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Shear elastic constants of the materials 

Y oung's modulus of the material of the phase ~i• in the x direction 

components of a unit normal vector located on a free edge of the section 

transverse shear warping function 

reduced section coefficient 

components of the warping displacement induced by the torsion 

components of the warping displacement induced by shearing and normal forces 

phase, i.e. a material making up a distinct part of a blade section 

warping at a point P of a section, induced by shearing and normal forces 

warping function of torsion associated to the center of torsion C 

warping function of torsion associated to the elastic center E 

unit angle of torsion of the section 

rigid body angles of rotation of the section about the X,Y, and Z axes 

rotational speed of the blade 

shear strains . 

shear stresses 

Abstract 

When dimensioning helicopter blade models, it is important to be able to calculate the shear 

stresses induced by torsion and shearing forces in each section accurately. The method explained 

here can be used to compute these stresses once the two warping functions are determined that 

represent the torsional and transverse shear properties of the blade. The finite element formulations 

associated with these functions are formally identical, except as concerns the boundary conditions. 

This method can also be used to compute the equivalent torsional stiffness of the sections, their 

transverse shear coefficients, and the position of their center of torsion. A grid generator method is 

also discussed, which is a part of the calculation program, and is used to discretize the secti0ns 

quickly and condition the grid data reliably. After describing the successful validation of the method 

on a few sections composed of isotropic materials, we apply it to the case of blade model sections 

made of composite materials. The results are good, compared with experimental data. 
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Introduction 

Aeroelastic computation algorithms are of capital importance in the design of helicopter blade 

models for use in wind tunnel tests. If theese blades are made of composite materials, their glob,/ . 

elastic characteristics can then be adapted more easely to their operating mode, by creating structura1 

couplings that will reduce the level of vibration at the rotor head, for example, and increase the flight 

performances. However, one of the major steps during the dimensioning process consists in 

verifying the mechanical strength of the blades under the effect of the loads they will be sustaining in 

the wind tunnel. 

That is, these blades must be able to stand up to the very heavy loads of testing for long enough 

to avoid any risk of breakage, which would disrupt the process and spoil the results. Contrary to the 

normal stresses on the blades, which can be calculated easely by conventional materials strength 

theory, the shear stresses generated in the blade sections for certain loading configurations may 

become predominant and thereby decrease the nominal lifetime. However, in spite of all the 

advantages that militate in favor of composite materials for these models, one disadvantage resides in 

the fact that it is no longer possible to compute the shear stress distributions on the blade sections by 

simple analytical methods. To remedy this, the method proposed here is based on a finite element 

determination of two warping functions, representative of the torsional and transverse shear 

properties, from which the shear stresses are computed. As the blade structures are relatively 

complex, a grid generator program is needed to discrerize the sections. We will be describing the 

principle of operation of this generator. 

Eguivalent Elastic Characteristics of the Sections 

A local frame of reference is attached to each blade section ( figure 1 ) with the x axis located at 

the fore quarter chord of the airfoil ( generally the same as the pitch axis ), the y axis is identified 

with the chord of the airfoil and directed from leading to trailing edge, and the z axis is right-hand 

orthonormal to the other two axes. The blade is driven in uniform rotational motion n. 
As a helicopter blade is composed of N different materials, we call each of the material making 

up a distinct part of the section a phase ~l (i=l,N) and then define the following centers: 

- E the elastic center of the section; 

- C the center of torsion of the section; 

- G the center of gravity of the section; 

- 0 the intersection of the pitch axis with the section plane. 

The position of the elastic center E is defined as the barycenter of the Young's moduli Ei along 

the x axis of each phase, weighted by the areas Si that they occupey. The position of the elastic 

center in the (0,x,y,z) frame of reference is computed from the equivalent tensile stiffness <ES> anl 

from the following barycentric formulae : 
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S· l 

(1-1) 

(1-2) 

In the same frame (E,x,y ,z) of reference, we can compute the equivalent sti.ffnesses in flapping 

mode <Elyy> , lead-lag <Elzz> , and flap-lead-lag coupling <Elyz> . The angle of inclination a of 

the main inertial reference frame system (E,X,Y,Z) with respect to (E,x,y,z) is found by 

diagonalizing the following inertia matrix : 

(2) 
The eigenvalues )..1 and )..2 are equal to the main flapping and lead-lag stiffnesses <Elyy> and 

<Elzz>. Lastly, still in the main inertial frame of reference, we define the equivalent transverse shear 

stiffnesses <GSy> and <GSz>. The mathematical definitions of these quantities are given in 

appendix A. These equivalent elastic characteristics, which are extensive quantities, are easely 

calculated by classical integration methods like the Gauss method [1]. However, as we will see 

further on, the equivalent torsional stiffness <GJ> cannot be calculated by simple methods in the 

case of sections made of composite materials. This is possible only for simply or multiply connected 

sections like box-structures, made up of an isotropic material. The warping function <I> of the section 

has to be determined in order to find the value of <GJ>. 

In the following we will consider the blades to be solids having beam type properties, i.e. as 

structures having a sufficiently large aspect ratio ( span-to-chord ). To remain within the bounds of 

beam-type theory, this aspect ratio generally has to be greater than or equal to ten. 

Forces, moments and displacements 

For a section located at a distance r from the center of rotation of the rotor, the force tensor 

applied to this section reduces to the following six components (figure 2 ) : 

- Nx 
- Ty,Tz 

-Mx 

- My,Mz 

the tensile force normal to the section; 

the shearing forces acting in the flapping and lead-lag planes; 

the moment of torsion; 

the flapping and lead-lag moments. 
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In the main axis system (E,X,Y ,Z) and according to elasticity theory as applied to straight and 

curved beams, the normal strain f.xx of an arbitrary point P in the section has the value : 
0 

£ : £ +yRZ+7R 
XX XX --y 

(3) 
Eo being the ·elongation due to the normal force, Ry and Rz being the local curvatures induced by 

the moments Mv and Mz- These quantities are.deduced from the following system of equations: 

(:,s> ~1z,> ~ J[~]= (-:::) 
0 O <Elyy> R M . y y 

(4) 
as long as the sections remain flat after deformation, either by a displacement parallel to themselves 

along the x axis, or rigid rotations 8y and ez about the Y and Z axes at 0. In this case, the only 

nonzero stress is the normal stress O'xx such that : 
Nx ~ ~ 

O'xx = Ei Exx = Ei ( <ES> - Y <Elzz> +z <Elyy>) 

(5) 
Of course, such a constitutive equation cannot be used to work back to the shear stresses. In 

modern blades, the introduction of composite materials with their shear moduli and their failure 

stresses much below those of metallic materials ( or foam cores whose shear characteristics are even 

weaker than those of composite materials ), special attention must be paid to the problem of the shear 

strength of composite materials. Similarly, in certain cases the transverse shear effects on th· 

vibratory properties of the blades have to be taken into account [2] [3] [4]. 

Under the effect of the torsion and transverse shear, the sections will be warped, and for a point 

P located in a given section, the components displacement field (u,v,w) is expressed as a function of 

the sum of two independant displacement fields, which are : 

- the displacements u',v',w' due to the warping of the section by torsion; 

- the displacements u",v",w" due to the warping of the section under the effect of the transverse 

shear. 

Thus: 
u = u' + u" v=v'+v" w=w' +w" 

' ' 
(6) 

in which: 

u' = 8<j>(y,z) , v'= - exz , w' = 8xy 

(7) 

where <I> is the Saint-Venant warping function expressed in the main inertial frame of reference, and 

e the unit angle of rotation of the section about the x axis such that 8=d8xfdx. The displacements v' 

and w' being the rigid body motion of the section. And : 

u" = u0 - y8 + z8 + 11 (y,z) + 11 (y,z) + 11 (y,z) , v" - 0 , w" - 0 
Z y XX Xy XZ 

(8) 
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in which T\xy, T\xz and T\xx are the x-wise warp displacements due to the shearing forces TY and T2 , 

and the normal force Nx ( figure 3 ). The warping function Cl> that normally has to be determined 

with respect to the torsion center (x,y,z) at C can also be calculated in the main inertial frame of 

reference, with respect to which it is denoted <I>, by the variable conversion : 

Cl>(y,z) = <l>(Y,Z) - YZc + ZYc 

(9) 
in which (Yc,Zc) are the coordinates of the center of torsion in the (x,y,z) frame of reference at 0. As 

the position of the center of torsion is not known beforehand, <I> can be determined because it is 

proven that the determination of the Saint-Venant warping function is, with an appropriate variable 

conversion, independent of the frame of reference chosen, because the equation governing it 

contains only terms including second-order derivatives. 

By integrating, over one section, the equations of equilibrium of elasticity, expressed in the 

absence of body forces, or : 

O' ... = 0 1,J = x,y,z 
lJ,J 

(10) 

This brings us back to the classical beam theory equations relating the forces and moments to the 

blade loading conditions, with : 

aNx . 2 

• dX + qx = Q ' qx = ml Q X 

(11) 

in the X direction, m1 being the mass per unit length of the blade for a section located at a spanwise 

abscissa x, 

aTY a~ 
dX + qy = 0 , dX +Ty= 0 

(12-1) 

aT2 a~ 
Tx + qz = 0 ' dX + T z = 0 

(12-2) 

qy and ~ being the distributions per unit length of the shearing forces exerted in the Y and Z planes 

of the blade, assuming that the moments per unit length are zero and that the effects of the finite point 

forces are negligible compared with that of the loadings per unit length. 

Stresses and Strains 

The stress tensor at a point P of the section is expressed : 

O'xx O'xy O'xz 

cr(P) = cr cr cr yx yy yz 

(13) 
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-The resultant x-wise stress T(P,x) at point P therefore has the value : 

T(P,x) = cr.n 
. (14) 

with the components O'xx,O'xy• and O'xz-

As the lateral surfaces of the sections are under very little load, because of the low value of the 

aerodynamic pressure field exerted on the airfoil, the stresses in the Y -Z (E) plane are then 

considered to be zero, or : 

O'yy = O'yz = O'zz = 0 
(15) 

However, although the effect of the pressure field is intrinsically negligible, i~ must be taken into 

account in the form of a loading per unit length, having two components qy and qz. The forces of 

inertia set up by the flapping and lead-lag oscillations of the blade also reduce to two loadings per 

unit length that are superimposed on those of the aerodynamic pressure field. Finally, following 

hypothesis (15) adopted above, the stress tensor is written: 

O' O' 
XX xy O' xz 

cr(P) = O' yx 0 0 

O'zx 0 0 

(16) 

We have seen that, in the main inertial frame of reference, the normal stress O'xx has a simple 

expression when the section warp is not taken into account. When i: is, the strain Exx has the value : 

c)u" dUo aez aey a 
Exx = dX = dX - ydX + Z dX + dX ( 1lxx + 1lxy + 1lxz ) 

(17) 

Yet the variation in the warp between two infinitely contiguous sections may be considered 

negligible, so that : 

a a<1> 
dx ( 1lxx + 1lxy + 1lxz ) = O ' dx = 0 

(18) 

which for the strain Cxx, finally yields an expression identical to (3). 

Still following the principle of superimposition, the shear stress field will be equal to the sum of 

the two stress fields, with : 

O'xy = a'xy + O'"xy 

O'xz = O''xz + O'"xz 

(19-1) 

(19-2) 

in which the primes and double primes denote, respectively, the contributions of the torsion and of 

the transverse shear. Returning to the first of the equilibrium equations of (10), or : 

dO'xx dO'xy dO'xz O 
+ + -_dx Ty dZ-

(20) 
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we get: 

acr·xy acr'xz 
ey+dz=O 

acr\y acr"xz aNX 1 Ty Tz 
ey + d°z = Ei ( - Tx <ES> + y <EIZZ> - 2 <Eiyy>) 

(21-1) 

(21-2) 

We will now use the following example to show that two of the terms of equation (21-2) can be 

neglected. In the case of a blade model used for wind tunnel testing, let us take the following realistic 

values: 

<ES>= 4.102 N, <Eiyy> = 1600 N.m2, <Elzz> = 35000 N.m2, m1 = 2 kg.m-1 

x=2m,!2= lOOrd.s-1, Ty=Tz= IOOON 

After calculation, the contributions of the terms on the right-hand side of (21-2) are arranged in 

increasing order as follows : 

aNX 1 -3 Ty -2 Tz 
dX <ES># 10 << <Eizz> = 3.10 < <Eiyy> = 0.6 

In other words, the first two terms of (21-2) have values that are about 600 times and 20 times less, 

respectively, than the contribution of the third term alone, depending on the shearing force Tz. This 

makes the contribution of these first two terms negligible compared to the third. Moreover, since the 

flapping stiffness <Eiyy> is still very much less than the lead-lag stiffness <Eizz>, it is clear that the 

system of equations (21 ), may, after simplification, be reasonably written : 

acr·xy acr·xz 

ey+dz=O 
(22-1) 

acr\y acr\z Ei T z 
dy + dZ = -z <Eiyy> 

(22-2) 

It is this system of equations which we can now use to compute the warping functions. 

However, to simplify the writing of the equations governing these functions, we will adopt an 

abbreviated subscript notation that is commonly used in composite material structural calculations, 

expressing the double subscripts with a single one as follows : 

XX -> X ' xy -> s ' xz -> r 

so that the stresses become : 

O'xx -> O'x , O'xy -> O's , O'xz -> O'r 

Using this notation, we express the stress-strain relation for a phase ~i of 'given anisotropic 

behavior in the matrix form : 

(23) 
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with: 

'Ys = Ys + 'Y"s · 

'Yr= Yr+ 'Y
11

r 

and the ~ representing the shear mode elastic constants of the material. 

For the torsion contribution, we have : 

au· av· oel> acp 
1 = --c + --c- = e < ~ - (z - 7:-)) = e < -r:-: - z ) s oy ox oy · '""\_; oy 

au· ow' oel> acp 
1 r = dZ + dX = e ( dy + (y - y c)) = e ( dz + y ) 

While the transverse shear contribution is expressed by : 

dT\xz dTlxz 
1's = -e 2 + Ty , 1'r = ey + Tz 

Determination of the Warping Functions 

Torsion 

When equation (22-1) is extended to matrix form it becomes: 

( 
. . J acp 

( a ' a ) c~s c~r dy - _z = O 
ciy ciz cl cl acp 

ST rr + y 
dz 

or, taking the products: 

i a2cp i a2cp . a2cp 
css -2 + err :---z + 2 ~r -- = 0 ay az ayaz 

(24) 

(25-1) 

(25-2) 

(26) 

(27) 

(28) 

The boundary condition is a free edge condition, i.e. the resultant stress vector at any point of the 

free surface as, expressed in the X direction tangential to this free lateral surface, leads to the 

following matrix equation : 

(29) 
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Another boundary condition, and one which is implicitly built into this system of equations, sets 

the resultants stress vectors equal on either side of the boundary between two phases 13i and 13j· This 

assumes that there is a perfect adherence between two contiguous phases. 

We see that the general problem of the torsion of the straight sections consisting of isotropic or 

anisotropic materials is expressed using an equation of partial derivatives (27) coupled to an equation 

(29) expressing the free edge boundary condition. The value of the equivalent torsional stiffness 

<GJ> is deduced from the torsion moment Mx , since : 

<GJ> = ~ = ~ I I ( y cr - z cr ) dS 
e e J r s 

Si 

(30) 

which, by substituting their values for err and crs , yields : 

J 
r c)f · · df · · 2 · 2 · · 

<GJ>= 1 { dy ( Y~r - z~s) + dz ( yC~ -z~r) + ( z c:s +y C~ - 2yz~r )}dS 

S· 1 

(31) 

Finally, the Principle of Virtual Works [5] [6] is used to compute the position (Yc,zc) of the 

center of torsion, with: 

(32-1) 

(32-2) 

Tranverse Shear 

When equation (22-2) is expanded for the transverse shear, as was done for the torsion, a matrix 

form similar to that of equation (27) is obtained that is : 

dT\ 

( a , a ) ( c; s c;r J Ty -8 
z = _ z Ei T z 

cy ;Jz c1 cl ari <Eiyy> 
sr rr xz e 

dz + y 

(33) 

· In its contracted form, this equation becomes : 

. a211xz . a211xz . a211xz z Ei Tz 
c1 --+c --+2c1 --=----

ss ay2 rr az2 sr ayaz <Elyy> 

(34) 
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Nevertheless, by a variable conversion such that : 
T z 

1'\xz = <GS > g(y,z) 
z 

(35) 

equation (34) is expressed in terms of the warping functions g rather than the displacement Tlxz, or : 

i ,Pg i ,Pg . ,lg . <GSz> 
C -+C -+2C --=-zE. ---

ss ay2 IT az2 Sf ayaz l <Elyy> 

(36) 

Here again, the boundary condition is a free edge condition, since the resultant stresses vector 

must be zero. This yields : 

( , nz) ( C~s C~r J( ~ )= <GSz> (n , nz) ( C~s C~r J( ez J 
~ cl cl ag T z Y cl cl -e 

sr rr dZ sr rr y 

(37) 

At this stage, a simplification can still be introduced at the level of (37) since, as we have seen, 

the flapping stiffness is very much less than the lead-lag stiffness. This implies that the angle of 

· rotation ez of the section is negligible compared with the angle of rotation 0y, as a consequence of 

expression (37), w(hi~h af~er Jsi(m E~fi)cation becomes : ( . J 

Cl cl ~ <GS > cl 
SS sr ay z SS 

( ",, , n, ) c:, C~ ~ = T, 0y (ny, n,) c:, 

Moreover, a second variable conversion such that : 
g=go-kzz 

gives us a rational way of introducing the reduced section coefficient kz such that : 
<GSZ> 

kz = T 0 
z y 

in which g0 represents the warping function, and which is calculated from the relation : 

k, = <Ei f E; f I g0 z dS 
yy> i=l J_ 

Si 

(3"8) 

(39) 

(40) 

(41) 

Proceeding with the variable conversion defined in (39) in expression (38), by identification we 

find again the value of kz given in (40), which means that the boundary condition is very simply 

formulated by taking : 
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=0 

(42) 

The continuity condition between two co~tiguous pha~es ~i et ~j on ~ is implicitely verified, as 

it was for the torsion. 

Finite Element Fonnulation 

In the integral formulation of the finite element problem, equations (28) and (29) are expressed 

symbolically in the form . 

L(cj>) = 0 , C(cj>) = f
5 

(43) 

Similarly, for equations (34) and (42), we have : 
L(g

0
) = fv , C(g

0
) = 0 

(44) 

In both cases, the operators L(*) and C(*) are identical with : 

a2<*) a2<*) a2c*) 
. L(*) = ( -- d + 2 -- d + -- d ) ay2 SS dy dZ ST az2 IT 

(45-1) 
d(*) . . d(*) . . 

C(*) = ( dy ( I1y ~s + nz Csr) + Tz ( ny ~r + nz c1rr)) 

(45-2) 

At this stage it is interesting to note that, on a formal level, the solutions to the torsion and 

transverse shear problems are identical, except as far as the boundary conditions are concerned. In 

the torsion case, the body forces are zero while the boundary condition requires equivalent surf ace 

forces. For the transverse shear, the surface forces are zero, resulting in a body force equal to the 

second member of equation (36). 

The finite element problem is solved in the usual way, by discretizing the sections with a certain 

number of elements, at the nodes of which the two nodal unknowns cj> et g0 , representative of the 

warp, are computed. After putting together the equivalent stiffness and force matrices, the following 

two linear systems are solved simultaneously: 

[ K' ] { cj> } = { F' } 

(46-1) 
[ K".] { g0 } = { F" } 

(46-2) 

in which { F'} represents the surface forces that have to be intoduced in order to include the 

boundary conditions expressed in (29), and { F" } the body forces deriving from the second 

member of (26). Though these body forces would be easy to calculate, the blade section grid 

generator program has to be able to index the free edges of the elements in order to be able to 
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calculate { F' } . This grid generator program also has to determine the composite material fiber 

orientation angles in each of the phases J3i , so that the base change on the elastic constants Ci55, Cirr 
and Ci sr , when each element is calculated . 

. Although the simplest elements to use are isoparametric elements with three-node triangul, 

linear interpolation (T3) and four-node rectangular elements (Q4), we chose rather to use quadratic 

interpolation elements with six and eight -nodes (T6-Q8), because we wanted to get a good 

approximation of the shear stress field with a reasonable number of elements, which leads to much 

better precision in the final result because the stresses are calculated from the warping function 

derivatives. What is more, the precisio:-: of the results is isensitive to any geometric distorsions of the 

elements during the grid generation procedure, contrary to what happens for elements with linear 

interpolation [ 6). 

Determining the Elastic Constants for the Materials Makin~ up the Sections 

For an arbitrary phase J3i of anisotropic material, the elastic constants Ci are in principle random 1 

because the local frame of reference and the orthotropic axes of the material are not the same. For 

isotropic and transverse isotropic materials, the elastic constants remain invariable, while for 

orthotropic materials they depend on the direction of the reinforcement ( figure 4 ). Generally 

speaking, two possible cases may exist in the blade sections : 

either a composite with unidirectional reinforcement, in which case the fibers lie in the 

plane of the section at an arbitrary angle of inclination o with respect to the main axes c 

inertia ( figure 4b ); 

or a laminated blade consisting of a stack of several layers of unidirectional or woven 

reinforcement, in which case the equivalent shear elastic constants have to be computed 

using laminate theory ( figure 4c ). 

In both cases, the matrix of elastic constants obey the base change formula : 

( 
c;s c;r J= ( m -n )( C~4 0. J( m n ) 
cl cl n m O cl -n m sr rr 55 

(47) 

in which m=cos(o), n=sin(o) , while 0 44 and Ci55 are the planar and transverse shear stiffnesses 

expressed in the orthotropic frame of reference of the phase J3i . 

Meshing of the Blade Sections 

The structure of the blades, considering their geometry and the internal arrangement of materials, 

is sufficiently complex to justify the use of a specific grid generator program. The method we used 

consists in partitioning the section into sub-domains, with the mesh characteristics ( number an 

distribution of elements ) stipulated inside each one. To make sure the mesh remains continuous 
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from one subdomain to the next, the oitly condition that has to be fulfilled is to have identical node 

distributions on the edges of each contiguous pair of subdomains. The subdomains may have three 

sides ( ten-node Lagrange type interpolation ) or four ( twelve-node Serendip type interpolation ), so 

that there is a great deal of flexibility for partitioning any type of section ( figure 5 ). In both cases, 

the subdomain edges are defined by four interpolation points, so that any edges there may be that 

have double curvature can still be modeled. 

In the skin layers of the section, for example, the plies have a local orietation that follows the 

curvature of the aerodynamic profile. Since two of the edges follow this profile ( the thickness of the 

ply remaining constant ), by computing the local orientation at the subdomain definition nodes, we 

can interpolate to find the local orientation of any node located within this subdomain ( figure 6 ). 

The subdomain definition node coordinates are not entered directly in the grid generator because 

this would be long and fastidious. Moreover, the position of these nodes would have to be 

determined by some other means, such as a CAD tool. The approach we adopted rather consists in 

smoothing the aerodynamic profile with cubic splines, then discretizing with a certain number of 

dedimensionalized definition points ( i.e. points normalized with respect to the airfoil chord), and 

finally computing for each ( figure 6a ) : 

the abscisses and ordinates on the airf oil upper and lower surfaces; · 

the director coefficients of the inward normals on the upper and lower surfaces (figure 6b ). 

The director coefficients of these normals are used to calculate the position of the lower part of 

the skin of the section by removing the total thickness of the layers it contains, and after having 

placed the airfoil at the chord ( figure 6c ). Since the skin of a given section may include plies of 

different thicknesses with an arbitrary chordwise distribution, the composition of the skin is 

described be entering, for each slice : 

its position; 

the composition of the skin ( number of layers, types of materials, etc .... ). 

The skin thicknesses and the elastic characteristics of the composites making it up, are 

automatically computed from the thicknesses and elastic characteristics of each layer. In the same 

way, the inside of the blade is d.ivided into several sections that may each be made up of several 

layers, distributed thicknesswise. The thickness of each layer may vary, as may the type of material. 

Figure 7 gives three examples of how the internal distribution of material can be described. Figure 8 

shows an example of a blade section partitioned into subdomains, including a trailing edge spar, a 

foam core and a leading edge spar, as well as the final grid. The foam core was not meshed because, 

due to its very low mechanical strength characteristics, its contribution to the overall stiffness of the 

section is quite negligible. The normals at the free edges of the section are also shown in this figure. 

These are used for computing the surface forces that have to be applied in order to comply with the. 

free-edge boundary conditions (equation 29, figure 8c ), as well as the tangents at each node of the 

elements corresponding to the skin, which are used for computing base changes of the elastic 

constants ( equation 47, figure 8d ). 
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Once the double nodes are eliminated, there is a subroutine that finishes by renumbering the 

nodes to minimize the necessary memory space. This is done by the method of constructing global 

stiffness matrices in a skyline, which considerably reduces the necessary computation time. When 

renumbering this way, the nodes are projected onto an axis that is slightly inclined with respect to th, . 

airfoil chord, and are then renumbered in increasing order of appearance as one travels along this line 

from leading to trailing edge. Figures 8e and 8f show the memory maps of the global stiffness 

matrices before and after renumbering. 

Results and Discussion 

Sections of Isotropic Material 

We started by comparing the results of our computation method with those of known exact 

analytical solutions for the two section geometries - rectangular and tubular - consisting of a 

steel-type material with isotropic properties ( shear modulus G=84.6 GPa ). 

For the rectangular section ( figure 9a ), the analytical formulation is given by the solution of the 

problem of isotropic beam torsion using Prandtl stress function'¥ [7], such that: 

. !J,. '¥ = -2 in the domain (D) of the section; 

'¥ = 0 on its contour (dS); 

(48) . 

which, after solving the system of equations (48), yields : 

32 b2 00 (-It ch\y 
'¥(y,z) = -

3
- L, 

3 
( 1 - -- ) cos11. z 

1t n=O (2n+ 1) ch/\.na n 

11. (2n+l) 
n = 2b 1t 

(49) 

and: 
a b 

a'¥ a'¥ ff 
cr'xy = G 8 dZ , cr'xz = G 8 dy , <GJ> = 2 G '¥ dy dz 

-a -b 

(50) 

The warping function <l> is related to the function '¥ by the relation : 
1 2 2 

'¥=<l>-2(y +z) 

(51) 

Because the section is symmetrical, its center of torsion C is the same as its center of symmetry 0. 

Consequently, the warping function go can be found from the relation: 
2 E <GSZ> z 

V go= -z G <Elyy> = -12 h2 

(52) 



which yields : 

3 z3 

g0 =-z-2-
2 h2 

(53) 

and: 

" 0 er xy = • 

(54) 

Let us note that, in the case of isotropic rectangular sections, the shear stress distibution can be 

found using the Timoshenko function [7]. The mesh adopted for the computation includes 36 Q8 

elements. The difference between the <GJ> calculated analytically ( equation 50, <GJ>= 9. 91 104 

N.m2) and the one found by the finite element computation is less than 0.14 %. The same is true for 

the value of the reduced section coefficient kz, which is less than 0.7 %. 

Figures 9b and 9c show the variations of the warping and shear stress functions for the torsion 

and transverse shear calculated for 9=2°/m and Tz=I05 N. We observe that the differences between 

the theoretical curves and the values obtained by finite element remain small even in areas of high 

stress or torsion gradients. The warping displacements ( u' and u" components) of the sections are 

visualized in figures 9d and 9e. In this simple case, we see that, despite the low number of elements 

used, the degree of precision of the finite element method is already excellent. 

Because of its geometry, the second section is already closer to helicopter blade type sections. 

This is a symmetrical, doubly connex simple airfoil ( figure 10a) for which the torsional stiffness is 

determined analytically using the membrane analogy method [8], with : 
52 

r 
<GJ > =4 Ge -

Lr 

(55) 

in which e is the airfoil thickness, Lr the perimeter of the mean curve r and Sr the surf ace it 

encompasses. The mesh of the section includes 14 elements and the difference between the <GJ> 

does not exceed 1.2 % ( <GJ>= 1.084 I 03 N.m2 for the computation with (55) ). The resultant shear 

stresses t such that : 

t = j cr'2 + cr'2 = <GJ > ~ 
xy xz 2 e S r 

(56) 

were calculated at each of the element integration points. The stress predicted by the membrane 

theory is assumed to be constant in the airfoil wall, since this wall is thin compared with the largest 

dimensions of the airf oil. The differences between the computed and theoretical resultant stresses, 

given in figure 1 Ob, are less than 1 %. The transverse shear effect was not computed for this section 

because we were more interested in doing this for sandwich-type rectangular sections were the core 

has a large effect on the coefficient of the reduced section. 
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Sandwich-Structures Sections 

There is no longer any need to demonstrate the effect of transverse shear in the computation of 

sandwich structures [2] [3] [4], chiefly as concerns their natural frequencies. To show that the finitr 

element method yields correct values for the kz coefficient, three types of rectang_ular sandwich 

sections were studied. Their external dimensions ( 80 mm wide for a total thickness of 30 mm ) were 

all identical, but their total thickness to skin thickness ratios differed from 3 to 6 to 15. 

The grids for these sections, which can be seen in figure 11, include between 36 and 48 

elements. The skins of aluminum alloy have a Young's modulus EP of 74.6 GPa, and the core 

consists of a material that can be likened to foam, with a Young's modulus ten, 100 or 1,000 times 

less than that of the skins, for each of the sections studied. The analytical formula for calculating the 

theoretical kz can be found in [3]. The theoretical and computed values of kz are given in the 

following table along with the differences : 

(eo+ea)/ep -> 3 6 1 5 
Ee/Ea Kz th. Kz cal. Dif. % Kz th. Kz cal. Dif. % Kz th. Kz cal. Dif. % 
1 0 4.89 4.89 o. 3.89 3.89 0. 2.26 2.26 0. 
100 43.3 43.3 0. 31.9 31.9 0. 14.1 14 .1 0. 
1000 427 417 2.3 312 303 2.9 133 130 2.3 

For Young's modulus ratios of up to 100, the differences are null; but they still do not exceed 

3% when this ratio is 1,000. As in the case of torsion, just a small number of elements yields very 

good results. Although we currently have no method for measurin; kz, the agreement betweer 

theoretical and experimental results for transverse shear is excellent in these simple configurations. 

Moreover, the sandwich plates are close to helicopter blades in structure, with their foam or 

honeycomb cores. This method therefore hold promise for applications to helicopter blades. 

Blade Model Sections 

We have seen above that, for simple sections of an isotropic materials, it was possible to 

compare the results of a computation with exact analytical solutions, or approximate solutions given 

by classical elasticity theory, for purposes of validation. For blade sections, on the other hand, there 

is no precise, nor even approximate, computation method. The only quantity that can be easely 

measured experimentally is the equivalent torsional stiffness <GJ>, and we will assume in the 

current state of affairs that the estimation of the warping field <t> of a blade section is better, the closer 

the computed values of <GJ> are those measured. 

In the case of transverse shear, we do not have a sufficiently precise experimental method for 

measuring the coefficient kz at the current time, which would reasonably allow us to adopt the same 

assumption as for torsion. However, on the basis of the study previously made for sandwich .· 

sections, we may consider that, from a prediction point of view, the finite element method yield 

good results as far as the determination of the shear stresses induced t':, the shearing forces is 

concerned. 
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<GJ> is measured by clamping a blade section at one of its ends and subjecting the other end to a 

torsional torque ( figure 12 ). Two mirrors ( or more) are fastened on this section a distance l apart, 

far enough away from the points where the blade is clamped and where the torque is applied. The 

position of the luminous points from the beams, reflected off these mirrors and measured on a 

frosted glass located at a distance L from the blade section, is used to compute the angle of rotation 

between two contiguous sections, by : 

0x =l::r./2L 

since l::r. <<L . Each value of the torsional torque Mx k applied to the section corresponds to an angle 

of torsion 0/. The regression line passing. through then pairs ( k=l,n) of points (Ml, 0/) 
yield the value of <GJ> while minimizing the effect of the measurement uncertainties. 

The first two sections studied have identical geometries but consist of different materials. They 

are derived from rigid blades manufactured by the IMFL for research on helicopter rotor stability [9]. 

These two blade sections have a NACA 0016 section and a chord of 50 mm, and are made of ( 

figure 8a): 

a skin of constant thickness; 

leading and trailing edge spars of unidirectional composite with fibers lying spanwise; 

a core of low-density polyurethane foam. 

The grid ( figure 8b ) includes 87 elements and no foam core, whose mechanical contibution is 

null. The first section ( the "glass" blade) was a composite made of E glass fiber and epoxy resin. 

The characteristics are given in the following table : 

Comoonent Material Ex (GPa) Gs (GPa) Gr (GPa) 

Soars UD GlassE/eooxv 43 4.2 4.2 
Skin Satins woven GlassE/eooxv 21 5.1 2.5 

The following table lists the equivalent mechanical characteristics for the materials used to make 

the second section ( "graphite" blade) : 

Comoonent Material Ex (GPa) Gs (GPa) Gr (GPa) 

Soars UD HS Graohite/eo 148 5.1 5.1 

Skin Laminate HM Graohite/eo f(+/-45°) l 213 65 2.9 

The calculated and measured values of the <GJ> , of the kz coefficients, as well as the positions 

of the elastic and torsional centers of these two sections, are given in the following table : 

"Glass" blade "Graohite" blade 

<GJ> measured rN.m2l 10.88 72.7 

<GJ> calculated rN.m21 1 0 .14 68.4 

Diference r%1 6.8 5.9 

Kz 7.14 1. 78 

Elastic center fchord %1 29.6 21.4 

Torsion center fchord %1 26.8 20.2 

· 91-83-17 



The differences between the <GJ> values, though greater than those found in the case of 

isotropic sections~ are small. They may nonetheless be partly explained by the fact that there exists 

some uncertainty in the <GJ> measurement, and because the elastic characteristics of the composite 

materials are generally slightly dispersive. The coefficient kz is greater in the case of the "glass' 

blade because of the low Y oung's modulus of the skin material for this section. The warping 

displacements in torsion and transverse shear- are visualized in figures 13a and 13b for the "glass" 

blade. It can be seen in the case of torsion that the warp is greater with increased distance from the 

center of torsion and is at its maximum at the level of the trailing edge, because of the small thickness 

of the airfoil at this point. Similarly, the constant-stress maps are given in figures 13c and 13d, 

where it can be seen that it is the skin that takes the bulk of the shear stresses. 

The last blade section studied ( figure 14a ) consists of : 

a skin of laminated material having one ply of E glass/epoxy, and a series of plies of 

unidirectional HR graphite/epoxy, oriented at +45° and -45°, arranged in decreasing 

thickness from the leading edge to the trailing edge; 

two unidirectional R glass/epoxy spars; 

a foam core; 

a tube of light alloy embedded in the foam core. 

The tube of light alloy and the foam core were not included in the grid ( figure 11 b ). The 

computed and measured values are listed together in the following table : 

<GJ> measured <GJ> calculated Difference Elastic center Torsion center 
1392 N.m2 1510 N.m2 8.5 % 24.3 % chord 35.4 % chord 

The difference between the <GJ> values is equivalent to that obtained for the previously computed 

sections, for the same reasons as we have already mentionned. The computed constant-stress maps 

for a unit angle of torsion 8=5 °/m are plotted in figures 14c and 14d. These stresses, which are 

predominant at the level of the skin, are practically null in the spars. Let us note that the complexity 

of the leading edge spar does little to change the stress distributions from what they are in figure 13. 

That is, for the same level of stress, the spar is deformed more than the skin because of the low 

shear modulus of the unidirectional composite it is made of. 

Conclusion · 

The program that was developped and applied to various sections of isotropic and composite 

materials can be used to compute the shear stresses induced, by torsion and shear forces. It yields 

good results as concerns the prediction of equivalent torsion stiffness, and shear stresses induced by 

torsion. The computation of the reduced-section coefficient and of the shear stresses induced by th 

shearing forces also yields good results as concerns the isotropic sections, compared to the stresses 
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calculated by analytical solutions. There is no particular problem extending it to blade sections of 

composite materials; but a method will be needed in the near future to measure the reduced-section 

computations directly or indirectly on blade model sections. It would, for example, be possible to 

start with an identification method using vibratory analysis systems. However, to be complete, the 

validation of the method as a whole will have to be continued on other blade models, and the shear 

stresses will have to be measured and compared to those calculated by the finite element method. 

The grid generation method we propose, for its part, discretizes the blade sections quickly and 

reliably. Moreover, it automatically computes the additional data needed, both to comply with the 

boundary conditions specific to the torsion problem, and also to include the special characteristics 

related to the types of materials the blades are made of. 

Lastly, let us point out that in addition to the determination of the warping functions, it will now 

be possible to compute the global coupling terms, in bending-torsion, for example, that are 

indispensable to other algorithms currently being developped [10] [11] [12]. 
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Figure 12: 
Schematic view of the torsional stiffness 
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