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Abstract 

 
In this paper a gradient based optimization chain for aerodynamic shape optimization is described. The chain 
includes the DLR TAU-code for flow evaluations, while a discrete adjoint approach is used to compute the 
gradient of a high count of design variables. For parameterization of complex helicopter fuselage parts, two 
different methods were implemented. The first method uses the Free Form Deformation technique to modify 
the shape by manipulating the control points of a NURBS-volume. The second approach is to use the CAD 
software CATIA V5 to build up a parametrical model for optimization. To investigate both methods with 
different settings, the ROBIN-mod7 fuselage was chosen to reduce drag by optimizing the relative simple 
back door geometry. After gaining experience with this example, the optimization chain is used to optimize 
the shape of the common helicopter platform sponsons in the scope of the European Clean Sky GRC2-
project. It could be shown that for both examples a reduction of the drag force was achieved (drag reduction 
of 21.76% for the ROBIN-mod7 test case and 1.49% drag reduction for the sponsons optimization). 

 

NOMENCLATURE 

�̿�𝐴 deformation Matrix 

𝐶𝐶𝑑𝑑 drag coefficient 

D design variables 

H/C helicopter 

I cost function 

L Lagrangin function 

N B-spline basis function 

𝑃𝑃�⃗𝐼𝐼 point coordinats in a NURBS volume 

𝑄𝑄�⃗  control points of a NURBS volume 

R residual 

𝑅𝑅�⃗  modified control points of a NURBS volume 

𝑉𝑉∞ flow velocity [m/s] 

W flow variables 

i,j,k indices 

x,y,z coordinates [m] 

Λ Lagrangin multiplier 

𝛼𝛼 fuselage angle of attack [deg] 

𝛼𝛼𝑖𝑖 ,𝛽𝛽𝑖𝑖 coefficients of volume spline 

 

 

1. INTRODUCTION: 

The design of modern helicopter fuselage is not only 
driven by its utility aspects but also by its 
aerodynamic properties. The demand for higher 
cruise speed and lower fuel consumptions requires 
in general a reduction of the parasite drag that is 
caused by the fuselage and its attached parts. This 
could be done by locally optimizing the shape of 
specific parts. To consider a large range of possible 
designs, it is useful to evaluate a high number of 
design variables during the optimization task. 
Additionally the flow has to be solved by a high 
fidelity CFD-code to sufficiently resolve the complex 
flow conditions and interference effects of a 
helicopter fuselage. For an efficient optimization, an 
algorithm should be chosen that needs a minimum 
number of flow evaluations, depending on the 
design variables count. For these purposes, a 
gradient based optimization seems to be most 
promising. By using an adjoint approach it is 
possible to decouple the gradient computation from 
the flow variables [1][2]: only one flow evaluation 
and solving the adjoint equation is needed to get the 
gradient, independent from the number of design 
variables. With the TAU-code, the DLR possesses a 
tool that is able to solve the RANS and the adjoint 
equation [2][3]. To use this code for shape 
optimization, it has to be coupled with an appropriate 
method to parameterize the target surface. The Free 
Form Deformation technique (FFD) shows to have a 
good shape control with relatively few design 
variables [4]. This technique is also available as 
option for grid deformation in the TAU-code and 



provides an easy handling of the parameterization 
as only a structured box, surrounding the target 
surface, has to be defined. This technique had 
already been used for several investigations in the 
past [5][6][7]. 

Nevertheless, in some cases it is not only required 
to find an optimum shape deformation but also to 
find an optimum positioning or scale of a given 
structure like a stabilizer or a fillet for example. For 
these task it would be beneficial, to use a CAD-
based parameterization. CATIA V5 [8] is a common 
CAD software that has the functionality of generating 
the required parametrical surface model. 
Additionally, it provides several functions to generate 
surfaces that can be deformed similar compared to 
FFD parameterization. The drawback of this solution 
is that a lot of experience is needed to create a 
stable model that returns a valid CAD-output for a 
wide range of possible parameter variations. 

Because of the different advantages, both methods 
were coupled with the TAU-code to form an 
automatic optimization chain. 

The properties of this optimization tool are tested on 
a blunt fuselage optimization task, using the ROBIN 
mod7 fuselage [9]. Additionally the chain is used in 
the scope of the Clean Sky GRC-2 project to 
optimize the sponsons shape of the GRC-2 common 
H/C platform [10]. 

2. THE OPTIMIZATION CHAIN 

The optimization chain uses the CFD-solver TAU to 
compute the steady RANS equation and the 
integrated adjoint solver to evaluate the adjoint 
equation. The shape parameterization and 
deformation is done either by a Free Form 
Deformation technique (FFD) or by using CATIA V5 
(CAD-based). To adapt the computational grid to the 
new shape, a Radial Base Function method is used 
for grid deformation (RBF-deformation). 

The schematic structure of the optimization chain is 
shown in Figure 1. It is build up in a python 
environment, consisting two major classes. The first 
class (Figure 1 green) manages the shape 
deformation tasks. It takes the design variables 
values as input and activates the parameterization 
method (FFD or CAD-based) to get the 
displacement vectors of the start surface to the 
deformed surface. These vectors could be used to 
directly deform the computational grid by RBF-
deformation or it will return these vectors in cases, 
where the grid deformation is not executed on the 
local work station (for gradient computation for 
example). 

The second class is responsible for the 
communication between the local work station and 

the high performance computer cluster (Figure 1 
orange). Depending if either the actual value of the 
cost function or the gradient is needed, it copies all 
required data to the cluster and starts the 
corresponding job to solve the flow or the adjoint 
equations (Figure 1 blue). After these jobs finished, 
the class gets the relevant data back to the local 
work station and returns them to the design process 
(Figure 1 yellow).  

The optimization process here consists of a 1-D line 
search that captures the optimal step size with a 3-
point pattern following the conjugate gradient as 
formulated by Fletcher and Reeves [9]. One design 
cycle consists of getting the cost function of the 
previous cycle, computation of the gradient and 
performing the 1-D line search (Figure 1 purple) till 
an optimum of this design cycle is found. These 
steps are repeated until a satisfying solution is 
found. 

2.1. Flow solver 

In this paper the cost function is evaluated by 
solving the compressible Reynolds-averaged 
Navier-Stokes equation with the DLR TAU-code 
[12]. Beside the ability of solving flow conditions, 
TAU possesses several additional modules like an 
adjoint solver and a deformation module for 
example. 

For flow evaluations the code uses an edge-based 
dual-cell approach, which makes it suitable for 
hybrid computational meshes. For the optimization 
tasks, the steady state RANS-equations are solved 
with a central Jameson scheme for special 
discretization to express the inviscid fluxes with 
scalar dissipation. Time integration is done by an 
implicit backward Euler scheme, solved with LU-
SGS. The convergence progress is accelerated, 
using a three level multigrid, while turbulence 
modelling is realized with the one-equation Spalart-
Almaras model [13].  

To additionally accelerate the flow evaluation during 
the optimization process the result of the previous 
design cycle is used as start solution. By using a 
Cauchy convergence criteria the evaluation is 
considered as sufficiently converged when the lift 
and drag coefficients have no changes higher than a 
10e-5 magnitude during the last 1000 iterations or if 
the residual drops lower then 10e-11 magnitudes. In 
cases, where these criteria are not reached, a 
maximum of 25000 additional iterations for the 
ROBIN-mod-7 task (50000 for the Common H/C 
platform sponson) are computed. To ensure a 
reliable evaluation of the cost function value, the 
average value of the last 1000 iterations is 
considered for the optimization algorithm. 



2.2. Discrete Adjoint Formulation 

To avoid a re-computation of the flow solution for 
each perturbed design variable in order to calculate 
the cost functions gradient by finite differences, the 
discrete adjoint formulation can be applied. This 
formulation decouples the gradient computation form 
the flow variables with the consequence that only 
one flow evaluation is necessary to get the 
gradients. Additionally the adjoint equation has to be 
solved. This equation is derived from the general 
gradient formulation of a cost function 𝐼𝐼 =
𝐼𝐼(𝑊𝑊(𝐷𝐷),𝐷𝐷): 

 𝑑𝑑𝐼𝐼
𝑑𝑑𝑑𝑑

= 𝜕𝜕𝐼𝐼
𝜕𝜕𝑑𝑑

+ 𝜕𝜕𝐼𝐼
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

 (1)

𝑊𝑊(𝐷𝐷) is the vector of the flow variables, depending 
from the design variables 𝐷𝐷. Assuming that the flow 
residual 𝑅𝑅 is very small, the so called Lagrangian 
function: 

 𝐿𝐿 = 𝐼𝐼 + 𝛬𝛬𝑇𝑇𝑅𝑅 ≈ 𝐼𝐼 ;          𝑅𝑅 ≈ 0 (2)
can be used to replace the cost function 𝐼𝐼 in the 
gradient formulation:   

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= �𝜕𝜕𝐼𝐼
𝜕𝜕𝑑𝑑

+ 𝜕𝜕𝐼𝐼
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑
� + 𝛬𝛬𝑇𝑇 �𝜕𝜕𝜕𝜕

𝜕𝜕𝑑𝑑
+ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑
� (3)

where Λ is designated as Lagrangian multiplier. After 
collecting all terms with 𝜕𝜕𝜕𝜕

𝜕𝜕𝑑𝑑
 this expression can be 

written as: 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= � 𝜕𝜕𝐼𝐼
𝜕𝜕𝜕𝜕

+ 𝛬𝛬𝑇𝑇 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑
� 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

+ 𝜕𝜕𝐼𝐼
𝜕𝜕𝑑𝑑

+ 𝛬𝛬𝑇𝑇 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

 (4)

At this point it gets clear, that the dependence of the 
gradient from the flow variables 𝑊𝑊 can be eliminated 
by setting the bracket term equal zero: 

 � 𝜕𝜕𝐼𝐼
𝜕𝜕𝜕𝜕

+ 𝛬𝛬𝑇𝑇 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑
� = 0 (5)

This leads directly to the so called adjoint equation: 

 − 𝑑𝑑𝐼𝐼
𝑑𝑑𝜕𝜕

= 𝛬𝛬𝑇𝑇 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (6)

To solve this equation a Krylov method (here 
GMRes) is combined with either an iterative 
multigrid preconditioner or with a defect correction 
preconditioner, using a SAMG [14] inner solver. 
After evaluating Λ the gradient computation is 
reduced to: 

 𝑑𝑑𝐼𝐼
𝑑𝑑𝑑𝑑

≈ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜕𝜕𝐼𝐼
𝜕𝜕𝑑𝑑

+ 𝛬𝛬𝑇𝑇 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

 (7)

where 𝜕𝜕𝐼𝐼/𝜕𝜕𝐷𝐷 and 𝜕𝜕𝑅𝑅/𝜕𝜕𝐷𝐷 can be cheaply 
approximate with finite differences by perturbing 
each design variable with ∆𝐷𝐷: 

 𝑑𝑑𝐼𝐼
𝑑𝑑𝑑𝑑

≈ ∆𝐼𝐼
∆𝑑𝑑

+ 𝛬𝛬𝑇𝑇 ∆𝜕𝜕
∆𝑑𝑑

 (8)

2.3. Shape parameterization 

For automatic shape optimization it is necessary to 
relate the surface shape to a set of parameters. 
These parameters are used as design variables 
during the optimization process. In the following 
parts, two possible solutions for this problem will be 
presented. 

2.3.1. Free Form Deformation 

The Free Form Deformation technique provides an 
appropriate surface control with a relatively low 
count of design variables. This is done by mapping 
all points 𝑃𝑃�⃗𝐼𝐼 of the target surface from the Cartesian 
coordinate system into a B-spline volume with 𝑄𝑄�⃗ 𝑖𝑖,𝑗𝑗,𝑘𝑘 
control points: 

  (9)

𝑃𝑃�⃗𝐼𝐼 = ���𝑁𝑁𝑖𝑖,𝑚𝑚𝑢𝑢(𝑢𝑢)𝑁𝑁𝑖𝑖,𝑚𝑚𝑣𝑣(𝑣𝑣)𝑁𝑁𝑖𝑖,𝑚𝑚𝑤𝑤(𝑤𝑤)𝑄𝑄�⃗ 𝑖𝑖,𝑗𝑗,𝑘𝑘
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𝑖𝑖=0

𝑛𝑛𝑛𝑛

𝑖𝑖=0

 

The point location (𝑢𝑢𝐼𝐼 ,𝑣𝑣𝐼𝐼 ,𝑤𝑤𝐼𝐼) for each surface point 
𝑃𝑃�⃗𝐼𝐼 is evaluated by a Newton iteration method. By 
moving the control points from 𝑄𝑄�⃗ 𝑖𝑖,𝑗𝑗,𝑘𝑘 to 𝑅𝑅�⃗ 𝑖𝑖,𝑗𝑗,𝑘𝑘, the re-
mapping of the surface points to the Cartesian 
coordinates will return a modified location of each 
surface point. All steps of the FFD are summarized 
in Figure 2. For further information the reader is 
referred to [4]. 

This technique had been implemented in the 
deformation module of the TAU-code and can be 
used to deform the surface grid by defining a 
structured control box that wraps the target surface. 
To reduce the computational costs it is possible to 
use a surrogate grid that only contains the target 
surface for FFD and returns the deformation vectors 
of each grid node to adapt the computational mesh 
by RBF-deformation. This way it is also possible to 
define geometrical constraints by limiting the 
displacement vectors. 

2.3.2. CAD based parameterization 

With the CFD software CATIA V5 from Dassault 
Systèmes a parametrical surface model can be build 
up. With the design table functionality it is possible 
to use this model in an automatic shape deformation 
algorithm. Therefore the optimizer modifies the 
values in an external table file, which is read in by a 
CATIA macro that returns the deformed model as 
CAD output.  

To adapt the computational mesh by RBF-
deformation to the deformed surface, it is necessary 
to compute the displacement vectors of the shape 
changes. Therefore the CAD output is read in by a 
grid generation software. At this place, ANSYS-
ICEMCFD is used to update a structured surface 



mesh for the new shape. The deviation of the grid 
node between the initial and the updated grid 
provides the required deformation vectors. 

2.4. Adaption of the computational mesh 

To adapt the computational mesh to the new surface 
shape there are in general two possibilities. The first 
one is the regeneration of the mesh. The adjoint 
approach requires exactly the same grid topology 
between initial and the deformed mesh. This can be 
easily ensured by structured meshes. For complex 
shapes it is also difficult to ensure a robust 
automatic mesh generation. The second possibility 
consists of deforming the computational mesh to fit 
the modified surface. During this study, the 
displacement (∆𝑥𝑥,∆𝑦𝑦,∆𝑧𝑧) of the volume mesh nodes 
at (𝑥𝑥,𝑦𝑦, 𝑧𝑧) is interpolated with a radial base function 
from the displacement vector (∆𝑥𝑥𝑗𝑗 ,∆𝑦𝑦𝑗𝑗 ,∆𝑧𝑧𝑗𝑗) of the 
initial surface points (𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗 , 𝑧𝑧𝑗𝑗). By using a classic 
volume spline as radial base function, the 
displacement of each mesh node can be 
represented as: 

  (10)

∆𝑥𝑥(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑓𝑓(𝑤𝑤𝑑𝑑)(𝛼𝛼1,𝑥𝑥 + 𝛼𝛼2,𝑥𝑥𝑥𝑥 + 𝛼𝛼3,𝑥𝑥𝑦𝑦 + 𝛼𝛼4,𝑥𝑥𝑧𝑧 

+ �𝛽𝛽𝑖𝑖,𝑥𝑥

𝑁𝑁

𝑖𝑖

�(∆𝑥𝑥𝑖𝑖)2 + (∆𝑦𝑦𝑖𝑖)2 + (∆𝑧𝑧𝑖𝑖)2) 

where 𝛼𝛼𝑖𝑖 and 𝛽𝛽𝑖𝑖 an be calculated by solving the 
following set of linear equations: 

 ∆𝑥𝑥 = �̿�𝐴 �
𝛼𝛼𝑥𝑥
𝛽𝛽𝑥𝑥� ,∆𝑦𝑦 = �̿�𝐴 �

𝛼𝛼𝑦𝑦
𝛽𝛽𝑦𝑦� ,∆𝑥𝑥 = �̿�𝐴 �

𝛼𝛼𝑧𝑧
𝛽𝛽𝑧𝑧� (11)

and 𝑓𝑓(𝑤𝑤𝑑𝑑) is a weight function, depending on the 
wall distance 𝑤𝑤𝑑𝑑. This function can be used to 
control the abate rate of the deformation in space.  

The interpolation matrix A� is a (N + 4) × (N + 4) 
matrix, with N corresponding to the number of the 
given displacement vectors. As the displacements of 
each node are interpolated, it is not necessary that 
the base points of the displacement vectors fit the 
surface grid points. This way it is possible to reduce 
the costs of inverting the interpolation matrix by 
simply reducing the number of deformation vectors. 
Nevertheless it should be pay attention that the 
distribution of the displacement vectors over the 
target surface ensures an adequate deformation of 
the computational mesh surface. 

3. ROBIN-MOD7 

3.1. Configuration and flow conditions 

The ROBIN-mod7 fuselage is a modified version of 
the original generic ROBIN fuselage [9]. The 

modification consists of the replacement of the 
stream lined fish tail by a blunt afterbody section that 
corresponds to a typical fuselage shape of a 
helicopter with a back door for rear loading 
capabilities (see Figure 3). This model was 
established as baseline for active flow control 
investigations on blunt after bodies [9][15][16]. Due 
to these previous investigations, the flow around this 
fuselage is already well documented by CFD and 
wind tunnel results. Therefore, this configuration is 
chosen to validate the adjoint based gradient 
optimization chain. For these purpose, the baseline 
test case, described in [9], was chosen. The 
optimization task was defined to reduce total drag by 
shape modification of the rear part (see Figure 3 
(blue surface)). 

The flow conditions were chosen as described in [9]. 
Therefore the model was scaled to a length of 
0.7172m which leads to a Reynolds number of 
approximately 1.67 million by applying a free stream 
velocity of 34 m/s (Mach≈0.1). Compared to the 
experiment in [9], the wind tunnel walls and the 
model support were neglected and the model was 
simulated in a spherical control volume with farfield 
boundary conditions and a fuselage pitch angle of 
𝛼𝛼 = 0°. The relevant data for the flow conditions are 
summarized in Table 1. 

Table 1: Flow condition for ROBIN-mod-7 
optimization 

𝛼𝛼 
[°] 

𝑉𝑉∞ 
[m/s] 

Ma 
[-] 

ref. length 
[m] 

ref. area 
[m2] 

Re 
[106] 

0 34 0.1 0.7172 0.015 1.67 

3.2. Computational grid 

To investigate the influence of the computational 
mesh on the optimization results, three grids with 
different resolutions were generated (see Figure 4). 
The mesh was generated with the grid generation 
software Pointwise [17]. For all cases, the fuselage 
model was situated in the middle of a sphere with a 
10 × 𝑙𝑙 radius (𝑙𝑙 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑙𝑙 𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙ℎ = 0.7172𝑚𝑚). The 
boundary layer is resolved by a 20 mm thick prism 
layer with 30 points. The coarsest grid has a total 
point number of 0.8 million, the medium resolved 
mesh contains 2.1 million points and the finest mesh 
has 3.9 million points. 

3.3. Shape parametrization 

3.3.1. Free Form Deformation 

The Free Form Deformation technique was applied 
on a simplified surrogate grid with less surface 
points. This is done to reduce the dimension of the 
interpolation matrix A� for the RBF-deformation to 
save computational costs. The parameterization of 
the back door is investigated with two different 
shapes of FFD control boxes. The first approach is 



to surround the target surface with an orthogonal 
box, where the design parameters are defined by 
displacing the control points along the orthogonal 
direction of the boxes surfaces. As consequence, 
the number of design variable per control point 
depends on the number of surfaces to which the 
point is adjoined (points on edges: 2 design 
variables; points on vertices: 3 design variables). To 
reduce the design variable count, the symmetry of 
the model was used. Additionally the front and the 
upper faces of the box were fixed, to avoid a strong 
deformation of the connecting line between target 
surface and the rest of the fuselage (see Figure 5 
(left)). The applied box has the dimension i=6, j=4 
and k=4 . Regarding the described arrangement, this 
leads to a total number of 47 design variables. 

The second approach is to form a control box that is 
adapted to the shape of the target surface. For this 
solution, the design variables are defined as control 
point displacement, orthogonal to the target surface. 
Analog to the first approach, the control points on 
the front and the upper edge of the box are fixed to 
avoid a deformation of the surface connection (see 
Figure 5 (right)). The applied box has the dimension 
i=8, j=6 and k= 2. This leads to 30 design variable. 
Additionally a version with 56 design variables (i=10, 
j=8, k=2) was used to investigate the influence of the 
design variable count. 

3.3.2. CAD based parameterization 

Due to the symmetry, the half back door surface was 
re-modelled with CATIA V5 by using the loft 
function. Beside the intersection lines of the back 
door and the rest fuselage, 5 lateral cut profiles and 
one longitudinal cut profile (intersecting line with the 

y=0 symmetry plane) were generated to define the 
loft (see Figure 6). The profiles consist of B-spline 
curves with 9 control points. The control points are 
defined as endpoints of five lines that had been 
arranged like spokes in a circular quadrant on each 
cut plane as illustrate in Figure 6. The intersection 
points of the surrounding structures with the cut 
plains are used as start/end points of the B-splines. 
To provide a smooth transition between the target 
surface and the fixed surfaces of the fuselage, an 
additional control point is situated 5 mm in tangential 
direction to the intersection curve of the cut planes 
and the surrounding surfaces (see Figure 6). By 
using the spoke lines length as design variables (30 
design variables), the shape of the back door 
surface can be modified relatively free. A second 
version with 6 lateral profiles, defined by 9 spokes 
per cut plane provides 54 design variables. 

3.4. Test Matrix 

Beside the different parameterization types and the 
three different computational meshes, several 
additional parameters were investigated in this 
study. In Table 2 all considered test cases are listed. 
The medium resolved mesh was selected as 
standard grid for the parameter variation of the 
perturbation step size and the design variable count. 
These parameters were investigated for the CAD-
based and the FFD parameterization, while the 
change of the adjoint solving method is only tested 
with the squared FFD control box in combination 
with the medium resolved grid, as this 
parameterization strategy provides the largest 
possible shape modulation. 

Table 2: ROBIN-mod7 optimization test matrix 
Name Parameterization 

methode 
design 

variables Mesh Adjoint  
preconditionor ∆ Cd 

RB7_FFD_ad_30_m1 FFD with surface 
adapted control box 30 coarse mesh 

(m1) 
Iterative  
multigrid 16.63% 

RB7_FFD_ad_30_m2 FFD with surface 
adapted control box 30 Medium mesh 

(m2) 
Iterative  
multigrid 18.2% 

RB7_FFD_ad_30_m2_samg FFD with surface 
adapted control box 30 Medium mesh 

(m2) 
defect  

correction (samg) 18.1% 

RB7_FFD_ad_56_m2 FFD with surface 
adapted control box 56 Medium mesh 

(m2) 
Iterative  
multigrid 14.6% 

RB7_FFD_ad_30_m3 FFD with surface 
adapted control box 30 fine mesh 

 (m3) 
Iterative 
 multigrid 15.1% 

RB7_FFD_sq_47_m2_1 FFD square control 
box 47 Medium mesh 

(m2) 
Iterative  
multigrid 16.4% 

RB7_FFD_sq_47_m2_1_sam
g 

FFD square control 
box 47 Medium mesh 

(m2) 
defect  

correction (samg) 19.95% 

RB7_CAD_30_m1 CATIA V5 (CAD) 30 coarse mesh 
(m1) 

Iterative  
multigrid 13.8% 

RB7_CAD_30_m2 CATIA V5 (CAD) 30 medium mesh 
(m2) 

Iterative  
multigrid 17.69% 

RB7_CAD_54_m2 CATIA V5 (CAD) 54 Medium mesh 
(m2) 

Iterative  
multigrid 19.53% 

RB7_CAD_30_m2_samg CATIA V5 (CAD) 30 medium mesh defect  8.3% 



(m2) correction (samg) 

RB7_CAD_30_m3 CATIA V5 (CAD) 30 fine mesh (m3) Iterative  
multigrid  21.76% 

3.5. Results 

3.5.1. Baseline 

The start reference for the optimization process 
returns a drag coefficient between 0.1219 (medium 
grid) and 0.1247 (coarse grid) which corresponds 
approximately to the values that had been 
investigated in [9] (0.101 < 𝐶𝐶𝑑𝑑 < 0.169). Additionally, 
the deviation of the predicted coefficients of the 
medium and the fine grid shows to be small (∆𝐶𝐶𝑑𝑑 ≈
0.0005; ∆𝐶𝐶𝑙𝑙 ≈ 0.0019). 

Figure 7 shows that the baseline flow is dominated 
by a large flow separation at the blunt rear fuselage. 
For all three meshes, the separation line is predicted 
similar and it can be observed that the flow is not 
symmetrical on the back door area. 

Before starting the optimization process, a 
perturbation step size has to be chosen for the 
gradient computation. By choosing a too large step 
size, the utilisation of finite differences to solve 

DI ∂∂ / and DR ∂∂ / (see Chapter 2.2) will return a 
wrong gradient, while using a too small step size will 
increase the influence of noise effects of the adjoint 
solution on the gradient. Therefore the sensitivity of 
each design variable was computed with four 
different perturbation step sizes (10mm, 1mm, 
0.1mm and 0.01mm). Due to the normalization of 
the grid deformation, the step size value describes 
the maximum surface deformation, caused by the 
design variable perturbation. It turns out, that the 
medium and the finest mesh return consistent 
gradients, while the coarse grids results deviate 
significantly for all parameterization types. In the 
considered range, no significant influence of the step 
size could be observed. The usage of different 
preconditioning approaches for the adjoint solution 
returns a higher influence due to the better 
convergence of the defect correction method.  

3.5.2. Free Form Deformation 

For each test case in Table 2 the optimization was 
performed with 10 design cycles. Depending on the 
1-D line search a total number of up to 100 flow 
solutions were evaluated. Figure 8 show the history 
of the drag reduction during the optimizations with 
the FFD parameterization, using a surface adapted 
deformation box. Independent from the 
computational grid and the number of design 
variables, a maximum drag reduction between 
approximately 14% and 18% was found. The highest 
drag reduction was found with 18.2% for the test 
case with 30 design variables and the medium 
resolved mesh. In cases where the grid deformation 

causes a destruction of the computational grid, a 
high penalty value for the cost function was returned 
to avoid the optimizer to proceed further in this 
direction. Such cases can be mainly observed for 
the optimization with the coarse grid and 
occasionally for the case with the finest mesh. 

Figure 9 shows the drag reduction history for the 
FFD parameterization with the squared control box 
for the medium grid in combination with Iterative 
multigrid and the defect correction preconditioner 
method. For the first case, a drag reduction of about 
16.4% was achieved and for the second case a 
benefit of 19.95% was found.  

3.5.3. CAD based parameterization 

Figure 10 shows the convergence histories of all 
considered test cases, using the CAD 
parameterization (see Table 2). Analogue to the 
optimization with FFD parameterization, 10 design 
cycles were executed for each test case. The 
maximum drag reduction was found with 21.76% by 
using the finest computational mesh. By using the 
medium resolved grid, with 30 design variables, a 
benefit of 17.69% could be achieved. The 
augmentation of the design variables to 54 effects a 
further drag reduction of 19.5%. The test case with 
the defect correction preconditioning for solving of 
the adjoint solution returns the lowest drag reduction 
with 8.28% (13.08% with the coarse grid). This is 
remarkable, as this technique enable a better 
converged and consequently a more precise 
solution of the adjoint equation. One assumption is 
that the optimization algorithm finds with the 
improved sensitivity a small local minimum. This 
would also explain why there is nearly no movement 
in the convergence history beside the tries that 
return an invalid computational grid.  

3.5.4. Optimized geomety 

Figure 11 shows the optimized surface for the three 
considered parameterization methods. Independent 
from the parameterization, the optimum is found by 
deforming the round baseline shape into a more 
edged geometry. Therefore the target surface, 
upstream from the separation line is pulled inwards 
while the surface downstream of the separation line 
is pulled outwards, forming two bumps. This way the 
beginning of a boat tail is formed, providing a 
contraction ratio, allowing the attached flow to 
proceed further downstream, enabling a better re-
pressurization (see Figure 12). Consequently the 
pressure drag of the blunt fuselage is similarly 
reduced for the three methods (Best result with CAD 
and finest mesh). 



Theoretically the optimum shape would be a 
complete boat tail, avoiding any flow separations. 
This optimum could not be found with the used 
gradient based optimization algorithm. Such 
geometry would require a large backward 
deformation of the surface behind the separation 
line, while the inward deformation in front of the 
separation should remain relatively small. The 
problem is that the sensitivity of the design variables 
is converse. The variables, responsible of the 
deformation in front of the separation line have a 
high sensitivity as they directly influences the 
location of the separation line, while the design 
variables, responsible of the deformation behind the 
separation line have a small sensitivity due to the 
separated flow. This leads to the effect that the 
optimizer is not able to sufficiently pull back the 
shape inside the separation area without pulling the 
shape, in front of the separation line, to far inward, 
causing an earlier separation. This effect is revealed 
by the high fluctuation range of the drag function 
during the optimization with the FFD 
parameterization method (see Figure 8 and Figure 
9). The augmentation of the design variable number 
(from 30 to 56) shows to have no influence on this 
behaviour (Figure 8).  

The applied CAD parameterization is not able to pull 
the surface in backward direction (see Chapter 
3.3.2), which excluded the formation of a boat tail. In 
consequence the high fluctuating cost function 
behaviour could not be observed for theses test 
cases, with exception of the case with the finest 
computational grid. This can be explained with the 
increased sensitivity of the separation location by 
the higher grid resolution. 

4. GRC-2 COMMON H/C PLATFORM 

4.1. Configuration 

During the Clean Sky GRC-2 project, a common H/C 
platform was defined by the project partners to 
represent the baseline of a heavy helicopter 
configuration [10]. The model is based on the 
GOAHEAD fuselage [18] with additional sponsons 
(see Figure 13 (left)). One task of the project is to 
reduce total drag force by optimizing the sponsons 
shape. Figure 13 (right) shows the baseline 
sponsons. The red marked area is constrained for 
inwards deformation to conserve the inner space to 
host the landing gear. At the beginning of the 
project, an additional restriction was to prohibit 
forward deformation of the sponsons nose. This 
constrain was softened during the project to enable 
a larger range of possible shapes.  

The design point was given for forward flight with 
Ma=0.204 and a fuselage pitch angle of 𝛼𝛼 = −1.8°. 
The reference length was defined as 1m to get a 

Reynolds number of about 4.8 million. All relevant 
data of the design point are summarized in Table 3. 
Due to the parameterization method, three different 
sponsons shape are used as start geometry for the 
optimization. The first version is the given baseline 
that can be used with the FFD parameterization 
method. To parameterize the sponson with CATIA-
V5, the sponson had to be reconstructed 
parametrically. Therefore, the second version is 
slightly different to the base line and possesses a 
fillet for the sponson-fuselage junction. To further 
improve the drag reduction, a third version was 
applied with a swept nose with the objective of 
reducing the horse shoe vortex of the sponson-
fuselage junction. The three considered start 
solutions are illustrated in Figure 14. 

Table 3: Flow condition for common H/C 
platform sponsons optimization 

𝛼𝛼  
[°] 

𝑉𝑉∞ 
[m/s] 

Ma  
[-] 

ref. Length 
[m] 

ref. area 
[m2] 

Re 
[106] 

-1.8 70 0.204 1 1 4.8 

4.2. Computational grid 

To reduce the computational costs during the 
optimization process, the common H/C fuselage was 
simplified. Therefore all upper structures were 
removed i.e. engine cowling, mast fairing and 
exhausts, as their influence on the sponsons 
aerodynamic is considered small. Additionally the 
empennage was removed and replaced by a 
symmetric cone. The modified fuselage model was 
covered with a 30 layer thick prism coat with a total 
high of 24 mm to resolve the boundary layer. The 
farfield is situated on a sphere with a 12 × 𝑙𝑙  radius 
(𝑙𝑙 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑙𝑙 𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙ℎ = 4𝑚𝑚). For the grid resolution, a 
compromise had to be found between sufficient 
reliable flow resolution and a manageable number of 
grid points for the adjoint solver. The result is a grid 
with 5.5 million grid points, whereby most points are 
located around the sponsons and in the wake area 
of the fuselage, as these regions are from special 
interest for the optimization task (see Figure 15). For 
the three different test cases, the grid was locally 
adapted to the actual sponsons shape (see Figure 
15).  

To validate the results of the optimization, a re-
computation of the modified sponson on the 
complete configuration will be compared with the 
baseline common H/C platform without rotor head. 
Therefore an additional computational grid was 
generated. Figure 16 shows the grid with 6.26 
million points. The prism layer and the grid 
resolution are mainly inherited from the simplified 
grid. Only the wake area of the afterbody, including 
the back door surface was refined. To adapt the 
mesh to the optimized geometry, the possibility of 
locally grid modification was applied. 



4.3. Parametrization 

4.3.1. Free Form Deformation 

Analog to the ROBIN-mod7 test case, a rectangular 
and a shape adapted deformation box was tested, 
using a surrogate grid for the surface deformation. 
The rectangular box has the dimension i=4, j=10 and 
k=4. All control points, laying on the symmetry plane 
nearest face were fixed so that a total number of 124 
design variables are remaining (see Figure 17 (left)). 

To apply a shape adapted control box around the 
sponson, it is necessary to use 3 individual boxes to 
avoid strongly deformed cells (see Figure 17 (right)). 
At this place the sponson was split in a front, middle 
and a trailing edge part. The front box has the 
dimension i=5, j=5 , k=2, the middle part i=13, j=14, 
k=2 and the trailing edge box i=5, j=5, k=2. Here 
again only the control points on the outer faces are 
considered as design variable with the displacement 
direction normal to the target surface. At the 
conjunction of the boxes, the common control points 
of both boxes are considered as one design 
variable. This combination leads to a total number of 
206 design variables. 

In both cases the constraints (see Figure 13 (right)) 
were fulfilled by limiting the resulting displacement 
vectors for the grid adaption by RBF-deformation. 
Therefore all inward pointing displacement vectors, 
located on the red marked surface are set to zero. 
Additionally it was possible, to reduce the vector 
length in the front part to avoid a deformation 
beyond the sponsons nose. 

4.3.2. CAD based parameterization 

For the CAD based parameterization, the sponson 
was reconstructed by using a longitudinal and six 

lateral profiles (see Figure 18). The profiles shapes 
are defined by B-splines whose control points 
location are used as design variables. The moving 
directions of the control points are illustrated in 
Figure 18 (bottom). The constrained area was 
retained from the baseline configuration as no 
significant outward deformation was expected at this 
location. An additional design variable was given to 
define the radius of a fillet to case the sponson-
fuselage junction. It turned out, that the fillet function 
tends to instabilities depending on the sponson-
fuselage intersecting line. To keep this function for 
the optimization, several control points of the lateral 
profiles, which cause an unfavourable intersecting 
line, had to be fixed. This leads to a total number of 
68 design variables. 

After changing the constrains in order to allow 
forward deformations of the sponsons, a swept nose 
was added to the model as this kind of device 
showed to reduce drag during pre-investigations. 
The parameterization of this swept nose is shown in 
Figure 19. Eight additional design variables define 
the shape by two B-splines, a sweep angle and a 
pitch angle.  

4.4. Test Matrix 

In Table 4 all considered test cases for the sponsons 
optimization are summarized. Beside the different 
parameterization methods, the benefit of ignoring 
the no forward deformation constrain was 
investigated by adding a swept nose in the CAD-
based optimization and by allowing forward 
deformation for the FFD test case with a square 
control box. 

Table 4: common H/C platform sponsons optimization test matrix 
Name Parameterization methode design  

variables 
Forward deformation 

constrain ∆ Cd 

CP_FFD_ad_206 FFD with shape adapted control box 206 respect 2.3% 
CP_FFD_sq_124 FFD with square control box 124 respect 1.61% 
CP_CAD_nN_68 CATIA V5 (CAD) without swept nose 68 respect 2.01% 
CP_CAD_wN_76 CATIA V5 (CAD) with swept nose 76 ignore 2.42% 

 
4.5. Results 

4.5.1. Baseline 

Due to the necessity of reconstructing the sponsons 
shape by a parametrical CAD model, the start 
geometry for the CAD-based optimization deviates 
from the baseline shape that is used for the FFD 
based parameterization. Therefore three individual 
start solutions had to be computed. The 
configuration with the original sponsons returns a 
drag coefficient of 0.0401 and the re-constructed 
sponsons a Cd-value of 0.0393. The solution with the 
swept nose is predicted with a drag coefficient of 

0.0387. At this place it can be observed that the re-
constructed sponson with the swept nose already 
has a beneficial influence on drag compared to the 
original shape. 

Figure 20 shows the flow conditions on the 
sponsons and the back door ramp of the simplified 
common H/C platform fuselage. The flow is 
characterized by the horse shoe vortices of the 
sponsons and the flow separation on the back door 
surface. For the case with the additional swept nose   
the horse shoe vortex is significant reduced on the 
down side of the sponson, compared to the original 



sponsons. This change further effects the formation 
of the separation area on the backdoor. 

The investigation of the influence of the perturbation 
step size on the resulting gradient shows good 
consistent results with 0.1mm and 0.01mm for the 
FFD test case. Therefore the step size of 0.1mm 
was chosen for the optimization. For the CAD test 
cases, the step sizes of 1mm and 0.1mm returns 
sufficient consistent gradients. This leads to the 
selection of a 0.1mm perturbation step size  

4.5.2. Free Form Deformation 

Each case, considered in Table 4, was executed 
with 20 design cycles. Figure 21 shows the history of 
the drag difference during the optimization with the 
two different FFD parameterization methods (shape 
adapted control box and squared control box). To 
enable a meaningful comparison of the following 
values, the achieved benefits are all referred to the 
total drag coefficient of the complete baseline 
configuration. In both cases several tries returns an 
invalid computational grid, especially to the end of 
the optimization. This indicates that the grid 
deformation is a limiting factor. Nevertheless it was 
possible to achieve a drag reduction of 2.3% 
referred to the total drag of the complete baseline 
configuration by using the shape adapted control 
boxes. Figure 22 (left) shows the modified shape. 
The nose of the sponson is pulled upwards and got 
a more tapered shape. On the lower side of the rear 
part, the geometry is pulled inwards and forms a 
kind of rear loading section similar to wing profiles. 
The trailing edge is deformed to a bump. 

The parameterization with the squared control box 
returns a lower drag benefit of 1.61% referred to the 
total drag of the complete baseline configuration. By 
having a look on the resulting surface (seeFigure 22 
(right)) it can be again observed that the nose is 
pulled slightly upwards while the shape is tapered. 
At this place the optimizer tries to additionally pull 
the nose forward which is stopped by the applied 
constrains. 

4.5.3. CAD based parameterization 

Both approaches with CAD-based parameterization 
were optimized during 20 design cycles. The history 
of the cost function for the two optimizations is 
illustrated in Figure 23. Here again, the change in 
drag is referred to the complete baseline 
configuration. For the test case without swept nose it 
can be seen that already the remodelled CAD shape 
returns a drag reduction of about 1%. During the 
optimization, the drag could be further reduced by a 
second percent, which leads to an optimization of 
2.01%. Compared to the previously observed 
optimizations, this optimum is already found after the 
second design cycle. The following tries leads 
several times to either an invalid CATIA model or a 

destructed computational grid. 

By having a look on the resulting surface in Figure 
24 (left), a particular nose shape revealed. Similar to 
the previous optimization with the FFD 
parameterization, the nose is tapered. But in this 
case the leading edge remains blunt, without hitting 
the forward deformation constrain. This leads again 
to the assumption that a local minimum is found, 
where the optimizer, additionally limited by the CAD-
model stability and the grid deformation, is not able 
to escape. The rear part of the sponson is again 
pulled inward at the lower side, as observed before. 
The fact the displacement remains smaller than for 
the FFD optimization is due to the fact that the 
remodelled shape already deviates in this direction, 
compared with the original baseline. 

The addition of a swept nose on the remodelled 
sponson reduces the drag of about 1%. Therefore 
the optimization was started with a shape that 
already has a benefit of about 2% referred to the 
complete baseline configuration. During the 
optimization it was only feasible to reduce the drag 
by about an additional half percent. Here again, the 
minimum was found after few design cycles. Already 
the third design cycle returns a benefit of 2.42% that 
could not be improved by further design cycles. 
Compared to the approach without swept nose, the 
optimization runs stable with only one try that returns 
an invalid computational grid. 

Figure 24 (right) displays the shape changes for the 
optimum shape. Here again the nose got tapered 
and the swept nose was pulled slightly upwards. 
Contrary to the deformation by the FFD 
parameterizations, the leading edge of the nose is 
pulled downwards. The rear part of the sponsons 
was modified analogue to the previous observed 
optimizations. 

4.5.4. Optimized geometry 

The breakdown of the achieved benefits on the 
different parts of the fuselage is illustrated in Figure 
25 (definition of break sown surfaces is illustrated in 
Figure 13). The results of all four optimizations are 
compared to each other. Here again all obtained 
benefits are set in reference to the complete 
baseline configuration. It can be seen that the drag 
reduction is mainly achieved on the backdoor area, 
the sponsons and the tail, while a drag increase is 
caused on the rear fuselage. For the case with an 
additional swept nose, the drag on the middle 
fuselage is also significantly increased. This is due 
to the fact that the surface mesh of the middle 
fuselage was projected on the swept nose to keep 
the grid topology as similar as possible compared to 
the baseline grid. This way the swept nose was 
considered for the drag breakdown as part of the 
middle fuselage, instead of the sponsons. 



To verify the validity of the optimizations, the 
respectively best shapes of both parameterization 
methods were recomputed on the complete 
configuration. The resulting benefit breakdown is 
additionally included in Figure 25. Compared to the 
results of the simplified model, the predicted drag 
reduction is predicted lower. The complete 
configuration with the optimum shape of the FFD 
parameterization returns a higher drag reduction on 
the backdoor. This additional benefit is compensated 
by drag rises on nearly all remaining parts with 
exception of the fuselage front, the mast fairing and 
the shaft-cowling, as the sponsons modification had 
no influences on these parts. 

For the solution with swept nose, the benefit on the 
backdoor, the sponsons, the rear fuselage and the 
tail deviates from the predicted drag changes by the 
optimization results. The differences on the tail could 
be explained by the different geometry of the 
simplified model. However the significant differences 
on the sponsons for both re-computations indicate 
that the benefits during the optimization are also 
caused by the deformed computational grid. 

Figure 26 illustrates the flow solution on the surface 
of complete baseline configuration and the two 
considered re-computations of the optimized 
sponsons. Compared to the baseline of the 
simplified model (see Figure 20), the flow 
displacement caused by the engine cowling and the 
exhausts additionally influences the flow conditions 
on the backdoor, which causes a different 
characteristic of the separation.  

Comparing the results of the two optimized 
geometries it can be seen that mainly two different 
mechanisms are responsible for the drag reduction. 
The first one is to redirect the sponsons wake to 
supress the flow separation as it could be observed 
for the optimum of the FFD parameterization. This 
causes a better re-pressurization of the flow on the 
back door ramp. The second mechanism is to taper 
the nose. This way the stagnation area on the 
leading edge is reduced and the horse show vortex 
is weakened. This effect could be additionally 
amplified by applying a swept nose in the sponsons-
fuselage junction. The tapering of the sponsons front 
also causes a reduction of the suction peak on the 
down side so that the down wash and the depending 
induced drag force are reduced. 

5. CONCLUSIONS 

A CAD-based and a Free Form deformation based 
parameterization method were integrated into a 
gradient based optimization chain. The capabilities 
of this optimization tool are demonstrated for two 
different examples. The first example consists of the 
drag optimization of the blunt afterbody of the 
ROBIN-mod7 fuselage. This relatively simple 

geometry was chosen to investigate the impact of 
computational grid resolution, number of design 
variables and the applied solving method for the 
adjoint equation on the optimization process. 

The considered parameterization methods return all 
similar optimized results with a maximum drag 
reduction of 21.76%. Nevertheless this example 
reveals the weakness of the optimization algorithm 
to find the global optimum for a complex solution 
area with a high range of sensitivities for the design 
variables. 

The second example is the optimization task of the 
common H/C platform from the Clean Sky GRC2-
project. For the optimization the fuselage had to be 
simplified to enable the flow evaluations in a 
reasonable time and to insure a solution of the 
adjoint problem. For the CAD-based 
parameterization method, an additional swept nose 
was applied on the sponsons front.  

The FFD parameterization shows the highest drag 
reduction compared to its start solution. Referred to 
the complete baseline configuration a drag reduction 
of 2.3% could be achieved. At this place it turns out 
that the computational grid adaption by RBF-
deformation fails several times for larger 
deformations in the intersection of the sponsons with 
the fuselage. 

Due to the remodelling of the Sponsons shape in 
CATIA V5, the CAD-based optimization starts with a 
slightly different geometry which already shows an 
improvement of the resulting drag. This benefit was 
additionally increased by the application of a swept 
nose. Starting from this solution, the optimization 
chain was only able to find small further 
improvements, which leads to an optimum of 2.42% 
drag reduction, compared to the complete baseline 
configuration. 

To verify the fidelity of the optimization of the 
simplified model, the optimal shapes of the different 
parameterization methods are re-computed on the 
complete fuselage configuration. This verification 
shows in both cases that the drag benefit is reduced 
to about 1.5% in both cases. One reason is the drag 
rise on parts that had not been considered in the 
simplified model. Another reason is the different 
drag prediction directly on the sponsons. This fact 
reveals that the benefit, found by the optimizer is not 
only caused by the shape but also by the 
deformation of the computational grid. This effect 
could be avoided by regenerating the computational 
grid during the design steps by the costs of higher 
computational effort and higher cost function noise 
due to differences in the unstructured grid topology. 

The considered examples show that both 
parameterization methods are able to return similar 
optimization results. The benefit of the FFD method 



is the fast and easy parameterization of relatively 
simple geometries. The CAD-based 
parameterization is much more time consuming and 
requires advanced skills for CATIA V5. These 
drawbacks are compensated by the ability to 
parameterize complex geometries and enabling a 
more flexible investigation of different details like 
position, orientation and scaling of different parts 
relatively to each other for example. Consequently 
the right choice of the parameterization method is 
manly depending on the given task. 
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APPENDIX 

 
Figure 1: Optimization Chain 

 
Figure 2: Principle steps of FFD 

 
Figure 3: Robin mod-7 fuselage 



 
Figure 4: computational grid for ROBIN-mod7 optimization task (top: coarse grid; middle: medium grid; 

bottom: fine grid) 

 
Figure 5: FFD parameterization of the ROBIN-mod7 back door with orthogonal box (left) and shape adapted 

box (right) 



 
Figure 6: CATIA V5 parameterization of ROBIN-mod7 back door 

 
Figure 7: Flow solution of coarse (left), medium (middle) and fine (right) computational mesh 



 
Figure 8: Convergence history of optimization using the FFD parameterization technique with shape adapted 

control box for all three grid and different numbers of design variables (30 and 56) 

 
Figure 9: Convergence history of optimization using the FFD parameterization technique with shape squered 

control box for the medium resolved grid with iterativ multigrid preconditioning and defect correction 
preconditioning 

 
Figure 10: Convergence history of optimization using the CAD parameterization technique for all three grids 

and and different numbers of design variables (30 and 54) 



 
Figure 11: Optimized shapes: RB7_FFD_ad_m2 (top), RB7_FFD_sq_m2_samg (middle), RB7_CAD_m3 

(bottom) 

 
Figure 12: Flow solutions for optimized shapes (Ma cut at y=0 and cp>0 on surface): Baseline (top), 
RB7_FFD_ad_m2 (top-middle), RB7_FFD_sq_m2_samg (bottom-middle), RB7_CAD_m3 (bottom) 



 
Figure 13: Common H/C platform (left) and geometrical constraints for deformation (right) 

 

 
Figure 14: FFD start geometry (left); CAD- start geometry (right); CAD start geometry with swept nose 

(middle) 

 
Figure 15: simplified computational grid for common H/C platform sponsons optimization (top: baseline; 

bottom left: CAD reconstruction; bottom right: CAD with swept nose) 



 
Figure 16: Computational grid of the complete common H/C platform configuration 

 
Figure 17: FFD parameterization of the common H/C platform sponson with orthogonal box (left) and shape 

adapted box (right) 



 
Figure 18: CATIA V5 parameterization of the common H/C platform sponson 

 
Figure 19: CATIA V5 parameterization of the common H/C platform sponsons swept nose 



 
Figure 20: Flow solution baseline (top), CAD remodelled baseline (middle), CAD remodelled baseline with 

swept nose (bottom) 

 
Figure 21: Convergence history of optimization using the FFD parameterization technique with shape 

adapted control box (top) and with the squared control box (bottom) 

 
Figure 22: Optimized sponson shape by FFD with shape adapted control box (left) and Optimized sponson 

shape by FFD with squered control box (right) 



 
Figure 23: Convergence history of optimization using the CAD parameterization technique (top) and with the 

additional swept nose (bottom) 

 
Figure 24: : Optimized sponson shape by CAD parametrization (left) and Optimized sponson shape by CAD 

parametrization with swept nose (right) 

 
Figure 25: Drag reduction breakdown for all sponsons optimization and the re-computated optimum for the 

complete configuration 



 
Figure 26: Flow solution of the complete baseline configuration (top), the re-computed optimum with FFD 
parameterization (middle) and re-computed optimum with CAD parameterization and swept nose (bottom) 

 


