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ABSTRACT

The identified models of DLR’s research rotorcraft ACT/FHS have been improved constantly over the last years. Never-
theless, the current models still have deficits that are attributed to missing engine dynamics. Therefore, in this paper the
influence of engine torque and main rotor speed on model fidelity and model structure is investigated by identifying two
linear models of the ACT/FHS. The first model’s dynamics and outputs are identified using the rigid body states, engine
torque and main rotor speed. The dynamics of the second model are identified using only the rigid body states. This model
includes torque and rotor speed only as additional outputs that are not weighted during the identification of the model’s
dynamics. To avoid the definition of a model structure beforehand, the optimized predictor-based subspace identification
method is used as system identification method with dedicated flight test data of the ACT/FHS. The results of this paper
are used to clarify if torque and rotor speed are necessary for high fidelity system identification using other identification
methods. Furthermore, the experimental setup, the PBSIDopt method and the model selection process are described
briefly.

NOMENCLATURE

A, B, C, D discrete time state space matrices
Act, Bct, Cct continuous time state space matrices
AK , BK predictor form state space matrices
E, U , X , Y data matrices for system innovations, in-

puts, states and outputs (with indexes)
ek, uk, xk, yk discrete time innovation, input, state and

output vectors at k-th time step
f , p future and past window length
G1 model including rigid body, torque and ro-

tor speed dynamics (and outputs)
G2 model including rigid body dynamics,

torque and rotor speed as outputs only
JRMS root mean square error of rigid body

model outputs
JQ,RMS root mean square error of engine torque
JΩ,RMS root mean square error of rotor speed
K Kalman gain matrix
N number of measurements
n model order
nu, ny number of inputs and number of outputs
p, q, r roll, pitch and yaw rates
Q engine torque
S diagonal matrix with singular values
T transformation matrix
u, v, w airspeed components (aircraft fixed)
ym measured output (index m)
zk merged input-output vector at k-th time

step

Z data matrices for merged input-outputs
(with indexes)

δx, δy longitudinal and lateral cyclic pilot controls
δp, δ0 pedal and collective pilot controls
φ, θ roll and pitch attitude angles
K extended controllability matrix
Γ extended observability matrix
Ω main rotor speed
ω angular frequency
ACT/FHS Active Control Technology / Flying Heli-

copter Simulator
ARX AutoRegressive model with eXogenous

input
PBSIDopt optimized predictor-based subspace

identification (method)
RMS root mean square (error)

1. INTRODUCTION

Most rotorcraft system identification approaches use fre-
quency domain methods to determine linear models for the
helicopter dynamics. Depending on the complexity of the
model and whether rotor and/or engine states are included,
the identified models can be accurate for frequencies up to
30 rad/s [1]. The identification of such complex models and
the associated flight tests are laborious tasks, but essential
to gain useful models for system analysis, simulation and
flight control development.



Within the DLR project ALLFlight (Assisted Low Level Flight
and Landing on Unprepared Landing Sites, [2, 3]) models of
DLR’s research helicopter EC135 ACT/FHS (Active Control
Technology/Flying Helicopter Simulator) have been identi-
fied using a Maximum Likelihood frequency domain method
[4, 5]. The identified models are physically motivated, i.e.
the models consist of states for the rigid body motion, im-
plicit rotor flapping, inflow and regressive lead-lag dynam-
ics. The corresponding model structure has to be prede-
fined for the system identification step and has been ad-
justed several times to enhance the estimated models [6, 7].
Thus, the Maximum Likelihood method is mainly a param-
eter estimation approach. In the last years, these models
have been analyzed and used for flight control and simu-
lation purposes at DLR [8–10]. Nonetheless, the current
models of the ACT/FHS have deficits that are attributed to
missing engine dynamics.

Today, state of the art time domain system identification
methods like the optimized predictor-based subspace iden-
tification method (PBSIDopt) offer the possibility to esti-
mate high order models for multiple input and output sys-
tems without having to define a model structure beforehand
[11, 12]. Since the results of the PBSIDopt method seem to
be suitable for rotorcraft system identification [13–15], the
method has been applied to flight test data of the ACT/FHS
research rotorcraft in a preliminary evaluation in [16]. The
identified model showed a high accuracy over a broad fre-
quency range even for off-axis coupling.

Based on this preliminary evaluation, two different models
of the ACT/FHS research rotorcraft are identified in this pa-
per to investigate the contribution of engine torque and main
rotor speed to the model fidelity and the model structure.
The first model’s dynamics and outputs rely on the rigid
body states as well as the engine torque and main rotor
speed. The second model uses the rigid body states in
the identification step, but includes torque and rotor speed
only as additional outputs. Thus, the dynamics of the sec-
ond model are based solely on rigid body states and just
contain engine torque and main rotor speed outputs for the
comparison with the first model. Both models are identified
using the PBSIDopt method in the time domain with flight
test data of the ACT/FHS at 90 knots forward flight.

In this paper, the experimental setup including flight path re-
construction and data processing steps are first described
in detail. The applied PBSIDopt method is covered subse-
quently and the different identification approaches for both
models are characterized. Next, the models with and with-
out accounting for engine torque and rotor speed are de-
termined. Then, the identified models are compared with
respect to model fidelity, structure and complexity. The an-
swer to what extent the overall model fidelity is dependent
on the engine torque and main rotor speed is answered.
The results are discussed and summarized at the end of
this paper.

2. EXPERIMENTAL SETUP

2.1. The ACT/FHS Research Rotorcraft

The ACT/FHS, depicted in Figure 1, is the main testbed for
rotorcraft research at DLR [17]. It is a highly modified Euro-
copter EC135, a twin-engine helicopter with fenestron and
bearingless main rotor and a maximum takeoff weight of
about 2.9 t.

Figure 1: DLR’s research rotorcraft ACT/FHS

The mechanical controls of this testbed have been replaced
by a full-authority fly-by-wire/fly-by-light control system to
apply control inputs generated by an experimental sys-
tem to the ACT/FHS in flight. Thus, the dynamics of the
ACT/FHS are not comparable to data from a production
EC135 rotorcraft. The ACT/FHS is equipped with various
sensors, e.g. a noseboom, two differential GPS receivers, a
flight test instrumentation measuring the main rotor speed
etc. and a rotor data acquisition system providing the main
rotor shaft torsion moment. For the investigations in this pa-
per, the main rotor shaft torque is used as a substitute for
the engine torque since it is not filtered. The shaft torque is
scaled to fit the engine torque. System identification of the
ACT/FHS yields the necessary models for the model-based
control and in-flight simulation research activities at DLR.

2.2. Flight Test Data

Dedicated flight tests with the ACT/FHS research rotorcraft
for system identification and model validation have been
conducted in 2009 and 2010. These flight tests consist of
at least two manual frequency sweeps with increasing fre-
quency up to about 2 Hz for each control input at each of five
reference airspeeds, i.e. hover, 30, 60, 90 and 120 knots.
During the manual frequency sweeps, a flight state near the
reference trim condition has been maintained by applying
uncorrelated, pulse-type inputs on the secondary controls
only. In this way, cross-correlations between the four control
inputs are minimized. At the same flight conditions, com-
puter generated 3-2-1-1 multistep input maneuvers have



been recorded as a dissimilar basis for model validation pur-
poses.

For this paper, eight manual frequency sweeps at 90 knots
have been selected from the system identification database.
Furthermore, eight 3-2-1-1 multistep maneuvers at the
same airspeed have been chosen for model validation. The
selected maneuvers, the applied control amplitudes and the
test durations are summarized in Table 1.

maneuver axis amplitude duration
2x manual sweep δx max. 10 % 134 s
2x manual sweep δy max. 12 % 146 s
2x manual sweep δp max. 13 % 131 s
2x manual sweep δ0 max. 8 % 133 s
2x automatic 3-2-1-1 δx ±2 % 9 s
2x automatic 3-2-1-1 δy ±4 % 9 s
2x automatic 3-2-1-1 δp ±8 % 9 s
2x automatic 3-2-1-1 δ0 ±4 % 9 s

Table 1: Used maneuvers for ACT/FHS system identifica-
tion and model validation at 90 knots forward flight

The rotorcraft inputs and outputs used for system identifica-
tion are available with a sampling time of 8 ms. Thus, the
manual sweep maneuvers consist of around 17.000 data
points per channel. For comparison in the frequency do-
main, frequency response functions for the ACT/FHS have
been generated from the manual frequency sweep data.

2.3. Flight Path Reconstruction and Data Pre-
Processing

It is common practice to use the motion of the rotorcraft’s
center of gravity for rotorcraft system identification and
model validation. The corresponding rotorcraft states can-
not be measured directly, since the installed sensors are
not in the center of gravity and do not provide all neces-
sary data. Furthermore, rotorcraft system identification is
performed using the helicopter’s motion with respect to the
surrounding air. Thus, these states have to be estimated or
calculated from the measured data. At DLR, a flight path
reconstruction is used to estimate the motion of the rotor-
craft’s center of gravity and the motion of the local wind from
raw sensor data after flight.

Since the flight path reconstruction is performed post-flight,
two Unscented Kalman Filters are used to estimate the ro-
tatory and translatory states of the rotorcraft. The first fil-
ter corrects the alignment of all rotatory measurements and
then estimates the rotatory rotorcraft states including the
angular accelerations. The rotatory state estimates are then
used to transform the translatory measurements to the cen-
ter of gravity. Subsequently, the measurements of the air
data systems (i.e. the true airspeed), of the noseboom (true
airspeed, angle of attack and angle of sideslip) and the cor-

rected translatory measurements are fused in the second
filter to estimate the motion of the center of gravity and of
the surrounding air. Both Unscented Kalman Filters and the
used sensors are described in detail in [18].

In addition to [18], the estimated states are processed by
two separate Unscented Rauch-Tung-Striebel Smoothers
described in [19]. Using this method, the estimated states
are smoothed in an optimal sense without an additional
phase delay. Measured signals that are not included in the
flight path reconstruction (like the helicopter controls, the
engine torque and main rotor speed) are filtered by a zero-
phase low-pass filter with a cutoff frequency of 12.5 Hz. As
mentioned before, the estimated rotorcraft states and the
filtered measurements are available with a sampling time of
8 ms.

3. SYSTEM IDENTIFICATION

3.1. The PBSIDopt Method

A discrete linear time invariant state space model in innova-
tion form is given by

xk+1 = Axk + Buk + Kek(1a)

yk = Cxk + Duk + ek(1b)

with the system inputs uk ∈ Rnu , outputs yk ∈ Rny and
states xk ∈ Rn. The zero-mean system innovations ek ∈
Rny are assumed to be white process noise. A finite set of
data points uk and yk with k = 1 . . . N is considered for
system identification using the PBSIDopt method.

Assuming there is no direct feedthrough D = 0, the system
equations (1) are transformed into the predictor form

xk+1 = AKxk + BKzk(2a)

yk = Cxk + ek(2b)

with AK = A−KC, BK = (B K) and zk = (uk yk)
T .

Consequently, the (k+p)-th state xk+p is determined by

xk+p = AKxx+p−1 + BKzx+p−1

= Ap
Kxk +

(
Ap−1
K BK . . . BK

) zk
...

zk+p−1


(3)

and the (k+p)-th output yk+p is calculated using

(4) yk+p = CAp
Kxk + CK p

 zk
...

zk+p−1





with

(5) K p =
(
Ap−1
K BK . . . BK

)
.

Assuming p (called the “past window length” hereafter) is
large and AK is stable, the term Ap

K in equations (3) and
(4) can be neglected and the (p+1)-th toN -th system states
and outputs are approximated by

Xp+1 ≈ K pZp(6a)

Yp+1 ≈ CK pZp + Ep+1.(6b)

The output data matrix Yp+1 is given by

(7) Yp+1 =
(
yp+1 yp+2 . . . yN

)
.

The innovation data matrix Ep+1 and the input data ma-
trix Up (used later in this section) are set up in the same
manner. The merged input-output vectors z of the predictor
form model are collected in the data matrix

(8) Zp =


z1 z2 . . . zN−p
z2 z3 . . . zN−p+1

...
... . . .

...
zp zp+1 . . . zN−1

 .

To reconstruct the system states in the first PBSIDopt cal-
culation step, the following linear regression is solved

(9) min
CK p

‖Yp+1 −CK pZp‖ .

The linear regression corresponds to the identification of an
high order ARX model (AutoRegressive model with eXoge-
nous input). Recalling the definition of K p in equation (5),

the estimate C̃K p is used to set up the product of the ex-
tended observability matrix Γf and the extended controlla-
bility matrix K p

(10) ΓfK p =


CAp−1

K BK . . . CBK

0 . . . CAKBK

...
...

...
0 . . . CAf−1

K BK


with the future window length f .

Since

(11) ΓfXp+1 ≈ ΓfK pZp ,

the singular value decomposition (SVD)
(12)

ΓfK pZp = USV T =
(
Un Ũ

)(Sn 0

0 S̃

)(
V T
n

Ṽ T

)
is applied to reconstruct the system states Xp+1

(13) Xp+1 ≈ S
1
2
nV

T
n .

The choice of n determines the resulting model order since
only the n largest singular values Sn are used to recon-
struct the system state sequence Xp+1. An analysis of
the singular values in S can be used to select an appro-
priate model order n. Alternatively, a high order model can
be identified at this stage and other model order reduction
techniques can be used afterwards to arrive at models with
lower order.

In the second step, the system matrices of A, B and C
from equation (1) are determined from the reconstructed
states Xp+1 and the data matrices Yp+1 and Up via

min
C
‖Yp+1 −CXp+1‖(14a)

min
A,B
‖Xk+1 −AXk −BUp‖(14b)

with Xk+1 = Xp+1(:, 2:N ) and Xk = Xp+1(:, 1:N -1)
(in MATLAB notation). The inverse bilinear (or any other
discrete time to continuous time transformation) can then be
applied to calculate the continuous time state space model

ẋ = Actx + Bctu(15a)

y = Cctx.(15b)

Since eight sweeps are used for the system identification of
the ACT/FHS, see section 2.2, all data matrices have to be
adjusted to consider all maneuvers in one calculation step.
For j datasets the output data matrix is given by

(16) Yp+1 =
(
Yp+1,1 . . . Yp+1,j

)
.

The other data matrices are extended to multiple maneu-
vers in the same way.

In summary, the computational steps of the PBSIDopt algo-
rithm are:

1. Set up the matrices Yp+1 and Zp from equation (16)
or equation (7) and (8) respectively,

2. Solve the least squares problem from equation (9),
3. Set up ΓfK p from equation (10),
4. Solve the SVD from equation (12),
5. Calculate an estimate of Xp+1 from equation (13),
6. Solve the least squares problems from equation (14).

3.2. Separate Identification of Model Dynamics and
Output Equations

Most system identification approaches minimize a cost
function based on the difference between measured and
simulated outputs in the time or frequency domain. In gen-
eral, the model outputs are model states at the same time.
Further model outputs are often used to improve the esti-
mation of selected model parameters.

The PBSIDopt algorithm is not comparable to these types of
system identification approaches, since it estimates a high



order ARX model to reconstruct the system states Xp+1

in the first step. As only the observable and controllable
model subspace of the given system inputs and outputs
can be identified, the inputs and outputs used in this step
determine the system dynamics. Consequently, the corre-
sponding system matrices A and B (that are determined in
the second calculation step) can only reproduce the system
dynamics covered in the first step.

In this paper, this relationship is used to analyze the influ-
ence of specific outputs (namely engine torque and main
rotor speed) on the whole model. Therefore, two different
models are estimated with the following approach:

1. Model G1 uses all outputs yk (rigid body states,
torque and rotor speed, see the definition below) for
the reconstruction of system states and the estimation
of the system matrices A, B and C afterward,

2. Model G2 uses solely a subset ỹk of all outputs
(namely the rigid body states) for the reconstruction of
the system states and consequently for the estimation
of A and B, but uses all outputs yk for the estimation
of the output matrix C.

Thus, the dynamics and the outputs of model G1 rely on
all measured outputs yk. The dynamics of model G2 are
based merely on the given output subset ỹk. Nevertheless,
G2 has the same outputs as G1 for comparison, but these
additional outputs are not weighted during the identification
of the model’s dynamics. The differences of both models
system identification approaches are depicted in Figure 2.

states

estimate
A, B

estimate
C

model G1

ykuk

ARX

states

estimate
A, B

estimate
C

model G2

yk

ỹk

uk

ARX

Figure 2: System identification approaches and used data
for model G1 and G2

The two models G1 and G2 of the ACT/FHS are identified
using the processed manual frequency sweeps described
in the sections 2.2 and 2.3. The 3-2-1-1 multistep inputs
are then used for model validation. Both models use the
longitudinal cyclic control δx, lateral cyclic δy, pedal δp and
collective δ0 as inputs uk

(17) uk =
(
δx δy δp δ0

)T
.

The whole output dataset yk for model G1 consists of the
helicopter velocity components u, v and w, the angular
rates p, q and r, the attitude angles φ and θ, the engine
torque Q and the main rotor speed Ω

(18) yk =
(
u v w p q r φ θ Q Ω

)T
.

The output subset ỹk used for the ARX model identification
of G2 and the corresponding system state reconstruction is
set up by the rigid body motion states of the ACT/FHS only

(19) ỹk =
(
u v w p q r φ θ

)T
.

In summary, model G1 is identified using the whole output
dataset for the estimation of its dynamics and outputs. The
dynamics of model G2 are estimated using only the rigid
body states, but not the engine torque Q and the main rotor
speed Ω. Thus, the system dynamics of G2 are based on
the rigid body states only and do not include the engine
torque and rotor speed. To make the models comparable,
the output matrix C in equation (14a) is estimated using
the full outputs yk and consequently, the resulting model
G2 has the same outputs as model G1.

3.3. ACT/FHS Model Selection

For the PBSIDopt method, it is required to select the pa-
rameters past window length p, future window length f and
model order n. These parameters have a significant influ-
ence on the resulting model accuracy and should be cho-
sen according to the guidelines given in [11] and [12]. The
selection of an optimal future window length f is particu-
larly time consuming as f highly depends on the used input
signals and other experiment conditions. The minimization
of the identified model’s asymptotic variance is proposed in
[12] to select the optimal f . Furthermore, the past window
length p should be larger than the model order n and large
enough to satisfy Ap

K ≈ 0.

In this paper, p = 50 is selected as a minimum past window
length for system identification. Starting from this precondi-
tion, a parameter study is used to select the best model
identified for every suitable parameter setting. Accordingly,
over 13,000 models of G1 and G2 are identified varying the
parameters p, f and n in the following ranges:

pip =
(
50 60 . . . 100 125 . . . 250

)
(20a)

fif =
(
1 5 10 . . . 20 30 . . . 100

)
(20b)

nin =
(
8 9 . . . 120

)
.(20c)

To compare the model accuracies, each identified model
is validated in the time domain using the model validation
maneuvers described before. Initial states x0 and output



offsets y0 are optimized for every model and maneuver set
to minimize the difference between the measurements ym

and the simulated model outputs y. The root mean square
(RMS) error JRMS between ym and y is chosen as a mea-
sure for model accuracy

(21) JRMS =

√√√√ 1

nyN

N∑
k=1

(ym,k − yk)
T

(ym,k − yk) .

According to [1], the model accuracy can be considered as
good for RMS errors between

(22) JRMS ≤ 1.0 to 2.0

for coupled helicopter models validated in the time domain,
if the velocities are scaled to ft/s, rates to deg/s and atti-
tudes to deg. In JRMS only the RMS errors of the rigid body
states u, v, w, p, q, r, φ and θ are considered. The RMS er-
rors of the engine torque Q and the main rotor speed Ω are
calculated separately in JQ,RMS (scaled in %) and JΩ,RMS

(scaled in 10 × %) respectively. The corresponding RMS
errors are considered as good for

JQ,RMS ≤ 2(23a)

JΩ,RMS ≤ 2.(23b)

In Figure 3 on the following page the RMS error distributions
of both models G1 (includingQ and Ω in the model dynam-
ics and as model output) and G2 (with Q and Ω as model
outputs only) are compared as a function of the model or-
der n. The plots show important statistical properties of the
RMS errors of models with the same order n: the median
of the dataset is marked in red, the minimum and maximum
values in black and the upper and lower half-median in the
shaded area. Thus, 50% of the RMS errors lie in the shaded
range separated by the overall dataset median in red.

Both models show large RMS errors JRMS > 2 for low
model orders n < 20 in Figure 3a. The RMS errors de-
crease significantly for increasing model order. G2 reaches
a very good model accuracy with JRMS ≈ 1 for n ≥ 70.
Model G1 achieves this accuracy level with n ≈ 95. Thus,
the torque and main rotor speed dynamics included in G1

require a higher model order to obtain the same model ac-
curacy regarding the rigid body output RMS error in JRMS.
Most of the identified models lie in a narrow range around
the median RMS error in red. Therefore, the majority of the
identified models can be considered as good or very good
for large model orders n.

The RMS error distributions of the engine torque Q and the
main rotor speed Ω are compared for both models in Fig-
ure 3b and Figure 3c. As expected, model G2 shows con-
siderably larger RMS errors than G1, since G2 does not in-
clude theQ and Ω dynamics. The corresponding RMS error
distributions show larger maximum errors, too. Neverthe-
less, this effect is larger for the engine torque Q than for the

main rotor speed Ω. The RMS errors JQ,RMS and JΩ,RMS

do not converge as clearly to a minimum as JRMS. Since
the RMS errors of Q and Ω are quite small and constant for
nearly all model orders, it is assumed that the low- and mid-
frequency dynamics of Q and Ω (which have the highest
contribution to the RMS error) are approximated accurately
with a relative low model order. Furthermore, the model
with the lowest rigid body RMS error does not necessarily
provide the most accurate torque and rotor speed estima-
tion for the evaluated parameters and model order. If JRMS

decreases below a specific limit with increasing model or-
der, supposedly JQ,RMS and JΩ,RMS will decrease further
for model G1.

However, in this paper only the minimal RMS error of the
rigid body outputs JRMS according to Figure 3a is used
to select the “best” models (and parameters) for G1 and
G2. Information about the selected models G1 and G2 are
given in Table 2.

p f n JRMS JQ,RMS JΩ,RMS

G1 225 70 118 0.92 1.34 1.09
G2 175 90 108 0.87 1.54 1.25

Table 2: Selected “best” models G1 and G2

Both models require a high past window length p > 150 to
estimate good models. It is assumed, that the prerequisites
p > n and p large enough to satisfy Ap

K ≈ 0 are fulfilled.
The future window length f is high for both models. The
model order n is very high, since slow dynamics are cov-
ered by the models as well as very high frequency dynam-
ics with ω > 60 rad/s. These dynamics cover for example
vibrations resulting from the main rotor and are not needed
for controller development, but are useful for high fidelity
simulation. Thus, these dynamics have not been canceled
using further model reduction steps. Both models provide a
RMS error JRMS < 1, which is excellent. The RMS errors
for Q and Ω are in a good range, too.

4. MODEL ANALYSIS

4.1. Model Fidelity

For a more detailed analysis of the model fidelity, the RMS
errors of the eight validation maneuvers are listed sepa-
rately in Table 3. In every row, the RMS errors of a validation
maneuver are shown. The abbreviation in the first column
gives information about the used maneuver, e.g. “+δx” for
the longitudinal cyclic validation maneuver using a positive
control deflection. In the last row the overall RMS errors are
summarized.

The rigid body RMS errors in JRMS are very low for all vali-
dation maneuvers. Even though the pedal input maneuvers
suffer from slightly larger RMS errors, both models are very
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(c) Main rotor speed RMS error JΩ,RMS

Figure 3: RMS error distribution for model G1 (left) and G2 (right) as a function of the model order n (p ≥ 50, f ≥ 30);
median RMS error is shown in red, minimum and maximum in black, lower and upper half median shaded in gray

accurate if one takes into account that the pedal inputs are
relatively large (± 8%). In Figure 6 at the end of this paper
the time domain responses of both models are compared
with the corresponding measurements in the time domain
for a lateral cyclic (+δy , left plot) and a collective (+δ0, right
plot) validation maneuver. A very good simulation perfor-
mance regarding the rigid body outputs can be seen for both
validation maneuvers. The two models are nearly congru-
ent in the time domain plots. Since the corresponding RMS
errors in Table 3 and the overall JRMS are quite the same
(0.92 and 0.87) this was expected beforehand.

The engine torque RMS errors JQ,RMS and the main ro-
tor speed RMS errors JΩ,RMS are good or very good
(JQ,RMS < 2 and JΩ,RMS < 2) for δx, δy and δ0 maneu-

vers. In average, model G1 has a slightly smaller JQ,RMS

and JΩ,RMS than model G2, especially for “off-axis” cyclic
inputs which do not change the torque and rotor speed
much. This can be seen on the left side of Figure 6 for in-
stance. The RMS errors for collective validation maneuvers
are nearly the same for model G1 and G2. The shown +δ0
maneuver on the right side of Figure 6 gives the impression,
that model G1 overestimates the torque and rotor speed at
4 s and is less accurate than model G2. Nevertheless, the
RMS errors of the shown maneuver are comparable for both
models (JQ,RMS: 1.23 and 1.31; JΩ,RMS: 1.27 and 1.23)
since G1 matches the measurement at the beginning and
the end of the shown maneuver better.

For positive and negative pedal deflections, JQ,RMS and



JRMS JQ,RMS JΩ,RMS

G1 G2 G1 G2 G1 G2

+δx 0.75 0.70 1.23 1.48 1.02 1.08
−δx 0.96 0.86 1.11 0.84 0.95 0.88

+δy 0.81 0.81 0.91 1.06 0.67 0.80
−δy 0.76 0.67 0.72 0.81 0.55 0.61

+δp 1.11 1.00 1.10 1.21 0.79 1.08
−δp 1.35 1.37 2.45 3.13 2.00 2.50

+δ0 0.72 0.71 1.23 1.31 1.27 1.23
−δ0 0.71 0.61 1.31 1.17 0.83 0.83

all 0.92 0.87 1.35 1.54 1.10 1.25

Table 3: RMS errors of G1 and G2 for each validation ma-
neuver

JΩ,RMS are very different, which can be seen in Table 3 as
well as in Figure 7. Especially during maneuver −δp the
measurements change heavily between 6 s and 8 s, which
is not covered by any of the models. This effect is attributed
to the nonlinear behavior of the fenestron tail rotor since it is
observed at other airspeeds, too. Nevertheless, model G1

shows better results than G2 for pedal inputs.

In Figures 8, 9, 10 and 11 at the very end of this paper bode
plots of both models are shown for all inputs to the engine
torque and the main rotor speed output. The frequency re-
sponse functions for the ACT/FHS generated from the man-
ual frequency sweeps are labeled with “FR”. Both models
cover the low frequency dynamics (ω <1 rad/s) very well for
all inputs. For higher frequencies, model G1 shows signif-
icantly better approximation results using δx, δy and δp in-
puts. Since the amplitudes are quite low above 6 rad/s, this
benefit of model G1 is not observable in the same manner
in the time domain (G1 is better in time domain though).

The frequency responses due to collective inputs in Fig-
ure 11 show good agreement for both models, which is
observed in the time domain as well. Consequently, the
included torque and rotor speed dynamics in model G1 im-
prove solely the torque and rotor speed estimation for the
“off-axis” cyclic and pedal inputs. Collective inputs, which
have the most influence on the torque and the rotor speed
are covered very well even with the second model, which
does not include torque and rotor speed dynamics. The
rigid body outputs are not approximated with higher accu-
racy ifQ and Ω are covered by the model dynamics. There-
fore, it is concluded that the “major” dynamics of Q and
Ω are observable in the rigid body outputs. The observ-
able dynamics mainly have contribution to the collective in-
put frequency responses and the low frequency dynamics
of the other inputs. For an accurate approximation of the
high frequency dynamics of the engine torque and main ro-
tor speed, the corresponding outputs have to be included in
the reconstruction of the system states (and thus included
in the model dynamics) during system identification.

4.2. Model Structure

Linear rotorcraft or aircraft models often have a common
structure which is based on physical considerations. Lin-
ear rotorcraft models include states for the rigid body mo-
tion (the velocity components, angular rates and attitude
angles), rotor flapping, inflow, coning etc. depending on
the complexity and the purpose of the models. Since the
model states have a physical meaning, the interpretation of
the eigenvalues of these models is easily obtained by ana-
lyzing the eigenvectors of the system matrix.

The identified models G1 and G2 do not have states with
a physical meaning, but states which optimally solve the
least squares problems in equations (14a) and (14b). Thus,
the identified continuous time state space model from equa-
tion (15) has to be transformed into a representation whose
structure can be interpreted. A similarity transformation is
applied to the state space model by

˙̃x = TActT
−1x̃ + TBctu = Ãct + B̃ctu(24a)

y = CctT
−1x̃ = C̃ctx̃(24b)

with the transformed state vector x̃ = Tx and the transfor-
mation matrix T . The applied transformation is divided into
two steps: In the first step, the original model is transformed
into a modal canonical form with the system eigenvalues at
the diagonal elements of Act in increasing order (absolute
values for complex eigenvalues). This is accomplished by
a first transformation matrix T1. The calculation of T1 can
e.g. be found in [9]. In the second step, the first ny states
(corresponding to the ny slowest eigenvalues) of Act are
assigned to the model outputs y by setting up a second
transformation matrix

(25) T2 =

(
CctT

−1
1

0n−ny,n In−ny,n−ny

)
.

The final transformation matrix T is given by

(26) T = T2T1.

By using this transformation, the new system states x̃ are

(27) x̃ =
(
u v w p q r φ θ Q Ω xλny+1

. . . xλn

)T
containing the system outputs followed by the remaining
modal states. The transformed output matrix C̃ct is an iden-
tity matrix with n− ny zero columns. The eigenvalues and
corresponding eigenvectors can be attributed to the partic-
ipating rigid body and engine states using the transformed
model. Since a similarity transformation does not change
the eigenvalues and input-output behavior of a model, the
transformed models are called G1 and G2 in this section,
too.

In this section, the low- and mid-frequency (ω < 18 rad/s)
eigenvalues of the identified models are analyzed in detail.
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Figure 4: Pole-zero map of the eigenvalues of the identified models G1, G2 and a reference model based on [9]

In Figure 4a the eigenvalues of both models are shown in a
pole-zero map and compared to those of a 90 knots refer-
ence model containing 15 states presented in [9]. Figure 4b
is a zoom-in on the low frequency eigenvalues. The eigen-
values are assigned to specific rotorcraft modes by deter-
mining the states with the highest participation in the cor-
responding eigenvector. Several eigenvalues cannot easily
be assigned to designated rotorcraft modes, since they are
highly coupled in nature. These eigenvalues are labeled
with numbers in Figure 4. The modes and participating
states of the corresponding eigenvector are listed in Table 4.

mode eigenvector

regressive lead-lag p
body-roll / rotor flap p Q
body-pitch / rotor flap p q w
inflow w

1 coupled torque Q p or Q r
2 roll-yaw p r v
3 torque-yaw Q r
4 pitch-yaw q r

phugoid u w
dutch-roll v p r

5 roll-yaw p v r
6 heave-roll w p v
7 heave subsidence w u
8 coupled roll φ u v p
9 coupled yaw (spiral) φ u r

Table 4: System modes with corresponding eigenvectors

How the modes are characterized is shown exemplarily for
the dutch-roll eigenvalues depicted in Figure 4b. Both mod-
els G1 and G2 have four complex poles (λdr1 to λdr4) near
the reference dutch-roll eigenvalue. The largest absolute
values in the corresponding eigenvectors of all four complex
eigenvalues are the lateral velocity v, the roll rate p and the

yaw rate r, see Table 4. The angle from the origin to the
complex number of the eigenvector in the complex plane is
equal to the phase angle of the corresponding state. For
the participating components these phase angles are quite
similar for all four dutch-roll pole pairs, e.g. the v component
with 0 deg, p between 140 deg and 170 deg and r between
265 deg and 285 deg. Furthermore, the model’s responses
if initialized with the corresponding eigenvector (real parts
only) are evaluated in Figure 5 for model G1 to character-
ize the rotorcraft modes. The initial responses of all four
eigenvalues (yλdr1 to yλdr4) in Figure 5 are similar. Su-
perposing yλdr1 to yλdr4 leads to the final dutch-roll motion
yλdr of G1 depicted in the bottom plot of Figure 5. Thus,
all four complex eigenvalues show a dutch-roll-like behav-
ior. In their superposition, they form the dutch-roll mode of
the ACT/FHS as identified with model G1.
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Figure 5: Initial responses of the dutch-roll eigenvalues
(yλdr1 to yλdr4) and the superposed dutch-roll mode (yλdr)



In Figure 4a several eigenvalues are associated with typ-
ical rotorcraft modes. The regressive lead-lag motion is
observed as a lightly damped oscillation of the roll rate
p at about 12 rad/s. A coupled motion between the roll
rate p and torque Q can be found between 11.3 rad/s and
13.7 rad/s. This mode is called body roll / rotor flap in
[9]. The body pitch / rotor flap mode is observed between
3 rad/s and 3.5 rad/s. This mode involves a coupled roll,
pitch and heave motion. Even if the models G1 and G2 do
not provide exactly the same eigenvalues, the correspond-
ing frequencies and damping factors of the eigenvalues are
comparable. Furthermore, the shown eigenvalues involve
the same rotorcraft states and can be found in the reference
model as well. Several eigenvalues with coupled torque,
roll and yaw motions can be found in model G1 and G2 for
mode “1”, but not in the reference model. Model G1 has
three complex eigenvalues in mode “1”, model G2 just two.
But model G2 contains two further real eigenvalues labeled
as mode “3” with high torque participation and nearly the
same frequency of the eigenvalues as in mode “1”. The in-
flow mode of the reference model cannot be found in G1 or
G2. This is due to the fact that the inflow mode of the ref-
erence model is a simplified characterization of the coupled
inflow / coning dynamics.

The models G1 and G2 have many low frequency eigenval-
ues shown in Figure 4b. The unstable phugoid eigenvalues
can be found at 0.19 ± i0.37. The phugoid eigenvalues of
G1 and G2 are nearly congruent, but slightly different from
the reference model’s. The characterization of the dutch-roll
was described before. The coupled yaw mode “9” includes
φ, u and r, thus it seems to be the spiral mode as the refer-
ence model has the spiral mode in this area, too. Neverthe-
less, the proximity of these low frequency eigenvalues hin-
ders a more specific classification. Probability some of the
shown eigenvalues have to be superposed like the dutch-
roll eigenvalues to result in a specific rotorcraft mode.

In summary, the low frequency eigenvalues are mainly in-
fluenced by the rigid body states of the helicopter. With
increasing frequency, the helicopter engine and rotor states
have a more significant influence on the eigenvalues of both
models. These results support the evaluation in section 4.1.
The rigid body states are accurate for both models and the
corresponding eigenvalues are comparable. The so-called
“major” dynamics of Q and Ω are observable through the
rigid body responses. The body-roll / rotor-flap mode shows
a large influence ofQ for both models and this mode can be
found in the reference model which is identified without en-
gine and rotor speed dynamics for instance. Furthermore,
the models G1 and G2 have several lightly damped eigen-
values between 4 rad/s and 8 rad/s (mode “1” in Figure 4a)
with a main contribution of the engine torque, even if G2

has no torque included in its dynamics. Nevertheless, for
higher frequencies above 30 rad/s the eigenvalues of both
models differ profoundly from each other with the excep-
tion of some characteristic resonances of the rotorcraft. For

an appropriate approximation of the high frequency torque
and main rotor speed dynamics, these outputs have to be
included in the model dynamics estimation step. Addition-
ally, it is assumed that further rotor states participate in the
eigenvalues with increasing frequency. Since the ACT/FHS
is not yet equipped with a full rotor measuring system, these
states cannot be separated further in this paper.

5. CONCLUSIONS AND OUTLOOK

Two models of the ACT/FHS rotorcraft have been identified
applying the PBSIDopt method to flight test data to deter-
mine the influence of the engine torque and the main rotor
speed on model fidelity and model structure. The first model
includes the rigid body states as well as the engine torque
and the main rotor speed in the model dynamics and out-
puts. The dynamics of the second model are based on the
rigid body states only. Engine torque and main rotor speed
are included in the second model just as additional outputs
for the comparison with the first model. Both models have
been compared in detail:

• Both models require a large model order n > 100 to
provide excellent simulation results with JRMS < 1,

• Model 1 requires slightly more states to achieve the
same accuracy as model 2,

• Model 1 covers the engine torque and main rotor
speed more precisely than model 2,

• Torque and rotor speed responses due to collective in-
puts are accurate for both models,

• The analyzed eigenvalues of both models are com-
parable and can be attributed to common rotorcraft
modes,

• The eigenvalues of model 2 show a comparable par-
ticipation of the engine torque as model 1, even if
torque is only considered as additional output.

Thus, the overall model fidelity regarding solely the rigid
body states is not dependent on the engine torque and main
rotor speed, since both models provide very accurate esti-
mation of the rigid body states. The engine torque and main
rotor speed is accurate for both models regarding collective
inputs or the low frequency dynamics only. It is thus con-
cluded, that these “major” dynamics are observable through
the rigid body states. Therefore, it should be possible to
identify these dynamics with the classical Maximum Like-
lihood method using only the rigid body states, too. Nev-
ertheless, the high frequency dynamics and “off-axis” re-
sponses due to cyclic or pedal inputs for engine torque and
main rotor speed are covered merely by the first model.

In the next step, the high order models should be reduced
to a low order representation for the usage in flight control
development for the ACT/FHS. The analysis of the model
structure should be simplified using reduced models, too.
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Figure 6: Time domain responses of ACT/FHS models G1 and G2, maneuver +δy (left side) and +δ0 (right side) (90 knots)
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Figure 7: Q and Ω responses of ACT/FHS models G1 and G2, maneuver +δp (left side) and −δp (right side) (90 knots)
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Figure 8: Bode plots of engine torque Q (left) and main rotor speed Ω (right) due to longitudinal cyclic inputs (90 knots)
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Figure 9: Bode plots of engine torque Q (left) and main rotor speed Ω (right) due to lateral cyclic inputs (90 knots)
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Figure 10: Bode plots of engine torque Q (left) and main rotor speed Ω (right) due to pedal inputs (90 knots)
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Figure 11: Bode plots of engine torque Q (left) and main rotor speed Ω (right) due to collective inputs (90 knots)
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