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ABSTRACT

The purpose of this review is to present the research done in rotary-
wing aeroelasticity during the past eight years in 2 unified manner.

The following topics are reviewed with considerable detail: (1) recent
development in the aeroelastic modeling of the coupled flap~-lag-torsional
problem in hover (2) effect of unsteady aerodynamics on the coupled flap-
lag-torsional aerocelastic problem in hover (3) the coupled flap-lag and the
coupled flap-lap-torsional problem in forward flight (4) complete rotor and
coupled rotor fuselage aeroelastic problems including both hingeless and
teetering rotors.

1. Introduction

Aeroelasticity deals with the behavior of an elastic system in an
airstream wherein there is a significant reciprocal interaction or feedback
between deformation and flow. While dramatic instabilities may often be
featured, it may be stressed at the outset that control of subcritical
response behavior of the system is as important as removal of such critical
conditions from the design or flight envelopes. Thus, the main problems of
aeroelasticity are determination of both the response and the stability
problems. Furthermore aercelasticity deals with the interaction of internal
and external sources of energy thus it includes servo-aercelasticity and
significantly interacts with the area of flight dynamics.

Dynamic stability and response problems associated with rotary wing
aircraft represent one of the most complex problems in the area of aero-
elasticity. Due to the complicated nature of these aercelastic problems
it is not surprising to find that this part of aercelasticity is consider-
ably less developed and advanced than its fixed wing counterpart. A con-
siderable amount of significant research in this area has been done
primarily during the past twenty five years. However it is interesting to
note that classical texts on .ausn:oelast:T.c:ityl’2 do not even mention this
important and challenging subject area. Only recently, in an extensive
treatise on aeroelasticity by Forsching3 are aeroelastic problems associated
with rotors identified as a new and significant part of aeroelasticity how-
ever their treatment in this text is quite superficial; which is under-
standable in light of the large number of topics covered in this book.

A positive sign of the growing awareness of the importance of rotary
wing aeroelasticity is evident from Garrick's% recent review of aeroelastic—
ity which is primarily devoted to some relatively complex problems of fixed
wing aeroelasticity such as active control of aeroelastic respounse including
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the control of flutter, unsteadvy aerodynamics of arbitrary configurations
and problems of gust response. In this review, where aercelastic problems
of rotorcraft are only very briefly mentioned, Garrick identifies the aero-
elastic problems of helicopters as one of remaining fertile areas for
advanced work in aercelasticity indicating that many fundamental problems
in this area still remain to be considered.

One of the first significant reviews of rotary wing V/STOL dynamic
and aeroelastic problems was undertaken by Loewy5 where the literature up
to the end of 1968 was reviewed with considerable detail and great physical
insight. 1In this review a wide range of topics were considered such as:
static and dynamic classical coupled flap-pitch problems,6 flap—-lag flutter,
flap-pitch flutter, propeller whirl and prop-rotor whirl flutter, mechanical
instability {(ground resonance), coupled airframe/rotor instabilities in
flight (air resonance), problems associated with the effect of forward
flight and periodic coefficients, stall flutter and some special problems.

A somewhat more restricted review, intended primarily to bring up to
date the chapter dealing with helicopter blade flutter in the Agard Manual
on Aeroelasticity has been written by Ham,7 however it was limited to the
discussion of classical coupled flap—~torsion flutter,6 flap-lag flutter
without the structural elastic coupling effect and stall-flutter.

Another review of rotary wing aeroelastic problems has been written
by Dat.® This review which is somewhat limited in scope, because it has
been written primarily for instructional purposes, contains among other
topics, an excellent treatment of the unsteady aerodynamic problem for
rotary wing aircraft and a review of aercelastic response and vibration
problems associated with forward flight.

The research and development work done on the flight dynamics
problems of hingeless rotorcraft in the NATO countries up to 1973 has been
the subject of an excellent and comprehensive review report writtem by
Hohenemser.? Due to the strong interaction between blade elastic deforma-
tions and flight dynamics some aeroelastic problems are included in Refer-
ence 9 because they are considered to be a part of the broader flight
dynamics problem. Typical of these are the description of coupled rotor/
fuselage and rotor/fuselage control system aercelastic problems.

Finally it should be noted that Soviet research on rotary-wing
aeroelasticity is described with considerable detail in Mil's translated
two volume treatisel0s1l yhile research on steady and unsteady rotary-wing
aerodynamics is described in a book by Baskin et a1l? which has been
recently translated.

During the past eight year period since Loewy's5 review has been
written significant advances in rotary wing aercelasticity have occurred.
The objective of the present paper is to review, with considerable detail
the most important aspects of this research. While the author's own work
will be used to illustrate some of the points made, a considerable effort
was made to present recent research in a balanced and objective manner.

The most important development in rotary-wing aeroelasticity during the

past eight year period has been the acceptance of the fact, by both
industry, research and the academic community, that rotary wing aeroelastic-
ity is inherently nonlinear. Thus the correct treatment of a wide class of
problems in this area requires a consistent development of a mathematical
model, for the particular aeroelastic problem being considered, Wthh
results in a system of nonlinear egquations of metion.
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This review will make an attempt to cover the following topics:

(1) Recent developments in the aercelastic modeling of the coupled flap-
lag-torsional problem in hover.

{2) Review of unsteady aerodynamic theories applicable to rotary wing
aerocelasticity and their imncorporation in aercelastic analyses deal-
ing with the coupled flap~lag-torsiomal aercelastic problem in hover.

(3 Review of the coupled flap-lag and coupled flap-lag-torsional aero-
elastic problem of rotor blades in forward flight. The impottance
of trim and nonlinear terms on blade aerocelastic stability for this
case is discussed. Furthermore efficient numerical methods for
treatment of equations with periodic coefficients are also reviewed.

(4) The complete rotor and coupled rotor fuselage aercelastic problem
is reviewed with considerable detall. Both hingeless and teetering
rotors are considered.

This review attempts to present the state of the art of rotary-wing
aeroelasticity from a unified viewpoint. It should be noted however that
relatively more space is devoted to hingeless rotor configurations than to
teetering or articulated rotor configurations this is mainly due to the
fact that a considerable part of recent research has dealt with hingeless
rotors.

2. Mathematical Modeling of the Coupled Flap-Lag-Torsiocnal
Aercelastic Problem in Hover

2.1 Introduction

The coupled flap-lag-torsional aeroelastic problem in hover is the
fundamental problem in rotary wing aeroelasticity. Coupled flap-pitch,
coupled pitch-lagl3 and more recently the coupled flap~lagl4~1® problem have
all received attention in rotary wing aeroelasticity. However it is only
the more recent research which has shown that, for most cases when the first
torsional frequency of the blade is below E¢l < 9, the coupled flap-lag-
torsional problem has to be considered in its entirety in order to obtain
results which have practical value. It is also important to realize that
while flap-pitch and pitch-lag instabilities were initially obtained with
linear formulations of the aercelastic problem, the correct treatment of
the flap-lag type of instability requires the derivation of nonlinear equa~
tions of motion, Correct flap~lag stability boundaries can be obtained
only from a properly linearized version of these equations. Thus it is
clear that in order to have a mathematical model representing the coupled
flap-lag-torsional motion of a blade which contains the coupled flap-pitch,
pitch=lag and flap-lag problems as subsets it is necessary to derive a set
of nonlinear coupled flap-lag-torsional equations.

In this section the most important aspects related to the derivation

of coupled flap-lag-torsional equations of motion and their solution will
be reviewed.
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2.2 Formulation of Coupled Flap—Lag—Torsional Equations of Blade Motion

The coupled flap-lag-torsional equations for a single blade are
the basic building block from which the more complicated aercelastic prob-
lems can be developed. For hingeless rotor blades, where the blades are
cantilevered to the hub recent research, which will be described in this
section, has shown that nonlinear equations of blade motion have to derived.
The nonlinear terms in these equations are due to the inclusion of moder-
ately large deflections in the elastic, Inertial and aerodynamic operators
of this aeroelastic problem. Physically these moderately large deflections
correspond to a situation where one has small elastic strains combined with
finite rotations (large slopes). It has been also shown that moderately
large deflections can be alsc important in teetering and articulated rotoer
blades.

During the past few years a number of equations of motion for the
coupled flap~lag-torsional motion of rotor blades have been derived by a
number of authors.13:17726 A pumber of these derivations have been directed
at the hingeless rotor aeroelastic problem15=l7’19'21'23"26 while others
were more general in nature and were capable of simulating hingeless, artic-
ulated and teetering blade configurations by appropriate modification of the
blade boundary conditions at the root.l18,22 However it should be noted that
by proper adjustment of boundary conditions and use of appropriate mode
shapes the equations derived for hingeless rotor blades can be also applied
to the articulated rotor blade problem. The teetering rotor represents a
special situation which has to be handled in a different manner as will be
shown later in this paper.54v55

In order to be able to review and compare the various equations
available in a systematic manner it is important to describe briefly their
salient features, the assumptions upon which they are based and the methods
used in their derivation.

The geometry of a typical hingeless rotor blade having flap, lag and
torsional degrees of freedom is shown in Figs. 1 and 2. A slightly more
general configuration having both sweep and droop is shown in Fig. 3. All
symbols used in this paper are defined in Appendix A.

A fundamental set of equations for blades having no droop, sweep and
precone has been presented by Houbolt and Brooksl/ where equations of equi-
librium for the coupled bending and torsion of a pretwisted nonuniform blade
has been derived. All three flap, lag and torsional degrees of freedom were
taken into account, the final equations obtained were intended to represent
only the linear problem. Furthermore the gerodynamic loading terms were
left in a general unspecified form.

Following this work other researchers presented derivations of
equations which included additional nonlinear terms due to moderately large
deflections.

When nonlinear terms are included in the structural, inertia and
aerodynamic operators of this aercelastic problem some difficulties are
encountered:

{a} 4 considerable number of higher order terms are obtained. In order
to neglect the appropriate terms a rational ordering scheme has to
be used which enables one to neglect terms in a systematic manner,
In such an ordering scheme all important parameters of the problem
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are assigned orders of magnitude in terms of typical nondimensional
displacement quantity, €p, which represents typical blade slopes,

thus
Y e¥_p=r=8 =b-= Egﬁ -.EE =0
R R p "xo'R“(SD)
x
o _ 3 _9 _
R~ 3x o 0L
o
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g = O(ED ) and CdO/a =3 O(ED)

This ordering scheme is used with the assumption that terms of 0(63)
are usually negligible when compared to terms of order one. In most
cases such ordering schemes are used with a certain amount of
flexibility.

An alternative approach for neglecting higher order terms in the
equations of motions is based upon the concept of expanding the
various expressions in the equations of motion in a Taylor series

in the vicinity of an appropriate equilibrium position. Approximate
equations are obtained by neglecting higher order terms in the Taylor
series expansion.

(b) Care must be exercised in distinguishing between the deformed and
undeformed positions of the blade.

With this information the various nonlinear equations available can
be reviewed.

A detailed set of linearized coupled flap-lag-torsional equations
have been derived by Arcidiacono.l8 These equations were derived using the
Taylor series method of approximation. They are suitable for both artic-
ulated and nonarticulated blades. Fully coupled aerodynamic forcing func-—
tion were included based upomn quasisteady aerodynamic theory. The differen-
tial equations of motion were expanded in terms of the uncoupled vibratory
modes of the blade. '

Another system of coupled flap-lag-torsiocnal equations of motion,
based upon the ordering scheme method of approximation has been derived by
Friedmann and Tong.l3 In these equations the torsional degree of freedom
was represented by a root torsional spring, i.e. pitch link flexibility.
The aercdynamic loads were modeled using quasisteady aerodynamic theory.
Various cross sectional blade offsets shown in Fig. 1 were included im the
derivation. Since their initial derivation these equations have undergone
a continuous process of improvement and modification. A more recent version
of these equation521 ineludes a modified structural operator which is
similar to Houbolt and Brooks except that it contains moderately large
deflections. Furthermore these improved equations are capable of modeling
root torsional deformations, distributed torsiomal deformations, blade
precone and the various cross sectional offsets shown in Fig. 2.

When droop is included in the formulation of the mathematical model
the coupled flap-~lag-torsional equations become much more complicated,
because for this case the undeformed elastic axis of the blade moves on
a cone in space whemever collective pitch angles or root torsional deforma-
tions are introduced. The equations presented in Reference 21 have been
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recently generalized by Reyna-Allendelf to include droop, time varying
pitch angle associated with forward flight and aerodynamic loads which
include the effects of forward flight.

A most comprehensive and accurate set of coupled flap-lag-torsional
equations of motion has been presented by Hodges and Dowell,20 these are
an improvement of the equations first presented in Reference 19. These
equations were developed from nonlinear strain displacement relations, using
both Hamilton's principle and the Newtonian method. The neglection of the
higher order nonlinear terms is based upon the ordering scheme type of
approximation: In Reference 20 the aerodynamic loads have been.left in
general unspecified form, however in Reference 19 quasisteady blade element
theory was used for airload computation. The equations of Reference 20 are
limited to the case of distributed torsional representation of blade flex-
ibility and hover. A more recently published version of these equationsz4
also contain variable structural coupling and a quasisteady representation
of the aerodynamic loads. They apply only for the case of hover.

In a recent preliminary report25 Hodges has generalized the equation
of Reference 20 to include pitch 1link flexibility, twist, precone, droop,
sweep and torque offsets. Quasisteady aerodynamic loads for the equations
were also derived. The equations are somewhat limited by the assumption
that the cross sectional elastic axis, center of mass and tension are coin-
cident at the quarter chord. Thus none of the offsets shown in Fig. 2 are
included, furthermore the equations are limited to the case of hover.

A general set of coupled flap~lag-torsional equations of motion of a
single blade, which is part of a more general analysis aimed at dealing
with complete coupled rotor-fuselage aercelastic problem, has been developed
by Johnston and Cassarino.2Z These equations are general and capable of
simulating gimbaled, articulated and hingeless rotor blade configurations.
The equations are obtained using a Lagrangian approach, and are linearized
about an appropriate equilibrium position by using the Taylor series expan-
sion method. The unsteady aerodynamic loads can be included using two

dimensional strip theory based upon Theodorsen and Loewy type of lift deffi-
* ciency functions. Tabulated airfoil data, stall and compressibility can be
taken into account. The equations are applicable to both hover and forward
‘flight.

Another advanced and comprehensive set of equations of motion aimed
at modeling a composite bearingless rotor blade has been recently developed
by Bielawa,23:27 1In these equations the neglection of the higher order
nonlinear terms is based upon an ordering scheme type approximatiom. The
equations are derived using a Newtonian approach and can be used for both
hover and forward flight. These equations are a good example of the "art" of
modeling a complex, composite rotor blade where structural redundancies
and nonlinear twist are present,

2.3 Solution of the Coupled Flap-Lag-Torsional Problem in
Hover and Results

The fundamental difference between the fixed wing and the rotary-wing
aercelastic problem is the simple fact that the rotary-wing aerocelastic
problem is inherently nonlinear. This aspect of rotary wing aeroelasticity
has not been sufficiently emphasized in previous reviews of rotary wing
aeroelasticity which tended to emphasize the effects of rotation and the
complicated nature of rotary-wing unsteady aerodynamics. The wvarious equa-
tions of motion described in the previocus section retain without exception
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the meost important nomlinear terms in the aerodynamic and Inertia operators
and in most cases also in the structural operators assocciated with this
azroelastic problem. One may consider this to be evidence that the
inherently nonlinear character of rotary-wing aercelasticity has become
generally accepted.

The consequences associated with the nonlinear nature of the rotary~
wing aervelastic problem can be best appreciated by presenting a brief,
symbolie, outline of the solutionm of the coupled flap-lag-torsional problem,
for a hingeless blade in hover.

The eguations of motion for this problem can be taken from Reference
21 and correspond to the geometry of the problem shown in Figs. 1 and 2.
For this example one can assume without any loss in generality that there
is no built in twist O = 0 and furthermore EBy = EBy = kg = (0, the partial
differential nonlinear equations of equilibrium are given by
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2
E = l}EI)z - (EI)YJ cos“6, <

and the displacement field for a point on the elastic axis of the blade is

given by
x 2 2
X o ow v
0 .2 1 e e
u =~ Bw ——3-—-f (——--—~>+<—> dx (8)
e 2 Tp 2 A Bxl Bxl 1
v =v (9
e
w=w_ <+ B x (10)
e o

The quantities P,, PY and P, represent distributed loads along the
elastic axis of the blade in the X, y and directions respectively they
contain inertia, aerodynamic and structural damping loads2l while qy, q
and qz represent the corresponding torques. Complete expressions for tzese
loads are given in Reference 21 upon which this analysis is based. It is
important to remember that the loads py, Pz ...s Qyy... ete. will be in

general nonlinear functions of the elastic degrees of freedom and their

* k %
i i i.e. =P e s )ena .
derivatives i.e Py y(ve’we’¢’ve’we’¢ ) etc

The terms denoted by Ecj, Ecg and Eeq in these equations represent
the elastic coupling terms while the second term in the brackets in Eq. (3)
represents the so called torsion-flap-~lag coupling or Mil-type term.10,28,29

The system of general, coupled, partial differential equationsT of
motion presented above is transformed into a system of ordinary nonlinear
differential equations by using Galerkin's method to eliminate the spatial
variable. In this process the elastic degrees of freedom in the problem
are represented by the uncoupled free vibration modes of a rotating blade.
Using one elastic mode to represent each elastic degree of freedom one has

w, = an1(§;>gl(w>

v, =~2Y1(£0>h1(¢> (11)

o = 0,Gx)E (W)

The process of linearization consists of expressing the time
dependence of the generalized coordinates of the elastic displacement
field as the sum of a steady state value about which time dependent
perturbations cccur.

g, W) = &) + dg; W)
Y 12
hy @) = hy + Ahl(w) (12)
0
EL(W) = £ + AF, ()

Equations (12) are substituted into the ordinary nonlinear coupled
equations of motion and terms containing squares of the perturbation quan—
tities Agy, Ahy and Af] are neglected. The static equilibrium position is
obtained from

+

With boundary conditions corresponding to a cantilevered blade.
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0 0.0 .0\
gy FSN(él’hl’fl)
ol . 0.0 0\
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0 0.0 .0
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where FS s L and TS are lengthy nonlinear expressions of the gtatic
equilibfium position associated with the flap, lap and torsional degrees
of freedom respectively.

The final form of the dynamic equatiomns of equilibrium can be
symboliecally written as (* — denctes differentiation, 3/3Y)

a1 {dr + [B]{é} + [D}{q} =0 (14)

where {q}T = LAgl,Ahl,Aflj and the matrices [A), [B], [D] are fumctions of
the static equilibrium position only, given by Eq. (13).

In order to transform Eq. (14) into the standard eigenvalue form
Eq. (14) is rewritten in state variable form

(@} = {1 and {a} = {y,} (15)
this transformation yields

{3} = [Fl{y} (16)
where

01 = )% 15,
and

- { _
a0 -t
(Fl= [--->---+t---w- 7

(1] : (0]

Assuming solutions for Eq. (16) in the form of {3y} = f;}ekw reduces
the problem to the standard eigenvalue problem

[Fl{y} = A{y} (18)

when quasisteady aerodynamics are used the matrix [F] is real and solution
of the stability problem is straightforward, as indicated below.

The exact solution to Eqs. (13) and (18) is obtained by first solving
the set of nonlinear algebraic equations represented by Eqs. (13) using a
numerical method such as the Newton-Raphson iterative method. Failure of
this method to converge can be usually associated with nonlinear coupled
flap-lag-torsional divergence or static instability.l5,30

Using the values of gg, hg and fg the eigenvalue problem represented

by Eq. (18) can be easily solved. The eigenvalues appear in complex con—
jugate pairs
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Ay = S (19)

The system is stable when Ck < @ and the stability boundary is obtained
from Ck =0

To complete the treatment of this problem, some typical results,
which can be obtained from the analysis which has been described above,
will be presented. For the sake of clarity first a2 few results associated
with the coupled flap-lag problem will be given and next the coupled flap-
lag-torsional results are presented.

{a) Coupled Flap-Lag Results — The flap-lag problem has been first
treated in References 31 and 32. However the best treatment of the problem
is due to Ormiston and Hodgesl4 who have clearly identified the role of
elastic coupling on this instability using a rigid centrally hinged, spring
restrained model of the hingeless blade. A similar treatment, without the
effect of elastic coupling, using an elastic blade and a fully nonlinear
treatment of the problem was given in References 15 and 16.

The mathematical treatment presented above, applies to this problem
when one assumes that the blade is torsionally rigid, i.e. ¢ = 0. When the
elastic coupling terms Ecl and Ecy are not included one obtains ellipse 1like
stability boundaries as shown in Fig. 4 which was taken from Reference 16.
Combinations of rotating flap and lag frequencies, E&l and W] inside the
ellipse like region, represent unstable blade configurations for values of
collective pitch setting above the value of 8, given on the curves. Where
8. is the critical collective pitch setting at which the linearized system
becomes unstable.

The effect of elastic coupling on the stability boundaries is
illustrated by Fig. 5 taken from Reference 14. When the elastic coupling
parameter R = 0 an ellipse like region, similar to those in Fig. 4, is
obtained. Increasing this parameter to R = 0.5 shifts the unstable region
to very high values of Wy; which do not occur in practical blade configura-
tions. This means basically that the unstable regions shown in Fig. 4 are
eliminated by elastic coupling. Results presented in Reference 33 alse
.indicate that small amounts of viscous type of structural damping (~ 1% of
critical) are sufficient to eliminate the wumnstable regions in Fig. 4.

In addition to the theoretical studies on the flap-lag type of
instability Ormiston and Bousman have performed an experimental study34
which has validated the theoretical results.l4é Furthermore their findings
indicated that in the stall regime an unexpected type of blade motion
instability for torsiomally rigid hingeless rotors was encountered. Use
of quasisteady, nonlinear airfoil section data incorperated in the linear-
ized flap-lag theory was sufficient to give good correlation between theory
and experiment. Elastic coupling is not successful in eliminating this
type of instability as indicated in Fig. 6 taken from Reference 34.

It is interesting to note that similar conclusions have been obtained
by Huber.28 He concluded that at extremely high thrust conditions, a flap-~
lag instability caused by a reduction of flap damping due to aerodynamic
stall is encountered. Elastic coupling effects have almost no effect on
this instability.

From the description given above it is clear that the flap-lag type

of instability is a result of destabilizing inertia and aerodynamic‘coupling
effects. It is triggered by the lead-lag degree of freedom due to its low
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aerodynamic damping. Elastic coupling effects and small amounts of
structural damping (less than 1%) are usually sufficient to eliminate
this instability for most practical blade configuration in the linear
(below stall) range of collective pitch setting.

(b) Coupled Flap-Lag-Torsion Results — Preliminary studies on the
coupled flap~lag-torsional stability of hingeless blades were presented
in References 15 and 33. In these studies the elastic coupling effect
was set equal to zero and the main purpose of these studies was to show
the importance of the torsional degree of freedom.

Comprehensive results for a hingeless blade with distributed tor-
sional properties were presented in Reference 19. These results were basged
upon an analysis similar to the one outlined at the beginning of this sec-
tion. The main conclusion of this study was that without precone, all
practical blade configurations were found to be stable., With precone and
relatively low values of torsional stiffmess a flap-lag tvpe of instability
was found to occcur at low collective pitch settings.

Partial results on various aspect of the coupled flap-lag-torsion
problem were also presented in References 28, 35 and 36. The most detailed
were those presented by Huber.28 It was found that droop and sweep (see
Fig. 3) which introduce strong coupling effects for hingeless rotor config-
uration have a very strong influence on blade stability,

The effect of blade cross sectional offsets (see Fig. 2), structural
damping precone and blade modeling assumptions was considered in Reference
21. In a recent study by Powers30 the effect of droop, number of modes
used in the analysis, offsets, pretwist and nonuniform mass distribution
together with some additional effects was also studied in a systematic
manner.

A typical coupled flap-~lag-torsional stability boundary taken from
Reference 21 is shown in Fig. 7. The main item of interest in this figure
is the bubble like region of instability occuring for low values of collec~
tive pitch 6. This instability occurs only in the presence of precone and
is a flap—lag type of instability, This instability was also observed in
References 19 and 36. The unstable region decreases as the torsiomal
stiffness Wyy is increased from 4.5 to 6.0, The most important item how-
ever is the sensitivity of this unstable region to small amounts of wviscous
type of structural damping. For the case of low torsional frequency, m@l =
4.5, 1/4% of critical damping considerably reduces this unstable region,
while for Wyi = 6.0 the same amount of structural damping completely elimin-
ates this instability indicating that it is a weak one. Additional results>0
indicate that this region is quite sensitive to the number of modes used
in the analysis.

A considerable amount of additional results are presented by Powers .30
The most important of these is that negative droop (undeformed elastic axis
above the feathering axis) can induce a low collective pitch type of flap-
lag instability similar te the onme induced by precone, except that this
instability cannot be eliminated by small amounts of structural damping.

Results showing the effects of variable structural coupling were
recently published by Hodges and Ormiston.24 These results indicate strong
sensitivity of blade stability boundaries to structural coupling and precone
which is similar to their previous conclusions.l Sensitivity of the stab-
11ity boundaries to type and number of modes used in the analysis is also
presented in Reference 24.
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In conclusion, coupled flap-lag-torsional analyses for hingeless
blades indicate in general stable configurations. Various blade configura-
tions can be destabilized by precone, dreop, offsets and negative built in
twist which tends to reduce the stabilizing structural coupling effects.
These parameters can be also used to tailor the aeroelastic behavior of the
blade. Finally it is interesting to note that the natural flutter param-—
eter used in rotary-wing aeroelastic studies in hover is the collective
pitch setting of the blade. This differs from the veloecity which is used
as the typical flutter parameter in fixzed wing aercelastic problems.

2.4 Effect of Unsteady Aerodynamics on the Coupled Flap-Lag-Torsional
Problem in Hover

The coupled flap-lag and the coupled flap-lag-~torsional problems
presented in the previous section were treated with the assumption that the
quasisteady approximation to the unsteady airloads is adequate. Furthermore
it was also assumed the apparent mass terms except those representing damping
in pitch are negligible. The basis for this assumption was the classical
work of Miller and E1lis® which indicated that in general the quasistatic
solution appears to provide a reasonable, although slightly conservative,
boundary for coupled flap~torsion flutter stability boundaries. At the same
time it is reasonably well known that under certain conditions unsteady wake
effects can influence both the aeroelastic stability and the aeroelastic
response of a rotor blade.37 These conditions were found to occur primarily
at low inflow or low collective pitch settings.3

A recent study by Anderson and Watts3? has indicated that unsteady
aerodynamics can significantly affect the aercelastic stabiiity of a hinge-
less rotor at relatively low collective pitch settings., In Reference 39 only
Loewy's41 unsteady aerodynamic theory was used; however the incorporation of
the unsteady aerodynamic thecry in the blade equations of motion was not
carefully done. In particular the unsteady aerodynamic coefficients as given
in Reference 39 are not consistent with a rotor blade having flap, lag and
torsional degrees of freedom which is the case considered in Reference 39.
Lack of adequate documentation hinders any evaluation of analytical aspects
of this paper.

An interesting result taken from Reference 39 is shown in Fig. 8. The
figure shows the computed flutter boundaries for an instability combined of a
third flap, second torsion and second inplane bending mode, which was also
experimentally encountered in whirl tower tests. The plot shows stability
boundaries comparing full unsteady aerodynamics with those cobtained when the
quasisteady assumption, C'(k,m,h) = 1.0, is made. For the unsteady aero-
dynamics case, including wake effects, the stability boundaries are circular
in nature having a center at approximately 4.2 degrees collective pitch and
a rotor speed of 294 rpm. In constrast to the circular contours for the
unsteady case, the quasisteady case contours as seen in the lower half of
Fig. 9 are more nearly parallel. Qualitatively they exhibit significantly
different behavior. The experimental evidenca obtained in Reference 39
correlated reasonably well with the unsteady prediction.

A systematic study of the effect of unsteady aerodynamics on the
coupled flap-lag~torsiomnal stability of hingeless helicopter blades has been
recently presented by Friedmann and Yuan.%40542 1In this study four different
unsteady aerodynamic strip theories were modified and incorporated in a
coupled flap-lag~torsional aercelastic stability analysis for hover. The
following theories were considered: ’
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(a2) Theodorsen's incompressible fixed wing theoryl

(b) Loewy's incompressible rotary wing theory4l

{(c) Unsteady compressible fixed wing theory or Possio's theoryl
(d) Unsteady two dimensional compressible rotary wing theory43’44

The geometry of the problem employed in the formulation of these
theories is shown in Fig. 9.

The assumptions commonly used in deriving the variocus unsteady aero-
dynamic strip theories as illustrated by this figure are: (a) Cross sections
of the wing or blade are assumed to perform only simple harmonic pitching
and plunging oscillations about a zero equilibrium position as indicated in
Fig. 8. These are

Ah = ARelUt; A% = AgelUt

(b) The velocity of oncoming airflow is comstant (c) usual potential small
disturbance unsteady aerodynamics are assumed to apply.

The basic difficulty encountered when attempting to apply the unsteady
aercdynamic theories mentioned above, to rotor blade aeroelastic calculations
are primarily due to the fact that a rotor blade having flap, lag and tor-
sional degrees of freedom violates assumptions (a) and (b) given above. The
main differences between the assumptions and the real behavior of a rotor
blade are: (1) In addition to the constant velocity of oncoming flow, the
blade also experiences a time dependent velocity variation due to its lead-
lag motion; (2) in addition to the harmonic variation in the angle of piteh,
due to elastic torsional motion of the blade, a constant collective pitch
setting ig also imposed on the airfoil; (3) the plunging velocity of the
airfoil Ah, is composed not only of a harmonic part associated with elastic
flapping motion, but in addition has a constant velocity component due to
the inflow through the rotor disk; (4) Blade deflections are not necessarily
small when compared to the thickness of the airfoil.

In References 40 and 42 the four unsteady strip theories listed
previously were modified in two stages. First, terms accounting for the
variations in oncoming velocity and constant angle of pitch and constant
inflow were intreoduced. Next the airloads were modified to make them com-
patible with the deformation field of a rotor blade having flap, lag and
torsional degrees of freedom.

The modified airloads were incorporated in an aeroelastic analysis
similar to the one described in the previous section and the sensitivity
of the coupled flap-lag-~torsional aeroelastic stability boundaries was
investigated. It should be noted that determination of the stability
boundaries for this case is much more complicated than the simple eigen—
analysis described in the previous section, a suitable algorithm for this
case 1s given in Reference 40.

It was found that for some cases apparent mass terms and in particular
compressibility should be included. Quasisteady aerodynamics, with apparent
mass terms neglected tended to yield comservative boundaries. Under certain
conditions, when two modes were used to represent each elastic flap, lag and
torsional degree of freedom wake effects could be important particularly
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when an offset between the aerodynamic center and the elastic axis is present
in the gystem.

A typical result%? is shown in Fig. 10. The left branch of the
stability boundary is the flap-lag branch which is unaffected by the return-
ing wake and the unsteady aerodynamics. The right hand part of the stability
boundary is a coupled flap, second lag, first torsion oscillation. The
narrow regions of instability shown in the figure are due to the unsteady
rveturning wake, Furthermore compressibility can significantly affect these
narrow regions as shown in the figure. These results show qualitatively a
similar behavior to those presented on the top of Fig. 8.

3. Rotary Wing Aercelastic Problems in Forward Flight
3.1 Introduction and Review of Merhods Available for Treating

the Periodic Coefficient Problem

The forward flight condition results in a considerable complication
of the rotary wing aerocelastic stability and response problems. From the
aerodynamic point cof view it leads to a imuch more complicated representation
of the unsteady aerodynamic forces furthermore it results in a region of
reversed flow which is also accompanied by locally stalled flow in the
retreating blade region. The computation of the unsteady aerodynamic loads
on a rotor blade in forward flight is a formidable task in computational
fluid mechanics.

The aeroelastic problem in forward flight is further complicated by
appearance of periodic coefficients in the equations of motion. In the
past there has been a preocccupation with equations with periodic coefficients
in rotary-wing dynamics and aercelasticity, a brief review of this effort
can be found in References 45 and 46,

When the unsteady aerodynamic problem posed by forward flight is
disregarded and the unsteady aerodynamic loads are evaluated using blade
element theory as has been done in many aerocelastic studies the treatment
of the coupled flap-lag, or coupled flap~lag-torsional problem in forward
flight is reduced to the derivation and solution of an algebraically
complicated set of equations of motion with periodic coefficients.

A number of methods are available for dealing with the stability of
these systems. The first method deals with the equations when they are
written in a blade fixed, rotating, coordinate system., For this case it
can be shown%> that the most convenient method for dealing with the
linearized aercelastic problem is to use multivariable Floguet-Liapunov
theory to determine the stability boundaries of the system.45s46 Multi-
variable Floquet-Liapunov theory was introduced into rotary-wing aeroelastic-
ity by Hall%47 who considered the coupled flap-lag problem in a somewhat
inconclusive manner, and by Peters and Hohenemser who applied it to the
flapping problem of lifting rotors in forward flight.48 Finally it should be
emphasized that this method is general and valid for arbitrary advance ratios.

The second method is suitable for the case when the stability of the
system at relatively low advance ratios y £ 0.4 is required. For this case
the blade fixed generalized coordinates can be transformed into a nonrotating
hub fixed generalized coordinates usually called multiblade coordinates or
quasinormal coordinates.?,48 Application of this transformation to the
original system yields a transformed set of equations where some of the
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periodic terms are transformed into constant coefficient terms. The
remaining periedic terms in the multiblade equations contain only third
harmonics for a three bladed rotor>9 and second and fourth harmonics for
a four bladed rotor.49 Omitting these periodic terms, yields a constant
coefficient approximation to the periodic system which is acceptable
below 1t £ 0.4, It should be noted that when the periodic terms are not
neglected, Floquet~Liapunov theory has to be used in the solution.

This method has been used by Hohenemser and Yin to study the flap-~
ping and flap-torsional, stability and response of rotors#9:51 and by
Biggers5 to study the flapping stability of a helicopter rotor in forward
flight. More recently Kaza and Hammond?Z have applied a slightly modi. ied
version of this method to the flap-lag problem in forward flight and found
the method to be satisfactory for advance ratios u < 0.4.

The third method for dealing with the problem of equations with
periodic coefficients, in their complete nonlinear form is based upon
direct numerical integration either in the blade fixed or nonrotating
coordinate system. 1In this case time histories of blade motions or blade
dynamic loads or stresses are obtained from which the stability or response
of the system can be determined, this method is widely used in industry23’53
while for subcritical response calculations this method is probably ade-
quate it might be unreliable for stability calculations due to the mathe-
matical properties of periodic nonlinear systems. For this reason it might
be desireable to augment direct numerical integration by an eigenanalysis
type of calculation such as presented in the following section.

3.2 The Coupled Flap-Lag and Coupled Flap-lag-Torsiocnal
Aeroelastic Problems in Forward Flight

A number of studies dealing with the effect of forward flight
on the coupled flag—lag stability problem have been conducted in the
past.15’16’31’32’4 ~47,54,55 ynile the older studies have been instru—
mental Iin gaining, slowly, an understanding of the problem, it is only
the more recent work presented in References 46, 54 and 55 which pre-
sents a consistent treatment of this problem.

The coupled flap—lag—-torsional problem in forward flight has
received only limited attention in the rotary-wing literature. The
coupled, linearized, flap-lag-torsion motion has been investigated by
Crimi36 using a modified Hi1l method, only a limited number of somewhat
inconclusive numerical results were presented,.

A detailed, comprehensive and consistent treatment of the coupled-
flap-lag torsiomal problem of a bearingless, hingeless rotor, in forward
flight has been recently completed by Bielawa.Z23»27 1In this study non-
linear equations were derived and the proper trim conditions were incorpor-
ated in the aeroelastic problem. Time histories of the blade response were
obtained by direct numerical integration.

Another comprehensive treatment of the coupled-flap-lag torsional
problem in forward flight is presented in a recently completed study by
Reyna—Allende.26 In this study nonlinear equations were obtained which
were consistently linearized about a time dependent equilibrium positiom
determined from the trim conditions. The stability boundaries were
obtained by performing an eigenanalysis based upon multivariable Floquet-—
Liapunov theory.
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Furthermore a number of helicopter companies have computer programs
capable of dealing with the coupled rotor fuselage aercelastic problem in
forward flight. Obviously the coupled flap-lag or coupled flap-lag-
torsional aeroelastic problem is simply a component, or subset, of this more
complex problem. These problems will be reviewed in the next section.

The salient features of the rotary-wing aeroelastic problem in
forward flight can be best illustrated by extending the symbolic outline
of the analysis presented for hover, in Section 2.2, to the case of forward
flight. For convenience only the flap—lag problem will be considered,
following Reference 46, the extension to the case of coupled flap-lag-
torsion is straightforward.26

The geometry of the problem is again represented by Figs. 1 and 2,
except that for this case ¢ = 0. The basic equations are Egs. (1) and (2),
and the torsional degree of freedom is suppressed. The ordering scheme
used is similar to the previous case, except that one also introduces46

U= 0(1); Bls = O(ED); elc = O(ED) (20)

The displacement field is given again by Eqs. (8)-(10), and
Galerkin's method is used to eliminate the spatial dependence of the prob-
lem using the modes given by Eqs. (11).

A significant difference between hover and forward flight is due
time varying pitch

GG = Bo + Gt = 80 + 813 cosyP + els siny {21)
which using Eqs. (5) through (7) introduces a time varying elastic coupling,
and also a time varying torsion-flap-lag coupling when ¢ ¥ 0.

The wvarious inertia and aerodynamic loads, including the effects of
reversed flow, corresponding to this problem can be found in Reference 46.
Another important difference between hover and forward is due to the fact
that the cyclic pitch components €15, 61p and the inflow A have to be
determined from the trim condition of the rotor, which is shown schematic-
ally in Fig., 1l.

The trim conditions can be calculated4® using two separate trim
procedures: {(a) Propulsive Trim. In this trim procedure, which simulates
actual forward flight conditions, the rotor 1s maintained at a fixed value
of the thrust coefficient Cr with forward flight. Horilzontal and vertical
force equilibrium is maintained as well as zero pitching and rolling
moments. (b) Wind Tunnel Trim or Momeant Trim. In this trim procedure,
which simulates conditions under which the rotor would be tested in a wind
tunnel, pitching and rolling moments on the rotor are maintained at zero.
Horizontal and vertical forece equilibrium 1s not required for this case
because the rotor is mounted on a supporting structure.

Due to these trim requirements, the equilibrium position about which
the nonlinear equations of motion have to be linearized is a time dependent
one. This time dependent equilibrium position is a result of the cyclic
pitch variation required to trim the rotor in forward flight. Assuming
that first harmonic terms are sufficilent for the representation of the time
dependent equilibrium position one has
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g, (W) = g, + g cosd + g, sinp (22)

o PO

b (@) = by + hy  cosy + by _ siny (23)

1

Substitution of Eqs. (24) into the differential equations results in
a system of six algebraic equations from which the equilibrium position is
determined.

- 0 0
(sMa } = {c} + {£; (8158287 s0y>0y o0y D} (24)

where {q o= [gg,gl ,ng,hg,hlc,hlsJ and the elements of the matrices [§]
are given in Reférefice 46. The vector function {fNL} contains nonlinear
combinations of the type gg hygy g? hies..etc. In Reference 46 these terms
were neglected, recent results, based on the full solution of Egs. (24),
indicated3 that under certain conditions these terms can affect the stabil-
ity boundaries.

The process of linearization of the equations of motion consist of
expressing the time dependence of the generalized coordinates of the elastic
displacement field as the sum of a time dependent equilibrivm wvalue about
which time dependent perturbations occur

g (V) = g (1) + dg (W)
— (25)
hy () = By (@) + Ahy (W)

When Eqs. (25) are substituted into the nonlinear ordinary differen-
tial equations of motion, nonlinear terms are transformed inte coupling
terms and terms containing squares of the perturbation quantities Agj; and
Ah; are neglected. Finally the equations are transformed into state vari-
able form by introducing

* * .
Ag; = yy5 4hy = y,; bgy = y,5 bhy =y, (26)
The equations of motion in their final form are

3} = (AW 1y} 27)

Comparing Eqs. (16) and (26) 1t is evident that both aerocelastic
problems are quite similar except for forward flight [A(Y)) is a periodic
matrix.

Using multivariable Floquet-Liapunov theory45 the stability
investigation of blade motions is straightforward.

Based upon the Floquet-Liapunov theorem, the transition matrix for
a periodic system, having a common period T, can be written as

| o [RIG-9)
[0W,¥,)] = P e [P (¥,)] (28)

where [P(¥)] is also a‘periodic matrix and [R] is a constant matrix related
to the value of the transition matrix at the end of a period

11~-17



J[RIT

[®(T,0)] = (29)

The stability of the system is governed by the characteristic
exponents or the eigenvalues of [R] denoted by

Ak = Ck + ia, (30

The system is stable when
o

Comparing Eqs. {19) and (30) it is clear that the real part of the
characteristic exponent for the periodic system I, plays a role similar to
that of modal damping ;k in the constant coefficient system.,

<0, k= 1,2,...0.

The key to the efficient numerical treatment of periodic systems is
the numerical computation of the transition matrix at the end of one period
[o(T,0)].

Two efficient numerical schemes are available for performing this
task. One is a generalization of the rectangular ripple method43 and the
other is an improved numerical integration scheme described in Reference
52. Both represent essentially a single pass integration for obtaining
the transition matrix at the end of one period resulting approximately in
an n—fold saving of computing time for an nth order [A(Y)] matrix when
compared to previous methods.?8 A detailed description of the numerical
details of these methods is in press.57

Typical results#® for the coupled flap-lag problem in forward flight
are shown in Fig. 12. To illustrate the inherently nonlinear nature of 'the
problem the equations were linearized about three different equiljibrium
positons: an artificial static equilibrium position defined by gj and hy,
one obtained from moment trim and one obtained from propulsive trim. As
shovm the critical advance ratio U at which the lead-lag degree of freedom
becomes unstable is quite dependent upon the equilibrium position about
which the equations are linearized. Furthermore the blade can become
unstable at realistic values of the advance ratio U.

The effect of the torsional degree of freedom on the coupled flap-
lag problem is illustrated by Fig. 13 taken from Reference 26. For ET1=6O,
the torsional degree of freedom is locked out, at ®ry = 15.03 torsion is
almost suppressed while with Wy = 3.0 one has a relatively soft blade in
torsion. Clearly introduction of torsion for this case significantly
destabilizes the inplane degree of freedom. Additional results indicate
that below Wr] < 9.0 the torsional degree of freedom should be included
for a realistic representation of blade dynamics.

In addition to the aercelastic stability problem in forward flight
one of the major topics of rotary-wing aerocelasticity is the aeroelastic
response problem, or dynamic loads problem in forward flight. This problem
represents a combination of unsteady aerodynamics and structural dynamics.
This area has been recently reviewed by Dat8:38 with an emphasis on unsteady
aerodynamics.

A comprehensive review of the state-of-the-art for predicting dynamic
loads on helicepter rotor has been prepared recently by Ormiston.»?
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4, Complete Rotor and Coupled Rotor/Fuselage Aercelastic Problems

The rotary wing aercelastic problems described in the previous
sections were restricted basically to single blade, or isolated blade
aercelastic problems. In reality interblade mechanical coupling or coup-
ling between rotor and the fuselage or coupling between the rotor/fuselage
and the control system can have a significant effect on the aeroelastic
stability and response of this complex aervelastic system. A number of
these problems pertaining to hingeless rotor flight dynamics have been
reviewed in great detail by Hohenemser.9

During the last few years a number of complex analyses dealing with
the coupled rotor/fuselage problem have been developed by the helicopter
industry and have been implemented by sophisticated computer programs.
Results from these programs have been compared to flight test and wind
tunnel test results. These comparisons have usually indicated good quali-
tative predictive capability, however the quantitative predictive capabil-~
ity, was in some cases less than satisfactory. Thus these programs have
become valuable tools in the process of designing rotor systems with
favorable aerocelastic characteristics.

In many cases however the mathematical details, basic assumptions
and detailed documentation are not available and for this reason they can-
not be reviewed in detail.

One such program, which is not adequately documented, has been
originally developed by Messerchmitt-Bolkow-Blohm for the study of the
BO-105 air resonance problem, it has been also adopted and modified by
Vertol. This program has been used extensively to generate results which
have been used subsequently in correlation studies with both dynamic model
tests and with extenmsive full scale tests.9,28,36,60,61

A schematic representation of the coupled rotor fuselage model for
this program is shown in Figure 14. In this model the elastic cantilevered
blade is represented by a spring-restrained, hinged rigid blade. Three
hinges are used to simulate the first flap, first lag and first torsion
modes, in that order from inboard to outboard. In addition, a pitch
degree of freedom is provided inboard of the flap hinge to facilitate the
simulation of any torsional stiffness distribution relative to the flap
and lag hinges. The blade model includes precone, blade sweep, kinematic
pitch flap and pitch lag coupling, and a variable chordwise center of
gravity.

The aerodynamic model is based on blade element theory and can
handle: hover, forward flight and maneuver flight conditions., It uses two
dimensional airfoll data with stall, reversed flow and compressibility
effects.

Quasinormal or multiblade coordinates are used to transform the
blade equations of motion into a nonrotating system. The airframe has five
rigid body degrees of freedom longitudinal, lateral, vertical, pitch and
roll; and two flexible degrees of freedom: pylon pitch and rell.

The equations of motion are nonlinear and are sclved by a numerical
time-history solution technique. Subsequent plotting of the time history
of each degree of freedom is used to obtain frequencies, amplitudes phases
and damping coefficients. )
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One of the main purpeses of this program was the simulation of air
resonance aeroelastic stability boundaries of a soft-inplane, hingeless
rotor helicopter.28,36,60 The air resonance mode is usually the Q-wy lag
mode, (where wy is the inplane fundamental frequency) which can potentially
combine with the aircraft pitch and/or roll mode. However aircraft fuselage
pitech and roll modes are usually heavily damped due to flap motion and
therefore stable.

An appreciation of the coupled rotor fuselage aercelastic problem can
be cobtained from Fig. 15 which was taken from Ref. 36. Examination of Fig,
15 indicates that the low collective pitch type of instability, which is a
pure flap-lag type instability has little coupling with the roll mode, how~
ever the high collective pitch case has significant coupling between the
regressive lag {-wy mode and the aircraft roll mode.

Another interesting item shown in the figure deals with the effect of
fuselage motion on the low collective flap-lag mode in the presence of
precone, shown previously in Fig. 7. Comparing the damping levels in this
mode when the hub is fixed, with the damping levels when the fuselage degrees
of freedom are included clearly shows that the fuselage degrees of freedom
can significantly destabilize this mode. 1t should be noted that the low
collective, precone induced mode manifests itself usually as an oscillation
at the lag frequency which contains predominant lag motion. For this reason
it was identified in Reference 36 as a '"pure lag mode." This example clearly
illustrates that an understanding of single blade aerocelastic problems is an
important ingredient in understanding the coupled rotor/fuselage aercelastic
problem and vice versa. ' '

The reasonably good correlation between, model, flight test and
digital simulation obtained with this program, indicates that its detailed
documentation, so that it could become available in the public domain, would
be in the best interests of the technical community.

Another general purpose coupled rotor/fuselage analysis has been
developed by Johnston and Cassarine.22 This program which contains well
documented equations has considerable capability for simulating a variety
of coupled rotor/fuselage ameroelastic problems for a variety of blade, con—
figurations. Published results®2 indicate reasonable correlation with
test results.,

A third computer program with similar capabilities is the REXOR
program which has been developed by Lockheed. The mathematical rotorcraft
simulation technique, mathematical model and correlation between simulated
and test results are described in Reference 35. Due to the fact that the
rotor is gyro controlled this program represents an advanced complete rotor/
fuselage/control system type of aerocelastic treatment.

Another analysis and computer program implementation intended for
coupled rotor fuselage vibration studles at high speed flight has been pre-
sented by Gerstenberger and Wood.9> While individual blade flap, lag and
fuselage degrees of freedom are coupled and proper trim conditions are used,
the analysis is limited by the assumption that blades are torsionally rigid.

A review of the coupled rotor fuselage aercelastic problems would be
incomplete without briefly mentioning the aeroelastic problems associated
with tail roters. These problems have been treated with considerable detail
in References 63 and 64 which consider two bladed teetering and three and
four bladed gimbaled tail rotors. Unlike a main rotor, a tail rotor is not
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trimmed for wind or flight velocities with cyclic pitch. It operates in
extremely adverse aerodynamic and dynamic enviromment and must produce both
positive and negative thrust. Interference between main rotor and tail
rotor leads to an unsteady aerodynamics problem of exquisite intractability.

According to Reference 64 the maln tail rotor aeroelastic problems
encountered are: (a) Tail wagging - consists of tail rotor blade flapping
coupled with tail boom second lateral bending-torsion mode., Tail rotor
drive shaft frequency, when close to tail boom frequency can introduce torque
changes, resulting in reduced aerodynamic damping leading to further amplji-
fication of this instability. This instability is eliminated by introducing
appropriate pitch-flap coupling._ (b) Blade motion instability of flap-lag
type at high advance ratios for wp; = 1.5. This can be eliminated by reducing
the Lock number and increasing &p7 > 2.0.

A more modest complete rotor aercelastic problem where interblade struc-
tural and mechanical is clearly important is the teetering rotor aeroelastic
problem54’55 shown in Fig. 16. It was shown, using consistently linearized
equations, that the complete rotor stability boundaries and damping levels
are quite different from those. obtained when a single blade type analysis,
based on the assumption that no root moment 1s transferred from one blade to
another, was performed.

5. Concluding Remarks

In this survey of recent research on rotary-wing aeroelasticity an
attempt was made to emphasize the inherent nonlinear nature of the rotary
wing aerocelasticity when compared to fixed wing aercelasticity., The non-
linearities which can be due to both moderately large deflections and non-
linear aerodynamic effects can be ilmportant for both aerocelastic stability
and response calculations. However, they probably have a stronger effect on
stability than on response calculations. Thus care and consistency in the
formulation of rotary wing aercelastic analyses and mathematical models is
of crucial importance. The papers and topics reviewed were rather arbitrar-
ily selected, nevertheless the material surveyed gives an indication
regarding future trends in rotary wing aeroelasticity. It is apparent that
problems, formulations and methods of solution are becoming more sophistic-
ated and computerized. The realistic rotary wing aeroelastic problem is
obviously the complete coupled rotor-fuselage-control system aeroelastic
préblem. Satisfactory solutions to this problem will become available only
after some intermediate problems are adequately solved. First a reliable
experimental data base of model and full scale aeroelastic test results
should be developed against which analyses such as coupled flap-lag-torsional
ana’yses in forward can be validated. A similar approach regarding the
coupled rotor-fuselage and dynamic load and response calculations should be
taken. Additional research on unsteady aerodynamics around realistic rotor
configurations in forward flight should be initiated. These theories
should be developed with the aeroelastician as the potential user in mind,
otherwise these theories might not be suitable, Finally comparisons
between predicted and experimental results should be based on modern
system identification methods.
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Appendix A: List of Symbols

1}

periodic matrix

]

constant matrix, symbolic

1ift curve slope, two dimensional

]

offset between elastic axis and midchord, positive aft,
nondimensionalized with respect to R

]

semichord, nondimensionalized with respect to R

]

blade cross sectional integrals

constant matrix, symbolic

= drag coefficient due to equivalent flat plate area of the
helicopter

approximately equal to C
2.2.2

T

CT = T/pA(ﬂR Q°R") = thrust coefficient

{c}

Cdo

C(k)

constant columm matrix

1]

profile drag cocefficient

Theodorsen's 1ift deficiency functiom

C'(k,h,m) = Loewy's modified lift defficiency function
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fD] =

Ecl’ECZ’Ec3

(EI)y,(EIZ)

P
R
) &
e}
=
Nt
il

constant matrix, symbolic

= terms associated with elastic coupling

stiffness for flapwise and inplane bending respectively

Young's modulus
constant matrix, symbolic
generalized coordinate, first torsional mode
static value of fl in hover

'

0

1

generalized coordinate, first normal flapping mode

perturbation of fl about £

perturbation in 81 about }’—l
static value of g1 in hover, or constant part of Ei

linear time dependent equilibrium value of first normal flap-
ping mode

torsional stiffness

cyclic parts of Ei

nondimensional wake spacing

generalized coordinate, first normal inplane mode

1 about hl

constant part of hl’ or static value in hover

perturbation in h

cyclic parts of hl

linear time dependent equilibrium value of first normal
lead lag mode

unit matrix
V-1
unit vectors iIn x,y and z direection, Fig. 1

unit vectors defining deformed blade geometry, shown in Fig. 2
Jo is parallel to hub plane, I2 and I3 are tangential to the
deformed blade elastic axis.

reduced frequency

polar radius of gyration of cross—sectional area effective in
carrying tensile stresses about the elastic axis ﬁkA=kA/£)

polar radius of gyration of cross—sectional mass about its
center of gravity (kgo=ko/L)
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Px’Py’Pz =

qx’ qys qz =

{q_} =

o

(2] =
R =

[R] =

Xy Vs 2 =

XO=X"'EI =
xA,(§A=xA/£)

{y} =
BP -

root torsional spring constant, contreol system stiffness
length of blade capable of elastic deformation
frequency ratio

Mach number at radial station r = X, + e

L

resultant total loadings per unit length in the x,y, and z
directions, respectively, Subscript I denotes inertia

distributed external loading torques in the x,y and z
directions respectively

vector of variables defining time dependent equilibrium
position of the blade

periodic matrix in Floquet Liapunov Theorem

blade radius

constant matrix used in Floquet-Liapunov theorem

matrix used in calculating equilibrium position, symbolic

centrifugal tension in the blade, alsc common nondimensional
period used in the Floquet theory, also thrust in trim procedure

%,y and z displacements of a point on the elastic axis of the
blade

elastic part of the displacement of a point on the elastic
axis of the blade parallel to the hub plane (see Fig. 1),
subscript 0 denotes equilibrium position

velocity of forward flight of the whole rotor

elastic part of the displacement of a point on the elastic
axis of the blade, in the X, direction, Fig. 2, subscript o
denotes equilibrium position

rotating orthogonal coordinate system

running spanwise coordinate for part of the blade free to
deflect elastically, %, —same, dummy variable

= blade cross-sectional mass center of gravity offset from
the elastic axis (Fig. 1B)

= blade cross—-sectional aerodynamic center offset from elastic
axis, shown in Fig. 1B. Positive for A.C. before E.A.

state variable column matrix

precone, inclination of teathering axis w.r.t. the hub plane
measured in a vertical plane
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Y = lock number (y = 2p bRSa/Ib) for normal flow

A
Y1 = first inplane bending mode
€p = symbolic quantity having the same order of magnitude as the

displacements v and w, nondimensionalized

= real part of the kth characteristic exponent

"k

Ck = real part of kth eigenvalue

Ny = first flapwise bending mode

Nep1*Nsn1 viscous structural damping coefficients, in percent of
critical damping, for first flap and lag mode, respectively

80 = c¢ollective pitch angle

GB = built in twist

BG = total geometric pitch angle

Bt = time dependent part of geometric pitch angle

elc,els = cyclic pitch components

Gc = critical value of collective pitch at which linearized
coupled flap~lag system becomes unstable in hover

A = gymbolic eigenvalue

A = inflow ratio, induced velocity over disk, positive down,
nondimensionalized w.r.t. §R

Ak = eigenvalues of [R], characteristic exponents

u = adwvance ratio

g = blade solidity ratio

[@(w,wo)] = state transition matrix at ¢, for initial conditicns given at wo

o} = total elastic torsional deformation

¢l = first torsional root-coupled mode

(i = azimuth angle of blade (U = Qt) measured from straight aft
position

w = 1imaginary part of kth eigenvalue

E; = imaginary part of k™ characteristic expoment

aFl,aLl,aTl = natural frequency of first flap, lead-lag and torsiomal
frequency respectively nondimensionalized w.r.t. @
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same as
T1

Special Symbols

w = flutter frequency
£ = gpeed of rotation
* d
() = d]‘b
[1] = gquare matrix, [ ]_l
{1} = column matrix
k2
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