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Abstract 

 
The primary aim of the paper is the characterization of the dynamic behaviour of an innovative two-blade 
main rotor design under cyclic perturbations. The consequent ‘wobbling’ motion, i.e. the 2/rev precession of 
the hub with respect to the mast, is known as a significant drawback of typical current two-blade rotor 
realisations, based on a teetering mount, as it induces considerable oscillating loads to the fuselage. As an 
alternative capable to alleviate this problem, the proposed design is based on a constant-speed gimbal 
mount. The performance of this solution is contrasted with a pure teetering one, as well as with intermediate 
architectures retaining only a part of the innovative elements of the new gimbal rotor, in order to appreciate 
their effects separately. All models are simulated within a high-fidelity finite element multibody framework. 
The results confirm the superior characteristics of the constant-speed architecture. The study is completed 
with a sensitivity analysis of the dynamic response of the proposed rotor model with respect to some 
important design parameters. 
 

1. INTRODUCTION  

The present paper aims to characterise the dynamic 
behaviour of an innovative two-blade main rotor 
design conceived as a convenient alternative to the 
standard teetering-type designs employed in current 
lightweight helicopters. It is well known that these 
rotors, with their remarkable design simplicity, suffer 
from some limitations and drawbacks. Among these, 
one of the most important is related to the vibratory 
loads transferred to the fuselage as a result of rotor 
cyclic flapping. This is the typical condition 
encountered in forward flight or while hovering under 
gust conditions, and involves a considerable impact 
on pilot workload, passenger comfort, vehicle 
handling qualities, and structural fatigue. 

In an effort to alleviate this problem, Dr. Vladimiro 
Lidak (1944-2012), a missed Italian rotorcraft 
designer and inventor, conceived an innovative rotor 
head solution based on a homokinetic gimbal mount. 
This patented design [1] is currently developed by 
K4A S.p.A., a start-up helicopter manufacturer 
based in Naples, Italy, to be implemented in the KA-
2HT two-seat helicopter. 

In order to analyse the dynamic behaviour of this 
solution, in this paper four different two-blade rotor 
models fitting the same general requirements for a 
650 kg MTOW class helicopter are considered and 
compared. The main characteristic of the dynamic 
response to cyclic perturbations, be it pilot control or 
wind gusts, is the ‘wobbling’ motion, i.e. the 
precessional 2/rev (two periods per rotor revolution) 
oscillations of the rotor head entailing analogous 
variations in the aerodynamic and inertial rotor 
forces. A thorough comparison of the wobbling 
behaviour is carried out contrasting Lidak’s design 

with a basic teetering rotor head and variations 
thereof. Following this analysis, some parametric 
studies are carried out in order to determine the 
sensitivity of Lidak’s design to important design 
parameters. The present results are also 
commented in relation to those presented in a 
previous work for the same rotor model [2]. 

2. MULTIBODY SIMULATION 

The present study has been conducted by the 
implementation of high-fidelity aero-servo-elastic 
models of the various rotor systems within the Cp-
Lambda (Code for Performance, Loads and 
Aeroelasticity by Multi-Body Dynamic Analysis) 
software. This is based on a state-of-the-art finite-
element multibody formulation [3] employing 
Cartesian coordinates for the description of all 
entities in the model, while all degrees of freedom 
are referred to a single inertial frame. The 
formulation handles arbitrarily large three-
dimensional rotations and makes use non-
conventional, unconditionally stable time-integration 
methods [4]. The software has been thoroughly 
employed in the aero-servo-elastic analysis of 
rotorcraft systems as well as wind turbine generator 
systems, e.g. [5, 6, 7]. 

Structural elements can be modelled as rigid bodies, 
beams and shells, and joint models. In particular, the 
blades, as well as other slender linkages, are 
modelled using geometrically exact, composite-
ready beams of arbitrary geometry and accounts for 
axial, shear, bending and torsional stiffness. Joints 
are modelled through holonomic or nonholonomic 
constraints enforced by means of Lagrange 
multipliers and can account for backlash, free-play 
and friction. 
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