor centre of gravity around the rotor rotation axis. Due 
to the interaction between rotor and fuselage, this 
oscillation excites the flexible fuselage and rotor support 
and may cause a violent damage of the helicopter 
structure.  This dynamic instability happens when 
helicopter landing gear or skid gear is in contact with the 
ground. Therefore this instability is called ground 
resonance. 
Some of the characteristic parameters of this instability 
are: 



• Blade lag frequency 
• Blade lag damping 
• Frequencies of the structure supporting the rotor 
• Daming of the structure supporting the rotor 

To perform ground resonance analysis, degrees of 
freedom of the modelled helicopter are reduced. An 
Elimination of a DOF is based on its effect on the ground 
resonance. For a classical ground resonance model just 
the lagging of the rotor blades and longitudinal and lateral 
in-plane motion of the fuselage are considered. For this 
model aerodynamic forces have little influence on the 
instability effect in compare to structural and inertial 
forces, therefore aerodynamic forces can be neglected 
[5]. With consideration of the flapping motion of the rotor 
blades aerodynamic forces can be neglected.   

1.2. Multiblade Coordinates 

Generally the equation of motion of a rotor is derived in 
the rotating frame. In this frame each rotor blade is 
considered separately but mostly the rotor responds as a 
whole to an excitation. Changing the coordinate system 
from rotating to the non-rotating allows to analyse the 
rotor as a whole system. In the non-rotating frame the so 
called “multiblade coordinates” are defined. 
Transformation of the differential equations of motion from 
rotating frame to non-rotating frame has the following 
advantages: 

• It simplifies the analysis and helps to understand 
the behaviour of the rotating system, especially, 
when they are in interaction with non-rotating 
parts. 

• In the case of time-periodic system, this 
transformation reduces the number of time-
periodic elements in the differential equations. 

• For a time-periodic system, a combination of 
multiblade transformation and time average 
approximation leads to a system of differential 
equations with constant coefficients. 

 
Consider a rotor with N equally spaced blades. The 
azimuth of the ith blade is given by: 
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1ψ is the azimuth of the first blade. The arbitrary degree 

of freedom of the rotor blade “ β  “is then expressed in the 

multiblade coordinates as follows [6]: 
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dβ appears only when N is even. 

The multiblade coordinates from (5) are then calculated 
by following equations: 
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These coordinates defines the new degrees of freedom, 
which describe the motion of the rotor as a whole in a 
non-rotating frame. Fig. 2 shows as an example the mode 
shapes of a four bladed rotor in multiblade coordinates 
considering the lag degree of freedom. 

 
 
FIG. 2       Multiblade modes of lagging rotor blade 
 
There are similarities between the multiblade coordinates 
and coefficients of the Fourier series but they are not the 
same. If the motion in the rotating frame represented by a 
Fourier series, then the coefficients of series are constant 
in time but infinite in number and if by Multiblade 
coordinates then the coefficients or not constant in time 
and the number of coefficients depends to the number of 
rotor blades. 
 

1.3. Simulation tool SIMPACK 

SIMPACK (SImulation of Multibody systems PACKage) 
software package is used to simulate, analyse and design 
all types of mechanical system. It can analyse the 
vibrational behaviour of multibody systems and allows 
predicting and describing the motion of a complex 

machine or mechanisms [7]. This tool was originally 
developed by DLR (German Aerospace Center) and 
is now further developed and commercially 
distributed by SIMPACK AG. The software has a 
comprehensive range of modelling and calculation 
features. Therefore it is applied within industry, university 
and research institutions. There are different modelling 
elements, which are used to simulate a complex system. 
Data related to these elements can be entered in to 
SIMPACK via the graphical user interface. Most important 
modelling elements and options are: 

• Reference Frames 
• Bodies 



• Joints, Constraints 
• Force elements 
• Sensors, Control elements 
• Substructures, Substitutions variables 

SIMPACK creates first of all the equations of motion for a 
modelled mechanical system and then solves it with 
different mathematical procedures. A wide range of 
analyses features are available to analyse dynamic 
systems. These are: 

• Static Analysis 
• Kinematics Analysis 
• Non-linear Dynamic Analysis 
• Linear System Analysis 
• Symbolic Code Generation 
• Eigenvalue Analysis 

 

2. GROUND RESONANCE MODELLING 
APPROACHES 

There are different modelling approaches of the ground 
resonance effect. The differences of these approaches 
returns back to the accuracies of the modelling and to the 
methods of analysis.  The structure of a helicopter is in 
general divided in to two main groups. The first group 
includes rotor and the second group fuselage. For each 
group there are different modelling methods. For 
reduction of the complexity of the problem, the degrees of 
freedom of each group can be reduced to the ground 
resonance dominant degrees of freedom. 
 

2.1. Modelling of the Rotor Blades 

Two methods for modelling a rotor blade are used. In the 
first method the rotor blade is modelled as rigid body. The 
elasticity and structural damping of the blade are 
modelled with equivalent spring and damper. For a 
hingeless rotor besides the equivalent spring and damper 
an equivalent lagging hinge is also considered. The 
calculations of the equivalent hinge, spring and damping 
coefficients are done under assumption of the equivalency 
of the first lagging harmonic of both hingeless and 
equivalent rotor.  Fig.3 shows a general form of a rotor 
blade created with the first method. 
In the second method the blade is modelled as an elastic 
body using directly a FEM code or SIMPACK beam 
elements (SIMBEAM). In both cases an eigenvalue 
analysis of the structure should be first performed. Usage 
of these results in SIMPACK interface with FEM code 
(FEMBS) allows creating a standard input data file (SID), 
which is used by SIMPACK to calculate the elastic 
deformation of the structure. 

2.1.1. Frequency Analysis of the Rotor Blade 

Generally for the stability analysis of a nonlinear system in 
frequency domain, its linearized form is considered. 
Therefore for blades created with the first or second 
method the linearization method of SIMPACK should be 
evaluated.  
 

 
FIG. 3       Rigid blade with equivalent elasticity 
 
Using the first method of the blade modelling, a blade of a 
windmill-powered plant, shown on Fig.4 was created. “I” 
given on Fig.4 defines the blade mass moment of inertia 
at the rotor centre and about the “Z” axis and “K” gives the 
rotational spring stiffness. This model was linearized for 
different rotational velocities and azimuth angles.  

 

FIG. 4       SIMPACK windmill-powered plant model 

 

Table 1    Comparison of Eigenfrequencies: Analytical, 
                SIMPACK and MSC.ADAMS 
 
The lead-lag frequencies obtained after the linearization 
were compared with analytical results and MSC.ADAMS 
results published on paper [8]. Table 1 gives and 
compares these frequencies for four different azimuth 
angle and two rotor rotational velocities.  
For frequency analysis of a rotor blade created with the 
second method of the modelling, an elastic rotating blade 
with 32 elements, created with SIMBEAM option of 
SIMPACK, was analyzed. Fig.5 shows this model. To 



evaluate this model the same beam was modelled using 
MSC.NASTRAN. 

 

 
FIG. 5       Elastic beam created with SIMBEAM 

Eigenfrequencies of these rotating beams were compared 
together for different rotational velocities. Fig.6 shows as 
an example the eigenfrequencies of different eigenforms 
of these two beams for rotational frequency 6 Hz and 
compares them together. This comparison shows, that the 
elastic beam created directly with SIMPACK considers the 
rotational effects (centrifugal effect, which changes the 
stiffness of the blade and gyroscopic effect, which leads to 
the coupling of DOFs) as it is considered for NASTRAN 
model.  

 

FIG. 6       Eigenfrequencies of different Eigenforms of 
                 the rotating beam shown on Fig.5  

 

2.1.2. Frequency Analysis of an Isolated 
Rotor 

With blades created with the first method of the blade 
modelling, an isolated rotor was created. The data related 
to this rotor belongs to the scaled BO105 rotor [3] and will 
be given later for description of the ground resonance 
model.  For this isolated rotor a created sensor measures 
the location of the rotor centre of gravity. The blades are 
first disturbed out of phase in lag direction and then time 
integration is performed.  Fig.7 shows the result of the 
time integration of the first rotor blade. 

 

FIG. 7       Oscillation of the rotor blade after a small 
                 perturbation 
 
FFT analysis of this result, shown on Fig.8, gives as 
expected the lag frequency of the blade, which depends 
to rotor rotational velocity. 

 

FIG. 8       Frequency spectrum of the blade oscillation 
                 shown on Fig.7 

Because of the out of phase oscillation of the rotor blades, 
the rotor centre of gravity oscillates too. The Frequencies 
of this oscillation can be obtained with FFT analysis of the 
movement of the rotor centre of gravity, which is captured 
by a sensor. Fig.9 shows these frequencies. It can be 
seen that, between the frequencies of the rotor centre of 
gravity, rotor rotational frequency and blade lagging 
frequency the following relation exists [9]: 

(10) Ω±= ,, RotorLaggingBladeCG fff    

 

FIG. 9       Frequency spectrum of the oscillation of the 
                rotor centre of gravity.  

Performing of this frequency analysis for different rotor 
rotational velocities (rotational frequencies) and plotting all 



the frequencies results in the lines shown on Fig.10. A 
Similar frequency diagram will be seen later in ground 
resonance analysis of a whole helicopter. 

 

FIG. 10     Frequencies of the rotor centre of gravity and 
                 blade lag mode 

As a further analysis for this isolated rotor, Fig.11, 12 and 
13 show graphically the planer displacement of the centre 
of gravity of this rotor for three different rotational 
velocities.  Comparison of these figures shows the 
irregularity of the patterns of these displacements.  For 
this isolated rotor the multiblade coordinates were defined 
as outputs. These Outputs were used to calculate the 
position of the rotor centre of gravity with the following 
equations [9], see Fig.3: 
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The results obtained from these equations were plotted on 
Fig.11, 12 and 13 and compared with the results obtained 
directly from the sensor measurements. A Conclusion in 
respect to equations 11 and 12 and Figures 11 to 13 
would be that, instead of frequencies of the oscillation of 
the rotor centre of gravity the frequencies of the 
multiblade coordinates can be analysed. 

 

FIG. 11       Displacement of the rotor centre of gravity  

 

 

FIG. 12       Displacement of the rotor centre of gravity 

 

FIG. 13       Displacement of the rotor centre of gravity 

As a next step, using the SIMBEAM option of SIMPACK 
the elastic blade of BO105 helicopter was modelled 
(structure data was provided by Eurocopter). After 
modelling the blade, an isolated rotor as shown on Fig.14 
was created.  

 

FIG. 14       Isolated BO105 rotor 

For this rotor frequency diagram (Fig. 15) was created. 

 

FIG. 15       Cambell diagram of  BO105 rotor    



On Fig.15 frequencies of the different eigenforms 
calculated with SIMPACK are compared with results 
produced with CAMRADII. This comparison shows a good 
agreement of the both SIMPACK and CAMRADII models. 
Because the results of ground resonance analysis 
produced with SIMPACK will be compared with 
CAMRADII results, therefore it is necessary both models 
to be dynamically equivalent. For classical ground 
resonance analysis the first lag frequency of the blade is 
most important and is often considered as only model 
degree of freedom of the blade, therefore a modification 
(calibration) is necessary to match these lag frequencies 
with those obtained from CAMRADII. This ensures the 
dynamically equivalence of both models. Fig.16 shows the 
first lag frequencies of the rotor blade after and before 
modification and compares them with CAMRADII results. 

 

FIG. 16       Lag frequencies of the BO105 rotor blade 

For the modification of the lag frequencies a reduction in 
centrifugal stiffness was considered.   

 

2.2. Modelling Approaches of the Fuselage  

 
For modelling the helicopter fuselage three methods can 
be applied. Fig.17 shows schematically these methods. In 
the first method the fuselage is modelled directly using 
SIMPACK modelling elements (mass, spring, damper).  
For the definition of the spring or damping coefficients, we 
consider this fact that, the fuselage model and real 
fuselage should be dynamically equivalent. The 
calculations of these values are normally based on the 
results of the experimental ground vibration test or modal 
values. These  equivalent values of the fuselage are 
normally determined experimentally by ground vibration 
test. The second method applies the SIMPACK interface 
with FEM code. The fuselage is first modelled using a 
FEM code and then the information related to this elastic 
model is sent to SIMPACK. The SIMPACK interface with 
FEM code (FEMBS) creates a standard input data file 
(SID), which is used to define the structure and elasticity 
of a body. All matrices inside this file are in modal 
coordinates. In the third method one can edit or create 
directly a SID file using the modal values (modal mass 
matrix, modal stiffness matrix, modal damping matrix and 
etc.) of the fuselage.  Modal values can be obtained for 
example after a ground vibration test. 
For ground resonance calculation, it is sufficient to 
evaluate fuselage frequencies not higher than the rotor 
frequency minus lagging frequency. The Fuselage natural 

frequency on its landing gear varies depending on its 
percent airborne condition. Because of this a helicopter 
may be stable when fully on the ground but go in to 
ground resonance in a partially airborne condition. It is 
assumed that the helicopter on its landing gear can be 
represented by effective parameters applied at the 
fuselage model.  
 
 
 

 
  
FIG. 17       Modelling options of the Fuselage 
 

3. GROUND RESONANCE ANALYSIS (G.R.A) 

In this part two types of ground resonance model are 
considered. In the first modelling type, blades are rigid 
and their elasticity are defined with equivalent springs 
(first method of the blade modelling) and in the second 
model the blades are elastic and are created by finite 
element method.  To perform a ground resonance 
analysis after creating the model the model is first 
linearized. For this linear system then          a multiblade 
transformation is performed to convert the rotor 
coordinates from a rotating frame in to a fixed frame. This 
transformation averages out the periodic terms in the 
motion equations over time, which leads to a system of 
equations with constant coefficients. Finally an eigenvalue 
analysis leads to the frequencies and damping of the 
system. This procedure is repeated for different rotor 
rotational velocities and at the end the obtained 
frequencies and damping are plotted together. 
 

3.1. G.R.A: Rigid Blade with Equivalent 
Elasticity 

With the data given on the next page, a whole helicopter 
model was created to perform the ground resonance 
analysis. Fig.18 shows this model. In this model the 
fuselage has two translational degrees of freedom and 
rotor blade has only lag degree of freedom. Blades are 
jointed to the lag hinge with rotational springs and 
dampers. The data related to the rotor are based on the 
scaled research rotor “BO105, DNW, configuration K20 
[3]. This SIMPACK blade model is in fact a mathematically 
equivalent model of the hingless scaled BO105 rotor 
blade. This hingless rotor blade is modelled with an 
equivalent lagging hinge and equivalent spring and 
damper to model the stiffness and structural damping of 
the hingless blade. 



 

FIG. 18       SIMPACK ground resonance model 
 
The data related to the  model shown on Fig.18 are : 
Rotor data 
0.35 [m]               Distance between the lagging hinge and 
the axis of rotation.  
1.39 [Kg]            Blade mass 
1.66 [m]             Blade length 
1.281[Kgm²]      Blade mass moment of inertia about             
lagging hinge 
81.6 [Nm/grad]   Lagging stiffness 
1.5  [% crit.] Damping ratio 
 
Fuselage data 
160000  [N/m]     Spring stiffness in Y direction 
77.519  [Ns/m]    Damping coefficients in Y direction 
160700  [N/m]     Spring stiffness in X direction 
65      [Ns/m]    Damping coefficients in X direction 
3.51    [Hz]     Frequency of eigenform in Y direction 
for 0=Ω  

3.52    [Hz]    Frequency of eifenform in X direction for 
0=Ω     

0.54    [% crit.] Damping ratio in Ydirection for 0=Ω  

0.45    [% crit.]  Damping ratio in X direction for 0=Ω  

322     [Kg]       Fuselage mass 

 
To perform the stability analysis the rotor rotational 
velocity is changed stepwise. For each value of the 
rotational velocity the system is linearized about its 
equilibrium state. Then the linear system matrix of the 
model is extracted and saved in MATLAB m-file format. A 
MATLAB program, implemented by writer, is used to 
perform the coordinates transformation. This program 

transforms the linear system matrix “ [ ]A ” from rotating 

coordinates to non-rotating coordinates. The new matrix is 

called “ [ ]T ”. Fig. 19 shows the linear differential equation 

of the system in rotating and non-rotating coordinates and 
illustrates the definition of the system matrices A and T. 
After performing the transformation, the eigenvalues of 

the transformed linear system matrix [ ]T  are determined 

and then with respect to the eigenforms are sorted. Finally 
the frequencies and damping are calculated and 
evaluated.   
 

 

FIG. 19       Multiblade coordinates transformation 
 
A CAMRAD II model of the described ground resonance 
model was created to validate the performed procedures. 
From the data used for SIMPACK model, the data needed 
for the CAMRAD II model were calculated. This is 
necessary due to the differences between the modelling 
approaches of CAMRADII [10] and SIMPACK. Fig.20 
shows schematically the CAMRAD II rotor blade.  
 

 
FIG. 20       CAMRADII rotor blade model 
 
From the mass moment of inertia of the SIMPACK model 
and the rotor length one can calculate the rotor chord 
length (see, Fig.20 and Equ.13) as follows: 
 

(13) 

[ ]mrrb 658.124 =−=  

( ) ( )

[ ]mc

ccbm
ICG

2308.0

3245.0
12

658.13896.1

12

2222
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=
+
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=  

 
Then density of the blade is calculated from its geometry 
and mass: 
 

(14) [ ]3/1.131
12.0658.1

3896.1
mKg

ccdcb

M blade =
⋅⋅

=
⋅⋅

=ρ  

 
Equations 15 and 16 give the values of the two other 
parameters needed in the blade input file of CAMRAD II. 
 

(15) ( ) ][00377359.022
kgmdAzxITHETA =⋅+= ∫ ρ  

 



(16) ( ) ][00366645.022
KgmdAzxI POLAR =⋅−= ∫ ρ  

 
Fig. 21 shows graphically the frequencies and damping of 
the both SIMPACK and COMRAD II models in multiblade 
coordinates (first model). Comparison of the results shows 
the agreement of the both models and validates the 
implemented MATLAB program for multiblade coordinates 
transformation and also approved the considered 
procedure of ground resonance analysis.   
According to the Fig.21 the ground resonance of the 
model happens by rotational frequency ~17 [Hz]. This 
instability happens when the regressing frequency of the 
rotor interfaces the fuselage frequency. However this 
happens in two different points. Investigating the damping 
at both intersection points shows that just in one 
intersection point the damping of the fuselage dominant 
eigenform reduces and leads to instability. The instability 
of this ground resonance model depends to the following 
parameters: 
natural frequencies of the helicopter and the blades, the 
distance between the rotor hub and  the lead-lag hinge, 
the moment of inertia of the blade about the lead-lag 
hinge, the rotor speed, the mass of blade, and the 
effective mass of the fuselage. 
To see the effect of each of these parameters on the 
stability, one can perform parameter studies using the 
parameter variation option of SIMACK “ParVariation”.  

 

 
FIG. 21      Frequency and damping of the eigenvalues of 
                  the transformed system matrix, first model 

By the first ground resonance model the frequencies of 
the fuselage dominant eigenforms had nearly the same 
values. For the next model (second model) these 
frequencies were separated from each other (by model 

modifications) to prevent any coupling effect. The data 
used for this model are: 

Rotor data 

Same data used for the first model 
 
Fuselage data 
31135    [N/m]      Spring stiffness in Y direction 
143      [Ns/m]   Damping coefficients in Y direction 
15645000 [N/m]   Spring stiffness in X direction 
6500     [Ns/m]   Damping coefficients in X direction 
3.48     [Hz]     Frequency of eigenform in Y direction 
for 0=Ω  

79.17  [Hz]          Frequency of eigenform in X direction for 
0=Ω     

5        [% crit.]  Damping ratio in Y direction for 0=Ω  

10.39    [% crit.]  Damping ratio in X direction for 0=Ω  

59.09    [Kg]       Fuselage mass 

With these data two models were created using SIMPACK 
and CAMRADII. For both models the ground resonance 
analyses were performed. Fig. 22 shows the frequencies 
and damping of both SIMPACK and CAMRADII models in 
multiblade coordinates. Comparison of the results of the 
both simulation tools approved again the procedure 
defined for ground resonance analysis with SIMPACK. 

 

 

FIG. 22      Frequency and damping of the eigenvalues of 
                  the transformed system matrix, second model 

Analysing the damping on Fig.22 shows that at the point 
of instability the energy needed for increasing the 
amplitude of the fuselage oscillation comes from the rotor. 
Increase or decrease of the damping can be better 



understood, when the exchange of the energy between 
the fuselage and rotor is analysed.  
Fig.23 shows the results of ground resonance analysis of 
two further considerable test cases. In one case the 
structural damping of the fuselage is zero while these 
values for blades are non zero and in the second case the 
structural damping for both blades and fuselage are zero. 
The upper diagram of Fig.23 shows the frequencies for 
both test cases. Diagram in the middle shows the 
damping for the first case and lower diagram shows the 
damping for the second case. 

 

 

 

FIG. 23       Ground resonance analysis, test cases 

The change of the damping in the neighbourhood of the 
frequencies intersection point causes the changes in 
dynamic behaviour. It can be also seen on lower diagram 

of Fig.23 that, for a rotor with constant rotational velocity 
the sum of the energy exchange between the rotor and 
fuselage at the ground resonance point will be zero. 

3.2. G.R.A: BO105 Blade Created with FEM 

It was described, that the hingless rotor blade of BO105 
was created using SIMPACK and calibrated to be 
dynamically equivalent with its similar CAMRADII model. 
Considering the modal values used by CAMRADII model 
to model the BO105 fuselage, an dynamically equivalent 
fuselage with mass, spring and damper was inside 
SIMPACK created. The dynamic equivalency means here 
the equivalency of the eigenforms and eigenvalues of the 
both models under the assumption of the equality of the 
masses and mass distributions. 
Fig.24 shows the ground resonance model of BO105 
created inside SIMPACK.  This model has 4 modal DOFs 
for the blades (one for each blade) and 2 translational 
DOFs (longitudinal and lateral) for the Fuselage. 

 

FIG. 24       SIMPACK BO105 ground resonance model 

The procedure of the ground resonance analysis for this 
model is identical to the procedure performed for previous 
model.  
Fig. 25 shows the results of this analysis. The upper 
diagram shows the frequencies and the lower diagram the 
damping. On this Figure the results are compared with 
CAMRADII results. It can be seen that, there is a small 
differences between the CAMRADII and SIMPACK 
results. This difference is firstly due to the difference 
between SIMPACK and CAMRADII fuselage models and 
secondly due to the rotor models. Although the SIMPACK 
blades were calibrated with CAMRADII blades, still the 
eigenfrequencies of the blades do not match 100% to 
each other and this results in the different ground 
resonance points (offset between the damping picks on 
Fig.25). It was shown in previous part, if both 
rotors/Fuselages are exactly similar, then the ground 
resonance results of both tools will be the identical.  
an Interesting effect seen on this model is that, in the 
neighbourhood of the frequencies intersection point, 
damping of the fuselage dominant mode increases 
(fuselage gives energy) and damping of the rotor 
dominant modes decreases (rotor receives energy). It 
should be mentioned that, for coupled fuselage and rotor 
system, fuselage modes refer to fuselage dominant 
eigenmodes and rotor modes refer to rotor dominant 
eigenmodes. For a fuselage dominant eigenmode the 
amplitude of the fuselage oscillation is larger than the 
amplitude of the blade oscillation. 



Comparison of the different ground resonance simulation 
results shows that, at the ground resonance point the 
eigenmdoe with reduced damping would be the one with 
smaller damping before frequencies intersection point. 
This fact can be seen for example by comparison of 
Fig.22 and 25. 

 

 

FIG. 25       Result of BO105 ground resonance analysis: 
                   Frequency and Damping 

Different parametric studies were performed for the 
created ground resonance models and different results 
were produced. Fig.26 shows as an example one of these 
results. It shows the effect of the increase or decrease of 
the blade structure damping on the ground resonance 
effect. 

 

FIG. 26       SIMPACK ground resonance analysis: 
                   parametric studies 

4. CONCLUSION 

During this work, SIMPACK was investigated as a 
multibody dynamics tool for ground resonance analysis.  
This investigation is divided in to two main parts: first part 
deals with the modelling approaches and the second part 
deals with the methods of the calculation and analysis. 
In the first part some modelling options and features of 
SIMPACk for creating a helicopter-model with elastic 
blades were evaluated. Some of these options are:  

• Modelling of the elastic blade and fuselage 
a-rigid blade with equivalent elasticity 
b-elastic blade created using FEM 
c-rigid fuselage with equivalent elasticity 

• Parametric modelling and studies 
SIMPACK allows defining parameters inside the 
model and performing different analysis with 
parameter variation. This option can be used for 
example to produce the cambell diagram. In this 
case the rotor rotational velocity is defined as a 
model parameter and eigenvalue analysis is 
performed for different values of this parameter. 

• Expressions (user defined functions) 
Using the expressions, the multiblade 
coordinates can be defined inside SIMPACK and 
can be requested as output. This allows 
analysing the multiblade coordinates in time 
domain. 

 
Related to the methods of the calculation, the following 
points were analysed: 

• Linearization of a nonlinear system 
Linearization option of SIMPACK gives valid 
results for a rotating system. These results are 
used for ground resonance analysis. 

• Rotational effects(geometrical stiffening, 
gyroscopic effect and etc.) 
For a rotating system SIMPACK considers the 
forces resulting from rotation. 

• Multiblade coordinates transformation 
After linearization of a non-linear system, 
SIMPACK creates the linear system matrices. 
These matrices can be saved in MATLAB m-file 
format. An implemented MATLAB program is 
then used to perform the multiblade coordinates 
transformation.  This coordinates transformation 
was validated before its usage for ground 
resonance analysis. 

• SIMPACK post-processing options (for example 
coordinate transformation, FFT analysis) 
In most cases SIMPACK can be used directly as 
a post-processor for the evaluation of the 
simulation results. SIMPACK can perform the 
Fast Fourier Transformation (FFT) for the results 
saved as an output or can filter the results with 
user defined or selected filter. 

 
For the evaluation of the simulation results, SIMPACK 
results were compared with analytical results (in case of 
linearization) and results of the other simulation tool (in 
case of ground resonance analysis the results were 
compared with the results of CAMRADII).  
In this work two main different ground resonance models 
were created. In the first main model the blade was rigid 
and its elasticity was modelled with an equivalent spring 
and in the second model the blade was modelled directly 
as an elastic part using FEM. 
After performance of the ground resonance analysis for 



each model the results were compared with the results of 
its similar/equivalent CAMRADII model. Comparison of 
the results shows the validity of the ground resonance 
modelling approaches and calculation methods defined 
within this paper and shows SIMPACK as a convenient 
multibody simulation tool for the helicopter ground 
resonance analysis. However, for the usage of this tool for 
a complex and exact helicopter dynamics analysis still 
new methods should be developed.    
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